Search results for: Micro Heat Pipe
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1993

Search results for: Micro Heat Pipe

853 Alumina Supported Copper-Manganese Catalysts for Combustion of Exhaust Gases: Effect of Preparation Method

Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov

Abstract:

The development of active and stable catalysts without noble metals for low temperature oxidation of exhaust gases remains a significant challenge. The purpose of this study is to determine the influence of the preparation method on the catalytic activity of the supported copper-manganese mixed oxides in terms of VOCs oxidation. The catalysts were prepared by impregnation of γ- Al2O3 with copper and manganese nitrates and acetates and the possibilities for CO, CH3OH and dimethyl ether (DME) oxidation were evaluated using continuous flow equipment with a four-channel isothermal stainless steel reactor. Effect of the support, Cu/Mn mole ratio, heat treatment of the precursor and active component loading were investigated. Highly active alumina supported Cu-Mn catalysts for CO and VOCs oxidation were synthesized. The effect of preparation conditions on the activity behavior of the catalysts was discussed. The synergetic interaction between copper and manganese species increases the activity for complete oxidation over mixed catalysts. Type of support, calcination temperature and active component loading along with catalyst composition are important factors, determining catalytic activity. Cu/Mn molar ratio of 1:5, heat treatment at 450oC and 20 % active component loading are the best compromise for production of active catalyst for simultaneous combustion of CO, CH3OH and DME.

Keywords: Copper-manganese catalysts, Preparation methods, Exhaust gases oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
852 Identification of the Antimicrobial Effect of Liquorice Extracts on Gram-Positive Bacteria: Determination of Minimum Inhibitory Concentration and Mechanism of Action Using a luxABCDE Reporter Strain

Authors: Madiha El Awamie, Catherine Rees

Abstract:

Natural preservatives have been used as alternatives to traditional chemical preservatives; however, a limited number have been commercially developed and many remain to be investigated as sources of safer and effective antimicrobials. In this study, we have been investigating the antimicrobial activity of an extract of Glycyrrhiza glabra (liquorice) that was provided as a waste material from the production of liquorice flavourings for the food industry, and to investigate if this retained the expected antimicrobial activity so it could be used as a natural preservative. Antibacterial activity of liquorice extract was screened for evidence of growth inhibition against eight species of Gram-negative and Gram-positive bacteria, including Listeria monocytogenes, Listeria innocua, Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis. The Gram-negative bacteria tested include Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium but none of these were affected by the extract. In contrast, for all of the Gram-positive bacteria tested, growth was inhibited as monitored using optical density. However parallel studies using viable count indicated that the cells were not killed meaning that the extract was bacteriostatic rather than bacteriocidal. The Minimum Inhibitory Concentration [MIC] and Minimum Bactericidal Concentration [MBC] of the extract was also determined and a concentration of 50 µg ml-1 was found to have a strong bacteriostatic effect on Gram-positive bacteria. Microscopic analysis indicated that there were changes in cell shape suggesting the cell wall was affected. In addition, the use of a reporter strain of Listeria transformed with the bioluminescence genes luxABCDE indicated that cell energy levels were reduced when treated with either 12.5 or 50 µg ml-1 of the extract, with the reduction in light output being proportional to the concentration of the extract used. Together these results suggest that the extract is inhibiting the growth of Gram-positive bacteria only by damaging the cell wall and/or membrane.

Keywords: Antibacterial activity, bioluminescence, Glycyrrhiza glabra, natural preservative.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
851 Assessment of Path Loss Prediction Models for Wireless Propagation Channels at L-Band Frequency over Different Micro-Cellular Environments of Ekiti State, Southwestern Nigeria

Authors: C. I. Abiodun, S. O. Azi, J. S. Ojo, P. Akinyemi

Abstract:

The design of accurate and reliable mobile communication systems depends majorly on the suitability of path loss prediction methods and the adaptability of the methods to various environments of interest. In this research, the results of the adaptability of radio channel behavior are presented based on practical measurements carried out in the 1800 MHz frequency band. The measurements are carried out in typical urban, suburban and rural environments in Ekiti State, Southwestern part of Nigeria. A total number of seven base stations of MTN GSM service located in the studied environments were monitored. Path loss and break point distances were deduced from the measured received signal strength (RSS) and a practical path loss model is proposed based on the deduced break point distances. The proposed two slope model, regression line and four existing path loss models were compared with the measured path loss values. The standard deviations of each model with respect to the measured path loss were estimated for each base station. The proposed model and regression line exhibited lowest standard deviations followed by the Cost231-Hata model when compared with the Erceg Ericsson and SUI models. Generally, the proposed two-slope model shows closest agreement with the measured values with a mean error values of 2 to 6 dB. These results show that, either the proposed two slope model or Cost 231-Hata model may be used to predict path loss values in mobile micro cell coverage in the well-considered environments. Information from this work will be useful for link design of microwave band wireless access systems in the region.

Keywords: Break-point distances, path loss models, path loss exponent, received signal strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
850 A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization

Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar

Abstract:

In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)4 to titanium oxide, TiO2 was investigated. The as-prepared Ti(OH)4 precipitate was annealed at 800°C to obtain TiO2 nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO2 nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO2 nanoparticles and it has the potential to be applied to other systems for photocatalytic activity.

Keywords: TiO2 nanoparticles, chemical precipitation route, phase transition, Fourier Transform Infra-Red spectroscopy, micro Raman spectroscopy, UV-Visible absorption spectroscopy, Photoluminescence spectroscopy, Field Effect Scanning Electron Microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4274
849 Design and Experiment of Orchard Gas Explosion Subsoiling and Fertilizer Injection Machine

Authors: Xiaobo Xi, Ruihong Zhang

Abstract:

At present, the orchard ditching and fertilizing technology has a series of problems, such as easy tree roots damage, high energy consumption and uneven fertilizing. In this paper, a gas explosion subsoiling and fertilizer injection machine was designed, which used high pressure gas to shock soil body and then injected fertilizer. The drill pipe mechanism with pneumatic chipping hammer excitation and hydraulic assistance was designed to drill the soil. The operation of gas and liquid fertilizer supply was controlled by PLC system. The 3D model of the whole machine was established by using SolidWorks software. The machine prototype was produced, and field experiments were carried out. The results showed that soil fractures were created and diffused by gas explosion, and the subsoiling effect radius reached 40 cm under the condition of 0.8 MPa gas pressure and 30 cm drilling depth. What’s more, the work efficiency is 0.048 hm2/h at least. This machine could meet the agronomic requirements of orchard, garden and city greening fertilization, and the tree roots were not easily damaged and the fertilizer evenly distributed, which was conducive to nutrient absorption of root growth.

Keywords: Gas explosion subsoiling, fertigation, pneumatic chipping hammer exciting, soil compaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
848 Thermo-Mechanical Treatments of Cu-Ti Alloys

Authors: M. M. Morgham, A. A. Hameda, N. A. Zriba, H. A. Jawan

Abstract:

This paper aims to study the effect of cold work condition on the microstructure of Cu-1.5wt%Ti, and Cu-3.5wt%Ti and hence mechanical properties. The samples under investigation were machined, and solution heat treated. X-ray diffraction technique is used to identify the different phases present after cold deformation by compression and also different heat treatment and also measuring the relative quantities of phases present. The metallographic examination is used to study the microstructure of the samples. The hardness measurements were used to indicate the change in mechanical properties. The results are compared with the mechanical properties obtained by previous workers. Experiments on cold compression followed by aging of Cu-Ti alloys have indicated that the most efficient hardening of the material results from continuous precipitation of very fine particles within the matrix. These particles were reported to be β`-type, Cu4Ti phase. The β`-β transformation and particles coarsening within the matrix as well as long grain boundaries were responsible for the overaging of Cu-1.5wt%Ti and Cu-3.5wt%Ti alloys. It is well known that plate-like particles are β – type, Cu3Ti phase. Discontinuous precipitation was found to start at the grain boundaries and expand into grain interior. At the higher aging temperature, a classic Widmanstätten morphology forms giving rise to a coarse microstructure comprised of α and the equilibrium phase β. Those results were confirmed by X-ray analysis, which found that a few percent of Cu3Ti, β precipitates are formed during aging at high temperature for long time for both Cu- Ti alloys (i.e. Cu-1.5wt%Ti and Cu-3.5wt%Ti).

Keywords: Metallographic, hardness, precipitation, aging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
847 Nigerian Football System: Examining Micro-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport

Authors: I. Derek Kaka’an, P. Smolianov, S. Dion, C. Schoen, J. Norberg, C. G. Iortimah

Abstract:

This study examines the current state of football in Nigeria to identify the country's practices, which could be useful internationally, and to determine areas for improvement. Over 200 sources of literature on sport delivery systems in successful sports nations were analyzed to construct a globally applicable model of elite football integrated with mass participation, comprising of the following three levels: macro (socio-economic, cultural, legislative, and organizational), meso (infrastructures, personnel, and services enabling sports programs) and micro level (operations, processes, and methodologies for the development of individual athletes). The model has received scholarly validation and has shown to be a framework for program analysis that is not culturally bound. It has recently been utilized for further understanding such sports systems as US rugby, tennis, soccer, swimming, and volleyball, as well as Dutch and Russian swimming. A questionnaire was developed using the above-mentioned model. Survey questions were validated by 12 experts including academicians, executives from sports governing bodies, football coaches, and administrators. To identify best practices and determine areas for improvement of football in Nigeria, 116 coaches completed the questionnaire. Useful exemplars and possible improvements were further identified through semi-structured discussions with 10 Nigerian football administrators and experts. Finally, a content analysis of the Nigeria Football Federation's website and organizational documentation was conducted. This paper focuses on the micro level of Nigerian football delivery, particularly talent search and development as well as advanced athlete preparation and support. Results suggested that Nigeria could share such progressive practices as the provision of football programs in all schools and full-time coaches paid by governments based on the level of coach education. Nigerian football administrators and coaches could provide better football services affordable for all, where success in mass and elite sports is guided by science focused on athletes' needs. Better implemented could be international best practices such as lifelong guidelines for health and excellence of everyone and integration of fitness tests into player development and ranking as done in best Dutch, English, French, Russian, Spanish, and other European clubs; integration of educational and competitive events for elite and developing athletes as well as fans as done at the 2018 World Cup Russia; and academies with multi-stage athlete nurturing as done by Ajax in Africa as well as Barcelona FC and other top clubs expanding across the world. The methodical integration of these practices into the balanced development of mass and elite football will help contribute to international sports success as well as national health, education, crime control, and social harmony in Nigeria.

Keywords: Football, high performance, mass participation, Nigeria, sport development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152
846 Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows

Authors: Suresh Sahu, Abhijeet M. Vaidya, Naresh K. Maheshwari

Abstract:

The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.

Keywords: Curvilinear coordinate, body-fitted mesh, momentum interpolation, non-staggered grid, supercritical fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
845 Experimental Study of Fuel Tank Filling

Authors: Maurizio Mastroianni, Lou Savoni, Paul Henshaw, Gary W. Rankin

Abstract:

The refueling of a transparent rectangular fuel tank fitted with a standard filler pipe and roll-over valve was experimentally studied. A fuel-conditioning cart, capable of handling fuels of different Reid vapor pressure at a constant temperature, was used to dispense fuel at the desired rate. The experimental protocol included transient recording of the tank and filler tube pressures while video recording the flow patterns in the filler tube and tank during the refueling process. This information was used to determine the effect of changes in the vent tube diameter, fuel-dispense flow rate and fuel Reid vapor pressure on the pressure-time characteristics and the occurrence of premature fuel filling shut-off and fuel spill-back. Pressure-time curves for the case of normal shut-off demonstrated the classic, three-phase characteristic noted in the literature. The variation of the maximum values of tank dome and filler tube pressures are analyzed in relation to the occurrence of premature shut-off.

Keywords: experimental study, fuel tank filling, premature shutoff, spill-back

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4203
844 Photogrammetric Survey on the Natural Gas Pipeline Projects of Iran-Turkey- Europe (ITE)

Authors: Ferruh Yildiz

Abstract:

The ITE Project is a project that has 1800 km length and across the Turkey's land through east to west. The project of pipeline enters geographically from Iran to Doğubayazit (Turkey) in the east, exits to Greece from Ipsala province of Turkey in the west. This project is the one of the international projects in such scale that provides the natural gas of Iran and Caspian Sea through the European continent. In this investigation, some information will be given about the methods used to verify the direction of the pipeline and the technical properties of the results obtained. The cost of project itself entirely depends on the direction of the pipeline which would be as short as possible and the specifications of the land cover. Production standards of 1/2000 scaled digital orthophoto and vectoral maps as a results of the use of map production materials and methods (such as high resolution satellite images, and digital aerial images captured from digital aerial cameras), will also be given in this report. According to Turkish national map production standards, TM ((Transversal Mercator, 3 degree) projection is used for large scale map and UTM (Universal Transversal Mercator, 6 degree) is used for small scale map production standards. Some information is also given about the projection used in the ITE natural gas pipeline project.

Keywords: Digital Image Processing, Natural Gas Pipe Line, Photogrammetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2414
843 Port Positions on the Mixing Efficiency of a Rotor-Type Mixer – A Numerical Study

Authors: Y. C. Liou, J. M. Miao, T. L. Liu, M. H. Ho

Abstract:

The purpose of this study was to explore the complex flow structure a novel active-type micromixer that based on concept of Wankle-type rotor. The characteristics of this micromixer are two folds; a rapid mixing of reagents in a limited space due to the generation of multiple vortices and a graduate increment in dynamic pressure as the mixed reagents is delivered to the output ports. Present micro-mixer is consisted of a rotor with shape of triangle column, a blending chamber and several inlet and outlet ports. The geometry of blending chamber is designed to make the rotor can be freely internal rotated with a constant eccentricity ratio. When the shape of the blending chamber and the rotor are fixed, the effects of rotating speed of rotor and the relative locations of ports on the mixing efficiency are numerical studied. The governing equations are unsteady, two-dimensional incompressible Navier-Stokes equation and the working fluid is the water. The species concentration equation is also solved to reveal the mass transfer process of reagents in various regions then to evaluate the mixing efficiency. The dynamic mesh technique was implemented to model the dynamic volume shrinkage and expansion of three individual sub-regions of blending chamber when the rotor conducted a complete rotating cycle. Six types of ports configuration on the mixing efficiency are considered in a range of Reynolds number from 10 to 300. The rapid mixing process was accomplished with the multiple vortex structures within a tiny space due to the equilibrium of shear force, viscous force and inertial force. Results showed that the highest mixing efficiency could be attained in the following conditions: two inlet and two outlet ports configuration, that is an included angle of 60 degrees between two inlets and an included angle of 120 degrees between inlet and outlet ports when Re=10.

Keywords: active micro-mixer, CFD, mixing efficiency, ports configuration, Reynolds number, Wankle-type rotor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
842 Improvement of Gas Turbine Performance Test in Combine Cycle

Authors: M. Khosravy-el-Hossani, Q. Dorosti

Abstract:

One of the important applications of gas turbines is their utilization for heat recovery steam generator in combine-cycle technology. Exhaust flow and energy are two key parameters for determining heat recovery steam generator performance which are mainly determined by the main gas turbine components performance data. For this reason a method was developed for determining the exhaust energy in the new edition of ASME PTC22. The result of this investigation shows that the method of standard has considerable error. Therefore in this paper a new method is presented for modifying of the performance calculation. The modified method is based on exhaust gas constituent analysis and combustion calculations. The case study presented here by two kind of General Electric gas turbine design data for validation of methodologies. The result shows that the modified method is more precise than the ASME PTC22 method. The exhaust flow calculation deviation from design data is 1.5-2 % by ASME PTC22 method so that the deviation regarding with modified method is 0.3-0.5%. Based on precision of analyzer instruments, the method can be suitable alternative for gas turbine standard performance test. In advance two methods are proposed based on known and unknown fuel in modified method procedure. The result of this paper shows that the difference between the two methods is below than %0.02. In according to reasonable esult of the second procedure (unknown fuel composition), the method can be applied to performance evaluation of gas turbine, so that the measuring cost and data gathering should be reduced.

Keywords: Gas turbine, Performance test code, Combined cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986
841 Microscopic Analysis of Interfacial Transition Zone of Cementitious Composites Prepared by Various Mixing Procedures

Authors: Josef Fládr, Jiří Němeček, Veronika Koudelková, Petr Bílý

Abstract:

Mechanical parameters of cementitious composites differ quite significantly based on the composition of cement matrix. They are also influenced by mixing times and procedure. The research presented in this paper was aimed at identification of differences in microstructure of normal strength (NSC) and differently mixed high strength (HSC) cementitious composites. Scanning electron microscopy (SEM) investigation together with energy dispersive X-ray spectroscopy (EDX) phase analysis of NSC and HSC samples was conducted. Evaluation of interfacial transition zone (ITZ) between the aggregate and cement matrix was performed. Volume share, thickness, porosity and composition of ITZ were studied. In case of HSC, samples obtained by several different mixing procedures were compared in order to find the most suitable procedure. In case of NSC, ITZ was identified around 40-50% of aggregate grains and its thickness typically ranged between 10 and 40 µm. Higher porosity and lower share of clinker was observed in this area as a result of increased water-to-cement ratio (w/c) and the lack of fine particles improving the grading curve of the aggregate. Typical ITZ with lower content of Ca was observed only in one HSC sample, where it was developed around less than 15% of aggregate grains. The typical thickness of ITZ in this sample was similar to ITZ in NSC (between 5 and 40 µm). In the remaining four HSC samples, no ITZ was observed. In general, the share of ITZ in HSC samples was found to be significantly smaller than in NSC samples. As ITZ is the weakest part of the material, this result explains to large extent the improved mechanical properties of HSC compared to NSC. Based on the comparison of characteristics of ITZ in HSC samples prepared by different mixing procedures, the most suitable mixing procedure from the point of view of properties of ITZ was identified.

Keywords: Energy dispersive X-ray spectroscopy, high strength concrete, interfacial transition zone, mixing procedure, normal strength concrete, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
840 Formation of Round Channel for Microfluidic Applications

Authors: A. Zahra, G. de Cesare, D. Caputo, A. Nascetti

Abstract:

PDMS (Polydimethylsiloxane) polymer is a suitable material for biological and MEMS (Microelectromechanical systems) designers, because of its biocompatibility, transparency and high resistance under plasma treatment. PDMS round channel is always been of great interest due to its ability to confine the liquid with membrane type micro valves. In this paper we are presenting a very simple way to form round shapemicrofluidic channel, which is based on reflow of positive photoresist AZ® 40 XT. With this method, it is possible to obtain channel of different height simply by varying the spin coating parameters of photoresist.

Keywords: Lab-on-Chip, PDMS, Reflow, Round microfluidic channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3021
839 Domin-Specific Language for Enabling End- Users Model-Driven Information System Engineering

Authors: Ahmad F. Subahi, Anthony J. H. Simons

Abstract:

This Paper presents an on-going research in the area of Model-Driven Engineering (MDE). The premise is that UML is too unwieldy to serve as the basis for model-driven engineering. We need a smaller, simpler notation with a cleaner semantics. We propose some ideas for a simpler notation with a clean semantics. The result is known as μML, or the Micro-Modelling Language.

Keywords: Model-driven engineering, model transformations, domain-specific languages, end-user development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
838 Geotechnical Investigation of Soil Foundation for Ramps of Dawar El-Tawheed Bridge in Jizan City, Kingdom of Saudi Arabia

Authors: Ali H. Mahfouz, Hossam E. M.Sallam, Abdulwali Wazir, Hamod H. Kharezi

Abstract:

The soil profile at site of the bridge project includes soft fine grained soil layer located between 5.0 m to 11.0 m in depth, it has high water content, low SPT no., and low bearing capacity. The clay layer induces high settlement due to surcharge application of earth embankment at ramp T1, ramp T2, and ramp T3 especially at heights from 9m right 3m. Calculated settlement for embankment heights less than 3m may be accepted regarding Saudi Code for soil and foundation. The soil and groundwater at the project site comprise high contents of sulfates and chlorides of high aggressively on concrete and steel bars, respectively. Regarding results of the study, it has been recommended to use stone column piles or new technology named PCC piles as soil improvement to improve the bearing capacity of the weak layer. The new technology is cast in-situ thin wall concrete pipe piles (PCC piles), it has economically advantageous and high workability. The technology can save time of implementation and cost of application is almost 30% of other types of piles.

Keywords: Soft foundation soil, bearing capacity, bridge ramps, soil improvement, PCC piles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
837 Morphological and Electrical Characterization of Polyacrylonitrile Nanofibers Synthesized Using Electrospinning Method for Electrical Application

Authors: Divyanka Sontakke, Arpit Thakre, D. K Shinde, Sujata Parmeshwaran

Abstract:

Electrospinning is the most widely utilized method to create nanofibers because of the direct setup, the capacity to mass-deliver consistent nanofibers from different polymers, and the ability to produce ultrathin fibers with controllable diameters. Smooth and much arranged ultrafine Polyacrylonitrile (PAN) nanofibers with diameters going from submicron to nanometer were delivered utilizing Electrospinning technique. PAN powder was used as a precursor to prepare the solution utilized as a part of this process. At the point when the electrostatic repulsion contradicted surface tension, a charged stream of polymer solution was shot out from the head of the spinneret and along these lines ultrathin nonwoven fibers were created. The effect of electrospinning parameter such as applied voltage, feed rate, concentration of polymer solution and tip to collector distance on the morphology of electrospun PAN nanofibers were investigated. The nanofibers were heat treated for carbonization to examine the changes in properties and composition to make for electrical application. Scanning Electron Microscopy (SEM) was performed before and after carbonization to study electrical conductivity and morphological characterization. The SEM images have shown the uniform fiber diameter and no beads formation. The average diameter of the PAN fiber observed 365nm and 280nm for flat plat and rotating drum collector respectively. The four probe strategy was utilized to inspect the electrical conductivity of the nanofibers and the electrical conductivity is significantly improved with increase in oxidation temperature exposed.

Keywords: Electrospinning, polyacrylonitrile carbon nanofibres, heat treatment, electrical conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 686
836 Determination of Vitamin C (Ascorbic Acid) in Orange Juices Product

Authors: Wanida Wonsawat

Abstract:

This research describes a voltammetric approach to determine amounts of vitamin C (Ascorbic acid) in orange juice sample, using three screen printed electrode. The anodic currents of vitamin C were proportional to vitamin C concentration in the range of 0 – 10.0 mM with the limit of detection of 1.36 mM. The method was successfully employed with 2 µL of the working solution dropped on the electrode surface. The proposed method was applied for the analysis of vitamin C in packed orange juice without sample purification or complexion of sample preparation step.

Keywords: Ascorbic acid, Vitamin C, Juice, Voltammetry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8479
835 Study on Status and Development of Hydraulic System Protection: Pump Combined With Air Chamber

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar, A. A. Saber

Abstract:

Fluid transient analysis is one of the more challenging and complicated flow problems in the design and the operation of water pipeline systems (wps). When transient conditions "water hammer" exists, the life expectancy of the wps can be adversely impacted, resulting in pump and valve failures and catastrophic pipe ruptures. Transient control has become an essential requirement for ensuring safe operation of wps. An accurate analysis and suitable protection devices should be used to protect wps. This paper presents the problem of modeling and simulation of transient phenomena in wps based on the characteristics method. Also, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occur in the transient. The developed model applied for main wps: pump combined with closed surge tank connected to a reservoir. The results obtained provide that the model is an efficient tool for water hammer analysis. Moreover; using the closed surge tank reduces the unfavorable effects of transients.

Keywords: Flow Transient, Water hammer, Pipeline System, Closed Surge Tank, Simulation Model, Protection Devices, Characteristics Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
834 Entropy Generation and Heat Transfer of Cu–Water Nanofluid Mixed Convection in a Cavity

Authors: Mliki Bouchmel, Belgacem Nabil, Abbassi Mohamed Ammar, Geudri Kamel, Omri Ahmed

Abstract:

In this numerical work, mixed convection and entropy generation of Cu–water nanofluid in a lid-driven square cavity have been investigated numerically using the Lattice Boltzmann Method. Horizontal walls of the cavity are adiabatic and vertical walls have constant temperature but different values. The top wall has been considered as moving from left to right at a constant speed, U0. The effects of different parameters such as nanoparticle volume concentration (0–0.05), Rayleigh number (104–106) and Reynolds numbers (1, 10 and 100) on the entropy generation, flow and temperature fields are studied. The results have shown that addition of nanoparticles to the base fluid affects the entropy generation, flow pattern and thermal behavior especially at higher Rayleigh and low Reynolds numbers. For pure fluid as well as nanofluid, the increase of Reynolds number increases the average Nusselt number and the total entropy generation, linearly. The maximum entropy generation occurs in nanofluid at low Rayleigh number and at high Reynolds number. The minimum entropy generation occurs in pure fluid at low Rayleigh and Reynolds numbers. Also at higher Reynolds number, the effect of Cu nanoparticles on enhancement of heat transfer was decreased because the effect of lid-driven cavity was increased. The present results are validated by favorable comparisons with previously published results. The results of the problem are presented in graphical and tabular forms and discussed.

Keywords: Entropy generation, mixed convection, nanofluid, lattice Boltzmann method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
833 Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids

Authors: Markus Rütten, Olaf Wünsch

Abstract:

Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K´arm´an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters.

Keywords: Heat transfer, thermo-viscous fluids, shear thinning, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
832 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation

Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling

Abstract:

The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.

Keywords: Aero-thermo-elasticity, elastic deformation, structural temperature, multi-field coupling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893
831 An Experimental and Numerical Investigation on Gas Hydrate Plug Flow in the Inclined Pipes and Bends

Authors: M. M. Shabani, O. J. Nydal, R. Larsen

Abstract:

Gas hydrates can agglomerate and block multiphase oil and gas pipelines when water is present at hydrate forming conditions. Using "Cold Flow Technology", the aim is to condition gas hydrates so that they can be transported as a slurry mixture without a risk of agglomeration. During the pipeline shut down however, hydrate particles may settle in bends and build hydrate plugs. An experimental setup has been designed and constructed to study the flow of such plugs at start up operations. Experiments have been performed using model fluid and model hydrate particles. The propagations of initial plugs in a bend were recorded with impedance probes along the pipe. The experimental results show a dispersion of the plug front. A peak in pressure drop was also recorded when the plugs were passing the bend. The evolutions of the plugs have been simulated by numerical integration of the incompressible mass balance equations, with an imposed mixture velocity. The slip between particles and carrier fluid has been calculated using a drag relation together with a particle-fluid force balance.

Keywords: Cold Flow Technology, Gas Hydrate Plug Flow Experiments, One Dimensional Incompressible Two Fluid Model, Slurry Flow in Inclined Pipes and Bends, Transient Slurry Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
830 Semi-Analytic Solution and Hydrodynamics Behavior of Fluid Flow in Micro-Converging plates

Authors: A. Al-Shyyab, A. F. Khadrawi

Abstract:

The hydrodynamics behavior of fluid flow in microconverging plates is investigated analytically. Effects of Knudsen number () on the microchannel hydrodynamics behavior and the coefficient of friction are investigated. It is found that as  increases the slip in the hydrodynamic boundary condition increases. Also, the coefficient of friction decreases as  increases.

Keywords: Converging plates, hydrodynamic behavior, microplates, microchannel, slip velocity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
829 Equilibrium Modeling of Carbon Dioxide Adsorption on Zeolites

Authors: Alireza Behvandi, Somayeh Tourani

Abstract:

High pressure adsorption of carbon dioxide on zeolite 13X was investigated in the pressure range (0 to 4) Mpa and temperatures 298, 308 and 323K. The data fitting is accomplished with the Toth, UNILAN, Dubinin-Astakhov and virial adsorption models which are generally used for micro porous adsorbents such as zeolites. Comparison with experimental data from the literature indicated that the virial model would best determine results. These results may be partly attributed to the flexibility of the virial model which can accommodate as many constants as the data warrants.

Keywords: adsorption models, zeolite, carbon dioxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2882
828 Effect of Cladding Direction on Residual Stress Distribution in Laser Cladded Rails

Authors: Taposh Roy, Anna Paradowska, Ralph Abrahams, Quan Lai, Michael Law, Peter Mutton, Mehdi Soodi, Wenyi Yan

Abstract:

In this investigation, a laser cladding process with a powder feeding was used to deposit stainless steel 410L (high strength, excellent resistance to abrasion and corrosion, and great laser compatibility) onto railhead (higher strength, heat treated hypereutectoid rail grade manufactured in accordance with the requirements of European standard EN 13674 Part 1 for R400HT grade), to investigate the development and controllability of process-induced residual stress in the cladding, heat-affected zone (HAZ) and substrate and to analyse their correlation with hardness profile during two different laser cladding directions (across and along the track). Residual stresses were analysed by neutron diffraction at OPAL reactor, ANSTO. Neutron diffraction was carried out on the samples in longitudinal (parallel to the rail), transverse (perpendicular to the rail) and normal (through thickness) directions with high spatial resolution through the thickness. Due to the thick rail and thin cladding, 4 mm thick reference samples were prepared from every specimen by Electric Discharge Machining (EDM). Metallography across the laser claded sample revealed four distinct zones: The clad zone, the dilution zone, HAZ and the substrate. Compressive residual stresses were found in the clad zone and tensile residual stress in the dilution zone and HAZ. Laser cladding in longitudinally cladding induced higher tensile stress in the HAZ, whereas transversely cladding rail showed lower tensile behavior.

Keywords: Laser cladding, residual stress, neutron diffraction, HAZ.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1011
827 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry

Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard

Abstract:

Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.

Keywords: Wetting, acoustic reflectometry, gigahertz, semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
826 Experimental Investigation of Phase Distributions of Two-phase Air-silicone Oil Flow in a Vertical Pipe

Authors: M. Abdulkadir, V. Hernandez-Perez, S. Sharaf, I. S. Lowndes, B. J. Azzopardi

Abstract:

This paper reports the results of an experimental study conducted to characterise the gas-liquid multiphase flows experienced within a vertical riser transporting a range of gas-liquid flow rates. The scale experiments were performed using an air/silicone oil mixture within a 6 m long riser. The superficial air velocities studied ranged from 0.047 to 2.836 m/ s, whilst maintaining a liquid superficial velocity at 0.047 m/ s. Measurements of the mean cross-sectional and time average radial void fraction were obtained using a wire mesh sensor (WMS). The data were recorded at an acquisition frequency of 1000 Hz over an interval of 60 seconds. For the range of flow conditions studied, the average void fraction was observed to vary between 0.1 and 0.9. An analysis of the data collected concluded that the observed void fraction was strongly affected by the superficial gas velocity, whereby the higher the superficial gas velocity, the higher was the observed average void fraction. The average void fraction distributions observed were in good agreement with the results obtained by other researchers. When the air-silicone oil flows were fully developed reasonably symmetric profiles were observed, with the shape of the symmetry profile being strongly dependent on the superficial gas velocity.

Keywords: WMS, phase distribution, silicone-oil, riser

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
825 The Evaluation of Antioxidant and Antimicrobial Activities of Essential Oil and Aqueous, Methanol, Ethanol, Ethyl Acetate and Acetone Extract of Hypericum scabrum

Authors: A. Heshmati, M. Y Alikhani, M. T. Godarzi, M. R. Sadeghimanesh

Abstract:

Herbal essential oil and extracts are a good source of natural antioxidants and antimicrobial compounds. Hypericum is one of the potential sources of these compounds. In this study, the antioxidant and antimicrobial activity of essential oil and aqueous, methanol, ethanol, ethyl acetate and acetone extract of Hypericum scabrum was assessed. Flowers of Hypericum scabrum were collected from the surrounding mountains of Hamadan province and after drying in the shade, the essential oil of the plant was extracted by Clevenger and water, methanol, ethanol, ethyl acetate and acetone extract was obtained by maceration method. Essential oil compounds were identified using the GC-Mass. The Folin-Ciocalteau and aluminum chloride (AlCl3) colorimetric method was used to measure the amount of phenolic acid and flavonoids, respectively. Antioxidant activity was evaluated using DPPH and FRAP. The minimum inhibitory concentration (MIC) and the minimum bacterial/fungicide concentration (MBC/MFC) of essential oil and extracts were evaluated against Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, Salmonella typhimurium, Aspergillus flavus and Candida albicans. The essential oil yield of was 0.35%, the lowest and highest extract yield was related to ethyl acetate and water extract. The most component of essential oil was α-Pinene (46.35%). The methanol extracts had the highest phenolic acid (95.65 ± 4.72 µg galic acid equivalent/g dry plant) and flavonoids (25.39 ± 2.73 µg quercetin equivalent/g dry plant). The percentage of DPPH radical inhibition showed positive correlation with concentrations of essential oil or extract. The methanol and ethanol extract had the highest DDPH radical inhibitory. Essential oil and extracts of Hypericum had antimicrobial activity against the microorganisms studied in this research. The MIC and MBC values for essential oils were in the range of 25-25.6 and 25-50 μg/mL, respectively. For the extracts, these values were 1.5625-100 and 3.125-100 μg/mL, respectively. Methanol extracts had the highest antimicrobial activity. Essential oil and extract of Hypericum scabrum, especially methanol extract, have proper antimicrobial and antioxidant activity, and it can be used to control the oxidation and inhibit the growth of pathogenic and spoilage microorganisms. In addition, it can be used as a substitute for synthetic antioxidant and antimicrobial compounds.

Keywords: Antimicrobial, antioxidant, extract, hypericum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
824 Analysis and Control of Camera Type Weft Straightener

Authors: Jae-Yong Lee, Gyu-Hyun Bae, Yun-Soo Chung, Dae-Sub Kim, Jae-Sung Bae

Abstract:

In general, fabric is heat-treated using a stenter machine in order to dry and fix its shape. It is important to shape before the heat treatment because it is difficult to revert back once the fabric is formed. To produce the product of right shape, camera type weft straightener has been applied recently to capture and process fabric images quickly. It is more powerful in determining the final textile quality rather than photo-sensor. Positioning in front of a stenter machine, weft straightener helps to spread fabric evenly and control the angle between warp and weft constantly as right angle by handling skew and bow rollers. To process this tricky procedure, the structural analysis should be carried out in advance, based on which, its control technology can be drawn. A structural analysis is to figure out the specific contact/slippage characteristics between fabric and roller. We already examined the applicability of camera type weft straightener to plain weave fabric and found its possibility and the specific working condition of machine and rollers. In this research, we aimed to explore another applicability of camera type weft straightener. Namely, we tried to figure out camera type weft straightener can be used for fabrics. To find out the optimum condition, we increased the number of rollers. The analysis is done by ANSYS software using Finite Element Analysis method. The control function is demonstrated by experiment. In conclusion, the structural analysis of weft straightener is done to identify a specific characteristic between roller and fabrics. The control of skew and bow roller is done to decrease the error of the angle between warp and weft. Finally, it is proved that camera type straightener can also be used for the special fabrics.

Keywords: Camera type weft straightener, structure analysis, control, skew and bow roller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450