Search results for: modularity optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1884

Search results for: modularity optimization

774 A Hybrid Approach Using Particle Swarm Optimization and Simulated Annealing for N-queen Problem

Authors: Vahid Mohammadi Saffarzadeh, Pourya Jafarzadeh, Masoud Mazloom

Abstract:

This paper presents a hybrid approach for solving nqueen problem by combination of PSO and SA. PSO is a population based heuristic method that sometimes traps in local maximum. To solve this problem we can use SA. Although SA suffer from many iterations and long time convergence for solving some problems, By good adjusting initial parameters such as temperature and the length of temperature stages SA guarantees convergence. In this article we use discrete PSO (due to nature of n-queen problem) to achieve a good local maximum. Then we use SA to escape from local maximum. The experimental results show that our hybrid method in comparison of SA method converges to result faster, especially for high dimensions n-queen problems.

Keywords: PSO, SA, N-queen, CSP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
773 Model Based Monitoring Using Integrated Data Validation, Simulation and Parameter Estimation

Authors: Reza Hayati, Maryam Sadi, Saeid Shokri, Mehdi Ahmadi Marvast, Saeid Hassan Boroojerdi, Amin Hamzavi Abedi

Abstract:

Efficient and safe plant operation can only be achieved if the operators are able to monitor all key process parameters. Instrumentation is used to measure many process variables, like temperatures, pressures, flow rates, compositions or other product properties. Therefore Performance monitoring is a suitable tool for operators. In this paper, we integrate rigorous simulation model, data reconciliation and parameter estimation to monitor process equipments and determine key performance indicator (KPI) of them. The applied method here has been implemented in two case studies.

Keywords: Data Reconciliation, Measurement, Optimization, Parameter Estimation, Performance Monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
772 A New Effective Local Search Heuristic for the Maximum Clique Problem

Authors: S. Balaji

Abstract:

An edge based local search algorithm, called ELS, is proposed for the maximum clique problem (MCP), a well-known combinatorial optimization problem. ELS is a two phased local search method effectively £nds the near optimal solutions for the MCP. A parameter ’support’ of vertices de£ned in the ELS greatly reduces the more number of random selections among vertices and also the number of iterations and running times. Computational results on BHOSLIB and DIMACS benchmark graphs indicate that ELS is capable of achieving state-of-the-art-performance for the maximum clique with reasonable average running times.

Keywords: Maximum clique, local search, heuristic, NP-complete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
771 Application of De Novo Programming Approach for Optimizing the Business Process

Authors: Z. Babic, I. Veza, A. Balic, M. Crnjac

Abstract:

The linear programming model is sometimes difficult to apply in real business situations due to its assumption of proportionality. This paper shows an example of how to use De Novo programming approach instead of linear programming. In the De Novo programming, resources are not fixed like in linear programming but resource quantities depend only on available budget. Budget is a new, important element of the De Novo approach. Two different production situations are presented: increasing costs and quantity discounts of raw materials. The focus of this paper is on advantages of the De Novo approach in the optimization of production plan for production company which produces souvenirs made from famous stone from the island of Brac, one of the greatest islands from Croatia.

Keywords: De Novo Programming, production plan, stone souvenirs, variable prices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
770 Application of the Discrete-Event Simulation When Optimizing of Business Processes in Trading Companies

Authors: Maxat Bokambayev, Bella Tussupova, Aisha Mamyrova, Erlan Izbasarov

Abstract:

Optimization of business processes in trading companies is reviewed in the report. There is the presentation of the “Wholesale Customer Order Handling Process” business process model applicable for small and medium businesses. It is proposed to apply the algorithm for automation of the customer order processing which will significantly reduce labor costs and time expenditures and increase the profitability of companies. An optimized business process is an element of the information system of accounting of spare parts trading network activity. The considered algorithm may find application in the trading industry as well.

Keywords: Business processes, discrete-event simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
769 ECG Analysis using Nature Inspired Algorithm

Authors: A.Sankara Subramanian, G.Gurusamy, G.Selvakumar, P.Gnanasekar, A.Nagappan

Abstract:

This paper presents an algorithm based on the wavelet decomposition, for feature extraction from the ECG signal and recognition of three types of Ventricular Arrhythmias using neural networks. A set of Discrete Wavelet Transform (DWT) coefficients, which contain the maximum information about the arrhythmias, is selected from the wavelet decomposition. After that a novel clustering algorithm based on nature inspired algorithm (Ant Colony Optimization) is developed for classifying arrhythmia types. The algorithm is applied on the ECG registrations from the MIT-BIH arrhythmia and malignant ventricular arrhythmia databases. We applied Daubechies 4 wavelet in our algorithm. The wavelet decomposition enabled us to perform the task efficiently and produced reliable results.

Keywords: Daubechies 4 Wavelet, ECG, Nature inspired algorithm, Ventricular Arrhythmias, Wavelet Decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
768 Job Shop Scheduling: Classification, Constraints and Objective Functions

Authors: Majid Abdolrazzagh-Nezhad, Salwani Abdullah

Abstract:

The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature.

Keywords: Job-shop scheduling, classification, constraints, objective functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
767 Approximating Maximum Weighted Independent Set Using Vertex Support

Authors: S. Balaji, V. Swaminathan, K. Kannan

Abstract:

The Maximum Weighted Independent Set (MWIS) problem is a classic graph optimization NP-hard problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the MWIS problem is to find a vertex set S V whose total weight is maximum subject to no two vertices in S are adjacent. This paper presents a novel approach to approximate the MWIS of a graph using minimum weighted vertex cover of the graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the proposed algorithm can yield better solutions than other existing algorithms found in the literature for solving the MWIS.

Keywords: weighted independent set, vertex cover, vertex support, heuristic, NP - hard problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
766 An Augmented Beam-search Based Algorithm for the Strip Packing Problem

Authors: Hakim Akeb, Mhand Hifi

Abstract:

In this paper, the use of beam search and look-ahead strategies for solving the strip packing problem (SPP) is investigated. Given a strip of fixed width W, unlimited length L, and a set of n circular pieces of known radii, the objective is to determine the minimum length of the initial strip that packs all the pieces. An augmented algorithm which combines beam search and a look-ahead strategies is proposed. The look-ahead is used in order to evaluate the nodes at each level of the tree search. The best nodes are then retained for branching. The computational investigation showed that the proposed augmented algorithm is able to improve the best known solutions of the literature on most instances used.

Keywords: Combinatorial optimization, cutting and packing, beam search, heuristic, look-ahead strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
765 Overview of Adaptive Spline Interpolation

Authors: Rongli Gai, Zhiyuan Chang, Xiaohong Wang, Jingyu Liu

Abstract:

In view of various situations in the interpolation process, most researchers use self-adaptation to adjust the interpolation process, which is also one of the current and future research hotspots in the field of CNC (Computerized Numerical Control) machining. In the interpolation process, according to the overview of the spline curve interpolation algorithm, the adaptive analysis is carried out from the factors affecting the interpolation process. The adaptive operation is reflected in various aspects, such as speed, parameters, errors, nodes, feed rates, random period, sensitive point, step size, curvature, adaptive segmentation, adaptive optimization, etc. This paper will analyze and summarize the research of adaptive imputation in the direction of the above factors affecting imputation.

Keywords: Adaptive algorithm, CNC machining, interpolation constraints, spline curve interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
764 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 2: Condensation and Solidification Experiments on Liquid Waste

Authors: Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura

Abstract:

As a part of STRAD project conducted by JAEA, condensation of radioactive liquid waste containing various chemical compounds using reverse osmosis (RO) membrane filter was examined for efficient and safety treatment of the liquid wastes accumulated inside hot laboratories. NH4+ ion in the feed solution was successfully concentrated, and NH4+ ion involved in the effluents became lower than target value; 100 ppm. Solidification of simulated aqueous and organic liquid wastes was also tested. Those liquids were successfully solidified by adding cement or coagulants. Nevertheless, optimization in materials for confinement of chemicals is required for long time storage of the final solidified wastes.

Keywords: Radioactive liquid waste, condensation, solidification, STRAD project.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
763 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds

Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang

Abstract:

Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.

Keywords: Pose estimation, deep learning, point cloud, bin-picking, 3D computer vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
762 Effect of Temperature on the Performance of Multi-Stage Distillation

Authors: A. Diaf, H. Aburideh, Z.Tigrine, D. Tassalit, F.Alaoui

Abstract:

The tray/multi-tray distillation process is a topic that has been investigated to great detail over the last decade by many teams such as Jubran et al. [1], Adhikari et al. [2], Mowla et al. [3], Shatat et al. [4] and Fath [5] to name a few. A significant amount of work and effort was spent focusing on modeling and/simulation of specific distillation hardware designs. In this work, we have focused our efforts on investigating and gathering experimental data on several engineering and design variables to quantify their influence on the yield of the multi-tray distillation process. Our goals are to generate experimental performance data to bridge some existing gaps in the design, engineering, optimization and theoretical modeling aspects of the multi-tray distillation process.

Keywords: Distillation, Desalination, Multi-Stage still, Solar Energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
761 Modeling of the Process Parameters using Soft Computing Techniques

Authors: Miodrag T. Manić, Dejan I. Tanikić, Miloš S. Stojković, Dalibor M. ðenadić

Abstract:

The design of technological procedures for manufacturing certain products demands the definition and optimization of technological process parameters. Their determination depends on the model of the process itself and its complexity. Certain processes do not have an adequate mathematical model, thus they are modeled using heuristic methods. First part of this paper presents a state of the art of using soft computing techniques in manufacturing processes from the perspective of applicability in modern CAx systems. Methods of artificial intelligence which can be used for this purpose are analyzed. The second part of this paper shows some of the developed models of certain processes, as well as their applicability in the actual calculation of parameters of some technological processes within the design system from the viewpoint of productivity.

Keywords: fuzzy logic, manufacturing, neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
760 Optimization of Artificial Ageing Time and Temperature on Evaluation of Hardness and Resistivity of Al-Si-Mg (Cu or/& Ni) Alloys

Authors: A. Hossain, A. S. W. Kurny

Abstract:

The factors necessary to obtain an optimal heat treatment that influence the hardness and resistivity of Al-6Si-0.5Mg casting alloys with Cu or/and Ni additions were investigated. The alloys were homogenised (24hr at 500oC), solutionized (2hr at 540oC) and artificially ageing at various times and temperatures. The alloys were aged isochronally for 60 minutes at temperatures up to 400oC and isothermally at 150, 175, 200, 225, 250 & 300oC for different periods in the range 15 to 360 minutes. The hardness and electrical resistivity of the alloys were measured for various artificial ageing times and temperatures. From the isochronal ageing treatment, hardness found maximum ageing at 225oC. And from the isothermal ageing treatment, hardness found maximum for 60 minutes at 225oC. So the optimal heat treatment consists of 60 minutes ageing at 225oC.

Keywords: Ageing, Al-Si-Mg alloy, hardness, resistivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3066
759 Structural Study of Boron - Nitride Nanotube with Magnetic Resonance (NMR) Parameters Calculation via Density Functional Theory Method (DFT)

Authors: Asadollah Boshra, Ahmad Seif, Mehran Aghaei

Abstract:

A model of (4, 4) single-walled boron-nitride nanotube as a representative of armchair boron-nitride nanotubes studied. At first the structure optimization performed and then Nuclear Magnetic Resonance parameters (NMR) by Density Functional Theory (DFT) method at 11B and 15N nuclei calculated. Resulted parameters evaluation presents electrostatic environment heterogeneity along the nanotube and especially at the ends but the nuclei in a layer feel the same electrostatic environment. All of calculations carried out using Gaussian 98 Software package.

Keywords: Boron-nitride nanotube, Density Functional Theory, Nuclear Magnetic Resonance (NMR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
758 Learning of Class Membership Values by Ellipsoidal Decision Regions

Authors: Leehter Yao, Chin-Chin Lin

Abstract:

A novel method of learning complex fuzzy decision regions in the n-dimensional feature space is proposed. Through the fuzzy decision regions, a given pattern's class membership value of every class is determined instead of the conventional crisp class the pattern belongs to. The n-dimensional fuzzy decision region is approximated by union of hyperellipsoids. By explicitly parameterizing these hyperellipsoids, the decision regions are determined by estimating the parameters of each hyperellipsoid.Genetic Algorithm is applied to estimate the parameters of each region component. With the global optimization ability of GA, the learned decision region can be arbitrarily complex.

Keywords: Ellipsoid, genetic algorithm, decision regions, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
757 Role of GIS in Distribution Power Systems

Authors: N. Rezaee, M Nayeripour, A. Roosta, T. Niknam

Abstract:

With the prevalence of computer and development of information technology, Geographic Information Systems (GIS) have long used for a variety of applications in electrical engineering. GIS are designed to support the analysis, management, manipulation and mapping of spatial data. This paper presents several usages of GIS in power utilities such as automated route selection for the construction of new power lines which uses a dynamic programming model for route optimization, load forecasting and optimizing planning of substation-s location and capacity with comprehensive algorithm which involves an accurate small-area electric load forecasting procedure and simulates the different cost functions of substations.

Keywords: Geographic information systems (GIS), optimallocation and capacity, power distribution planning, route selection, spatial load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5505
756 Sparsity-Aware and Noise-Robust Subband Adaptive Filter

Authors: Young-Seok Choi

Abstract:

This paper presents a subband adaptive filter (SAF) for a system identification where an impulse response is sparse and disturbed with an impulsive noise. Benefiting from the uses of l1-norm optimization and l0-norm penalty of the weight vector in the cost function, the proposed l0-norm sign SAF (l0-SSAF) achieves both robustness against impulsive noise and much improved convergence behavior than the classical adaptive filters. Simulation results in the system identification scenario confirm that the proposed l0-norm SSAF is not only more robust but also faster and more accurate than its counterparts in the sparse system identification in the presence of impulsive noise.

Keywords: Subband adaptive filter, l0-norm, sparse system, robustness, impulsive interference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
755 A Study on Neural Network Training Algorithm for Multiface Detection in Static Images

Authors: Zulhadi Zakaria, Nor Ashidi Mat Isa, Shahrel A. Suandi

Abstract:

This paper reports the study results on neural network training algorithm of numerical optimization techniques multiface detection in static images. The training algorithms involved are scale gradient conjugate backpropagation, conjugate gradient backpropagation with Polak-Riebre updates, conjugate gradient backpropagation with Fletcher-Reeves updates, one secant backpropagation and resilent backpropagation. The final result of each training algorithms for multiface detection application will also be discussed and compared.

Keywords: training algorithm, multiface, static image, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571
754 Symbolic Analysis of Large Circuits Using Discrete Wavelet Transform

Authors: Ali Al-Ataby , Fawzi Al-Naima

Abstract:

Symbolic Circuit Analysis (SCA) is a technique used to generate the symbolic expression of a network. It has become a well-established technique in circuit analysis and design. The symbolic expression of networks offers excellent way to perform frequency response analysis, sensitivity computation, stability measurements, performance optimization, and fault diagnosis. Many approaches have been proposed in the area of SCA offering different features and capabilities. Numerical Interpolation methods are very common in this context, especially by using the Fast Fourier Transform (FFT). The aim of this paper is to present a method for SCA that depends on the use of Wavelet Transform (WT) as a mathematical tool to generate the symbolic expression for large circuits with minimizing the analysis time by reducing the number of computations.

Keywords: Numerical Interpolation, Sparse Matrices, SymbolicAnalysis, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
753 Optimization and Determination of Process Parameters in Thin Film SOI Photo-BJMOSFET

Authors: Hai-Qing Xie, Yun Zeng, Yong-Hong Yan, Guo-Liang Zhang, Tai-Hong Wang

Abstract:

We propose photo-BJMOSFET (Bipolar Junction Metal-Oxide-Semiconductor Field Effect Transistor) fabricated on SOI film. ITO film is adopted in the device as gate electrode to reduce light absorption. I-V characteristics of photo-BJMOSFET obtained in dark (dark current) and under 570nm illumination (photo current) are studied furthermore to achieve high photo-to-dark-current contrast ratio. Two variables in the calculation were the channel length and the thickness of the film which were set equal to six different values, i.e., L=2, 4, 6, 8, 10, and 12μm and three different values, i.e., dsi =100, 200 and 300nm, respectively. The results indicate that the greatest photo-to-dark-current contrast ratio is achieved with L=10μm and dsi=200 nm at VGK=0.6V.

Keywords: Photo-to-dark-current contrast ratio, Photo-current, Dark-current, Process parameter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
752 Self-evolving Neural Networks Based On PSO and JPSO Algorithms

Authors: Abdussamad Ismail, Dong-Sheng Jeng

Abstract:

A self-evolution algorithm for optimizing neural networks using a combination of PSO and JPSO is proposed. The algorithm optimizes both the network topology and parameters simultaneously with the aim of achieving desired accuracy with less complicated networks. The performance of the proposed approach is compared with conventional back-propagation networks using several synthetic functions, with better results in the case of the former. The proposed algorithm is also implemented on slope stability problem to estimate the critical factor of safety. Based on the results obtained, the proposed self evolving network produced a better estimate of critical safety factor in comparison to conventional BPN network.

Keywords: Neural networks, Topology evolution, Particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
751 A New Load Frequency Controller based on Parallel Fuzzy PI with Conventional PD (FPI-PD)

Authors: Aqeel S. Jaber, Abu Zaharin Ahmad, Ahmed N. Abdalla

Abstract:

The artificial intelligent controller in power system plays as most important rule for many applications such as system operation and its control specially Load Frequency Controller (LFC). The main objective of LFC is to keep the frequency and tie-line power close to their decidable bounds in case of disturbance. In this paper, parallel fuzzy PI adaptive with conventional PD technique for Load Frequency Control system was proposed. PSO optimization method used to optimize both of scale fuzzy PI and tuning of PD. Two equal interconnected power system areas were used as a test system. Simulation results show the effectiveness of the proposed controller compared with different PID and classical fuzzy PI controllers in terms of speed response and damping frequency.

Keywords: Load frequency control, PSO, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
750 Dynamic Synthesis of a Flexible Multibody System

Authors: Mohamed Amine Ben Abdallah, Imed Khemili, Nizar Aifaoui

Abstract:

This work denotes an insight into dynamic synthesis of multibody systems. A set of mechanism parameters design variable are synthetized based on a desired mechanism response, such as, velocity, acceleration and bodies deformations. Moreover, knowing the work space, for a robot, and mechanism response allow defining optimal parameters mechanism handling with the desired target response. To this end, evolutionary genetic algorithm has been deployed. A demonstrative example for imperfect mechanism has been treated, mainly, a slider crank mechanism with a flexible connecting rod. The transversal deflection of the connecting rod has been chosen as response to identify the mechanism design parameters.

Keywords: Dynamic response, flexible bodies, optimization, evolutionary genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
749 Hydrogeological Aspects of Washing Waste Reuse in Quarry Lakes Rehabilitation

Authors: Paola Gattinoni, Laura Scesi

Abstract:

According to the European laws, there is the possibility of reusing the washing wastes for the environmental requalification of quarry lakes. The paper deals with the hydrogeological aspects involved in this possibility, as the introduction of finest wastes in the quarry lakes can generate alterations of the hydrogeological setting of the area, and problems for the future accessibility of the zone. To evaluate the hydrogeological compatibility of the washing wastes reuse in quarry lakes a groundwater numerical model was carried out, pointing out both the hydrogeological feasibility of this intervention and some guide lines for its optimization, in terms of inflow point with regard the groundwater flow direction and loss of volume in the quarry lake.

Keywords: Groundwater numerical modeling, hydrogeologicalalteration, quarry lake, silty-clay wastes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
748 Robust Fault Diagnosis for Wind Turbine Systems Subjected to Multi-Faults

Authors: Sarah Odofin, Zhiwei Gao, Sun Kai

Abstract:

Operations, maintenance and reliability of wind turbines have received much attention over the years due to the rapid expansion of wind farms. This paper explores early fault diagnosis technique for a 5MW wind turbine system subjected to multiple faults, where genetic optimization algorithm is employed to make the residual sensitive to the faults, but robust against disturbances. The proposed technique has a potential to reduce the downtime mostly caused by the breakdown of components and exploit the productivity consistency by providing timely fault alarms. Simulation results show the effectiveness of the robust fault detection methods used under Matlab/Simulink/Gatool environment.

Keywords: Disturbance robustness, fault monitoring and detection, genetic algorithm and observer technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
747 Image Authenticity and Perceptual Optimization via Genetic Algorithm and a Dependence Neighborhood

Authors: Imran Usman, Asifullah Khan, Rafiullah Chamlawi, Abdul Majid

Abstract:

Information hiding for authenticating and verifying the content integrity of the multimedia has been exploited extensively in the last decade. We propose the idea of using genetic algorithm and non-deterministic dependence by involving the un-watermarkable coefficients for digital image authentication. Genetic algorithm is used to intelligently select coefficients for watermarking in a DCT based image authentication scheme, which implicitly watermark all the un-watermarkable coefficients also, in order to thwart different attacks. Experimental results show that such intelligent selection results in improvement of imperceptibility of the watermarked image, and implicit watermarking of all the coefficients improves security against attacks such as cover-up, vector quantization and transplantation.

Keywords: Digital watermarking, fragile watermarking, geneticalgorithm, Image authentication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
746 Motion Planning and Posture Control of the General 3-Trailer System

Authors: K. Raghuwaiya, B. Sharma, J. Vanualailai

Abstract:

This paper presents a set of artificial potential field functions that improves upon, in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of the general3-trailer system in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. Simulations are provided to demonstrate the effectiveness of the controls laws.

Keywords: Artificial potential fields, 3-trailer systems, motion planning, posture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
745 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: Data mining, data analysis, prediction, optimization, building operational performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3709