Search results for: international production networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4451

Search results for: international production networks

3341 Overview of Development of a Digital Platform for Building Critical Infrastructure Protection Systems in Smart Industries

Authors: Bruno Vilić Belina, Ivan Župan

Abstract:

Smart industry concepts and digital transformation are very popular in many industries. They develop their own digital platforms, which have an important role in innovations and transactions. The main idea of smart industry digital platforms is central data collection, industrial data integration and data usage for smart applications and services. This paper presents the development of a digital platform for building critical infrastructure protection systems in smart industries. Different service contraction modalities in Service Level Agreements (SLAs), Customer Relationship Management (CRM) relations, trends and changes in business architectures (especially process business architecture) for the purpose of developing infrastructural production and distribution networks, information infrastructure meta-models and generic processes by critical infrastructure owner demanded by critical infrastructure law, satisfying cybersecurity requirements and taking into account hybrid threats are researched.

Keywords: Cybersecurity, critical infrastructure, smart industries, digital platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226
3340 Intelligent Condition Monitoring Systems for Unmanned Aerial Vehicle Robots

Authors: A. P. Anvar, T. Dowling, T. Putland, A. M. Anvar, S.Grainger

Abstract:

This paper presents the application of Intelligent Techniques to the various duties of Intelligent Condition Monitoring Systems (ICMS) for Unmanned Aerial Vehicle (UAV) Robots. These Systems are intended to support these Intelligent Robots in the event of a Fault occurrence. Neural Networks are used for Diagnosis, whilst Fuzzy Logic is intended for Prognosis and Remedy. The ultimate goals of ICMS are to save large losses in financial cost, time and data.

Keywords: Intelligent Techniques, Condition Monitoring Systems, ICMS, Robots, Fault, Unmanned Aerial Vehicle, UAV, Neural Networks, Diagnosis, Fuzzy Logic, Prognosis, Remedy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2353
3339 3D Object Model Reconstruction Based on Polywogs Wavelet Network Parametrization

Authors: Mohamed Othmani, Yassine Khlifi

Abstract:

This paper presents a technique for compact three dimensional (3D) object model reconstruction using wavelet networks. It consists to transform an input surface vertices into signals,and uses wavelet network parameters for signal approximations. To prove this, we use a wavelet network architecture founded on several mother wavelet families. POLYnomials WindOwed with Gaussians (POLYWOG) wavelet families are used to maximize the probability to select the best wavelets which ensure the good generalization of the network. To achieve a better reconstruction, the network is trained several iterations to optimize the wavelet network parameters until the error criterion is small enough. Experimental results will shown that our proposed technique can effectively reconstruct an irregular 3D object models when using the optimized wavelet network parameters. We will prove that an accurateness reconstruction depends on the best choice of the mother wavelets.

Keywords: 3D object, optimization, parametrization, Polywog wavelets, reconstruction, wavelet networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
3338 Modeling Stress-Induced Regulatory Cascades with Artificial Neural Networks

Authors: Maria E. Manioudaki, Panayiota Poirazi

Abstract:

Yeast cells live in a constantly changing environment that requires the continuous adaptation of their genomic program in order to sustain their homeostasis, survive and proliferate. Due to the advancement of high throughput technologies, there is currently a large amount of data such as gene expression, gene deletion and protein-protein interactions for S. Cerevisiae under various environmental conditions. Mining these datasets requires efficient computational methods capable of integrating different types of data, identifying inter-relations between different components and inferring functional groups or 'modules' that shape intracellular processes. This study uses computational methods to delineate some of the mechanisms used by yeast cells to respond to environmental changes. The GRAM algorithm is first used to integrate gene expression data and ChIP-chip data in order to find modules of coexpressed and co-regulated genes as well as the transcription factors (TFs) that regulate these modules. Since transcription factors are themselves transcriptionally regulated, a three-layer regulatory cascade consisting of the TF-regulators, the TFs and the regulated modules is subsequently considered. This three-layer cascade is then modeled quantitatively using artificial neural networks (ANNs) where the input layer corresponds to the expression of the up-stream transcription factors (TF-regulators) and the output layer corresponds to the expression of genes within each module. This work shows that (a) the expression of at least 33 genes over time and for different stress conditions is well predicted by the expression of the top layer transcription factors, including cases in which the effect of up-stream regulators is shifted in time and (b) identifies at least 6 novel regulatory interactions that were not previously associated with stress-induced changes in gene expression. These findings suggest that the combination of gene expression and protein-DNA interaction data with artificial neural networks can successfully model biological pathways and capture quantitative dependencies between distant regulators and downstream genes.

Keywords: gene modules, artificial neural networks, yeast, stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
3337 Intelligent System for Breast Cancer Prognosis using Multiwavelet Packets and Neural Network

Authors: Sepehr M.H.Jamarani, M.H.Moradi, H.Behnam, G.A.Rezai Rad

Abstract:

This paper presents an approach for early breast cancer diagnostic by employing combination of artificial neural networks (ANN) and multiwaveletpacket based subband image decomposition. The microcalcifications correspond to high-frequency components of the image spectrum, detection of microcalcifications is achieved by decomposing the mammograms into different frequency subbands,, reconstructing the mammograms from the subbands containing only high frequencies. For this approach we employed different types of multiwaveletpacket. We used the result as an input of neural network for classification. The proposed methodology is tested using the Nijmegen and the Mammographic Image Analysis Society (MIAS) mammographic databases and images collected from local hospitals. Results are presented as the receiver operating characteristic (ROC) performance and are quantified by the area under the ROC curve.

Keywords: Breast cancer, neural networks, diagnosis, multiwavelet packet, microcalcification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
3336 Spanning Tree Transformation of Connected Graphs into Single-Row Networks

Authors: S.L. Loh, S. Salleh, N.H. Sarmin

Abstract:

A spanning tree of a connected graph is a tree which consists the set of vertices and some or perhaps all of the edges from the connected graph. In this paper, a model for spanning tree transformation of connected graphs into single-row networks, namely Spanning Tree of Connected Graph Modeling (STCGM) will be introduced. Path-Growing Tree-Forming algorithm applied with Vertex-Prioritized is contained in the model to produce the spanning tree from the connected graph. Paths are produced by Path-Growing and they are combined into a spanning tree by Tree-Forming. The spanning tree that is produced from the connected graph is then transformed into single-row network using Tree Sequence Modeling (TSM). Finally, the single-row routing problem is solved using a method called Enhanced Simulated Annealing for Single-Row Routing (ESSR).

Keywords: Graph theory, simulated annealing, single-rowrouting and spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
3335 Evolutionary Approach for Automated Discovery of Censored Production Rules

Authors: Kamal K. Bharadwaj, Basheer M. Al-Maqaleh

Abstract:

In the recent past, there has been an increasing interest in applying evolutionary methods to Knowledge Discovery in Databases (KDD) and a number of successful applications of Genetic Algorithms (GA) and Genetic Programming (GP) to KDD have been demonstrated. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski & Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations, in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the 'If P Then D' part of the CPR expresses important information, while the Unless C part acts only as a switch and changes the polarity of D to ~D. This paper presents a classification algorithm based on evolutionary approach that discovers comprehensible rules with exceptions in the form of CPRs. The proposed approach has flexible chromosome encoding, where each chromosome corresponds to a CPR. Appropriate genetic operators are suggested and a fitness function is proposed that incorporates the basic constraints on CPRs. Experimental results are presented to demonstrate the performance of the proposed algorithm.

Keywords: Censored Production Rule, Data Mining, MachineLearning, Evolutionary Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
3334 Ensembling Classifiers – An Application toImage Data Classification from Cherenkov Telescope Experiment

Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti

Abstract:

Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques with classifiers such as random forests, neural networks and support vector machines. The data sets are from MAGIC, a Cherenkov telescope experiment. The task is to classify gamma signals from overwhelmingly hadron and muon signals representing a rare class classification problem. We compare the individual classifiers with their ensemble counterparts and discuss the results. WEKA a wonderful tool for machine learning has been used for making the experiments.

Keywords: Ensembles, WEKA, Neural networks [NN], SupportVector Machines [SVM], Random Forests [RF].

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
3333 Optimization of Fuzzy Cluster Nodes in Cellular Multimedia Networks

Authors: J. D. Mallapur, Supriya H., Santosh B. K., Tej H.

Abstract:

The cellular network is one of the emerging areas of communication, in which the mobile nodes act as member for one base station. The cluster based communication is now an emerging area of wireless cellular multimedia networks. The cluster renders fast communication and also a convenient way to work with connectivity. In our scheme we have proposed an optimization technique for the fuzzy cluster nodes, by categorizing the group members into three categories like long refreshable member, medium refreshable member and short refreshable member. By considering long refreshable nodes as static nodes, we compute the new membership values for the other nodes in the cluster. We compare their previous and present membership value with the threshold value to categorize them into three different members. By which, we optimize the nodes in the fuzzy clusters. The simulation results show that there is reduction in the cluster computational time and iterational time after optimization.

Keywords: Clusters, fuzzy and optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
3332 Multi-Enterprise Tie and Co-Operation Mechanism in Mexican Agro Industry SME's

Authors: Tania Elena González Alvarado, Ma. Antonieta Martín Granados

Abstract:

The aim of this paper is to explain what a multienterprise tie is, what evidence its analysis provides and how does the cooperation mechanism influence the establishment of a multienterprise tie. The study focuses on businesses of smaller dimension, geographically dispersed and whose businessmen are learning to cooperate in an international environment. The empirical evidence obtained at this moment permits to conclude the following: The tie is not long-lasting, it has an end; opportunism is an opportunity to learn; the multi-enterprise tie is a space to learn about the cooperation mechanism; the local tie permits a businessman to alternate between competition and cooperation strategies; the disappearance of a tie is an experience of learning for a businessman, diminishing the possibility of failure in the next tie; the cooperation mechanism tends to eliminate hierarchical relations; the multienterprise tie diminishes the asymmetries and permits SME-s to have a better position when they negotiate with large companies; the multi-enterprise tie impacts positively on the local system. The collection of empirical evidence was done trough the following instruments: direct observation in a business encounter to which the businesses attended in 2003 (202 Mexican agro industry SME-s), a survey applied in 2004 (129), a questionnaire applied in 2005 (86 businesses), field visits to the businesses during the period 2006-2008 and; a survey applied by telephone in 2008 (55 Mexican agro industry SME-s).

Keywords: Cooperation, multi-enterprise tie, links, networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
3331 Split-Pipe Design of Water Distribution Networks Using a Combination of Tabu Search and Genetic Algorithm

Authors: J. Tospornsampan, I. Kita, M. Ishii, Y. Kitamura

Abstract:

In this paper a combination approach of two heuristic-based algorithms: genetic algorithm and tabu search is proposed. It has been developed to obtain the least cost based on the split-pipe design of looped water distribution network. The proposed combination algorithm has been applied to solve the three well-known water distribution networks taken from the literature. The development of the combination of these two heuristic-based algorithms for optimization is aimed at enhancing their strengths and compensating their weaknesses. Tabu search is rather systematic and deterministic that uses adaptive memory in search process, while genetic algorithm is probabilistic and stochastic optimization technique in which the solution space is explored by generating candidate solutions. Split-pipe design may not be realistic in practice but in optimization purpose, optimal solutions are always achieved with split-pipe design. The solutions obtained in this study have proved that the least cost solutions obtained from the split-pipe design are always better than those obtained from the single pipe design. The results obtained from the combination approach show its ability and effectiveness to solve combinatorial optimization problems. The solutions obtained are very satisfactory and high quality in which the solutions of two networks are found to be the lowest-cost solutions yet presented in the literature. The concept of combination approach proposed in this study is expected to contribute some useful benefits in diverse problems.

Keywords: GAs, Heuristics, Looped network, Least-cost design, Pipe network, Optimization, TS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
3330 Perspectives of Financial Reporting Harmonization

Authors: Sorana M. Manoiu, Razvan V. Mustata, Jiří Strouhal, Carmen G. Bonaci, Dumitru Matis, Jiřina Bokšová

Abstract:

In the current context of globalization, accountability has become a key subject of real interest for both, national and international business areas, due to the need for comparability and transparency of the economic situation, so we can speak about the harmonization and convergence of international accounting. The paper presents a qualitative research through content analysis of several reports concerning the roadmap for convergence. First, we develop a conceptual framework for the evolution of standards’ convergence and further we discuss the degree of standards harmonization and convergence between US GAAP and IAS/IFRS as to October 2012. We find that most topics did not follow the expected progress. Furthermore there are still some differences in the long-term project that are in process to be completed and other that were reassessed as a lower priority project.

Keywords: Convergence, harmonization, FASB, IASB, IFRS, US GAAP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3570
3329 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax

Authors: Svitov David, Alyamkin Sergey

Abstract:

The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.

Keywords: ArcFace, distillation, face recognition, margin-based softmax.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 628
3328 Robust Stability Criteria for Uncertain Genetic Regulatory Networks with Time-Varying Delays

Authors: Wenqin Wang, Shouming Zhong

Abstract:

This paper presents the robust stability criteria for uncertain genetic regulatory networks with time-varying delays. One key point of the criterion is that the decomposition of the matrix ˜D into ˜D = ˜D1 + ˜D2. This decomposition corresponds to a decomposition of the delayed terms into two groups: the stabilizing ones and the destabilizing ones. This technique enables one to take the stabilizing effect of part of the delayed terms into account. Meanwhile, by choosing an appropriate new Lyapunov functional, a new delay-dependent stability criteria is obtained and formulated in terms of linear matrix inequalities (LMIs). Finally, numerical examples are presented to illustrate the effectiveness of the theoretical results.

Keywords: Genetic regulatory network, Time-varying delay, Uncertain system, Lyapunov-Krasovskii functional

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
3327 Robust Human Rights Governance: Developing International Criteria

Authors: Helen P. Greatrex

Abstract:

Many states are now committed to implementing international human rights standards domestically. In terms of practical governance, how might effectiveness be measured? A facevalue answer can be found in domestic laws and institutions relating to human rights. However, this article provides two further tools to help states assess their status on the spectrum of robust to fragile human rights governance. The first recognises that each state has its own 'human rights history' and the ideal end stage is robust human rights governance, and the second is developing criteria to assess robustness. Although a New Zealand case study is used to illustrate these tools, the widespread adoption of human rights standards by many states inevitably means that the issues are relevant to other countries. This is even though there will always be varying degrees of similarity-difference in constitutional background and developed or emerging human rights systems.

Keywords: robust human rights governance, fragile states.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
3326 Biogas Yield Potential Research of Tithonia diversifolia in Mesophilic Anaerobic Fermentation in China

Authors: Duan Huanyun, Xu Rui, Li Jianchang, Yuan Yage, Wang Qiuxia, Nomana Intekhab Hadi

Abstract:

BioEnergy is an archetypal appropriate technology and alternate source of energy in rural areas of China, and can meet the basic need for cooking fuel in rural areas. The paper introduces with an alternate mean of research that can accelerate the biogas energy production. Tithonia diversifolia or the Tree marigold can be hailed as mesophillic anaerobic digestion to increase the production of more Bioenergy. Tithonia diversifolia is very native to Mexico and Central America, which can be served as ornamental plants- green manure and can prevent soil erosion. Tithonia diversifolia is widely grown and known to Asia, Africa, America and Australia as well. Nowadays, Considering China’s geographical condition it is found that Tithonia diversifolia is widely growing plant in the many tropical and subtropical regions of southern Yunnan- which can have great usage in accelerating and increasing the Bioenergy production technology. The paper discussed aiming at proving possibility that Tithonia diversifolia can be applied in biogas fermentation and its biogas production potential, the research carried experiment on Tithonia diversifolia biogas fermentation under the mesophilic condition (35 Celsius Degree). The result revealed that Tithonia diversifolia can be used as biogas fermentative material, and 6% concentration can get the best biogas production, with the TS biogas production rate 656mL/g and VS biogas production rate 801mL/g. It is well addressed that Tithonia diversifolia grows wildly in 53 Counties and 9 cities of Yunnan Province, which mainly grows in form of the road side plants, the edge of the field, countryside, forest edge, open space; of which demersum-natures can form dense monospecific beds -causing serious harm to agricultural production landforms threatening the ecological system as a potentially harmful exotic plant. There are also found the three types of invasive daisy alien plants -Eupatorium adenophorum, Eupatorium Odorata and Tithonia diversifolia in Yunnan Province of China-among them the Tithonia diversifolia is responsible for causing serious harm to agricultural production. In this paper we have designed the experimental explanation of Biogas energy production that requires anaerobic environment and some microbes; Tithonia diversifolia plant has been taken into consideration while carrying experiments and with successful resulting of generating more BioEnergy emphasizing on the practical applications of Tithonia diversifolia. This paper aims at- to find a new mechanism to provide a more scientific basis for the development of this plant herbicides in Biogas energy and to improve the utilization throughout the world as well.

Keywords: Biogas Energy Production, Tithonia diversifolia, Energy Development, Ecological Agriculture, Eupatorium adenophorum, Eupatorium odorata, Anaerobic Fermentation, Biogas Production Potential, Mesopilic Fermentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654
3325 Application Quality Function Deployment (QFD) Tool in Design of Aero Pumps Based on System Engineering

Authors: Z. Soleymani, M. Amirzadeh

Abstract:

Quality Function Deployment (QFD) was developed in 1960 in Japan and introduced in 1983 in America and Europe. The paper presents a real application of this technique in a way that the method of applying QFD in design and production aero fuel pumps has been considered. While designing a product and in order to apply system engineering process, the first step is identification customer needs then its transition to engineering parameters. Since each change in deign after production process leads to extra human costs and also increase in products quality risk, QFD can make benefits in sale by meeting customer expectations. Since the needs identified as well, the use of QFD tool can lead to increase in communications and less deviation in design and production phases, finally it leads to produce the products with defined technical attributes.

Keywords: Customer voice, engineering parameters, QFD, gear pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
3324 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: Building’s energy, control system, energy management, modelling, genetic optimization algorithm, renewable energy, greenhouse gases, energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 790
3323 An Institutional Analysis of IFRS Adoption in Poor Jurisdictions

Authors: C. F. Pricope

Abstract:

The last two decades witnessed a movement towards harmonization of international financial reporting standards (IFRS) throughout the global economy. This investigation seeks to identify the factors that could explain the adoption of IFRS by poor jurisdictions. While there has been a considerable amount of literature published on the effects and key drivers of IFRS adoption in both developed and developing countries, little attention has been paid to jurisdictions with less developed capital markets and low income levels exclusively. Drawing upon the Institutional Isomorphism theory and analyzing a sample of 45 poor jurisdictions between 2008 and 2013, the study empirically shows that poor jurisdictions are driven by legitimacy concerns rather than by economic reasoning to adopt an international accounting perspective. This in turn has implications for the IASB, as it should seek to influence institutional pressures within a particular jurisdiction in order to promote IFRS adoption.

Keywords: IFRS Adoption, isomorphism, poor jurisdictions, accounting harmonization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352
3322 A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks

Authors: Qitao Xie, Qingquan Zhang, Xiaofei Zhang, Di Tian, Ruixuan Wen, Ting Zhu, Ping Yi, Xin Li

Abstract:

Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency.

Keywords: BERT, chatbot, cryptocurrency, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
3321 Accounting for SMEs – How Important is Size in Choosing between Global and Local Standards?

Authors: Cătălin Nicolae Albu, Nadia Albu, Maria Mădălina Gîrbină

Abstract:

There is limited evidence from various countries about the possible impact of various criteria to be used to determine the scope of the IFRS for SMEs issued in 2009 and, research is needed in this area. We provide evidence from Romania, an emerging economy member of the European Union. The aim of this paper is to analyze in a local setting if size is a relevant factor for deciding between local and global standards for SMEs. Our results indicate that size is a moderate indicator of the existence of possible users interested in financial statements and that there is a difference between the scopes of the standard determined on various criteria.. Also, we suggest that the international exposure is quite reduced in the case of SMEs, but is sufficient to suggest that at least some SMEs would benefit from international comparability of financial statements

Keywords: SMEs, IFRS for SMEs, accounting regulation, entity's size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
3320 Multi-objective Optimisation of Composite Laminates under Heat and Moisture Effects using a Hybrid Neuro-GA Algorithm

Authors: M. R. Ghasemi, A. Ehsani

Abstract:

In this paper, the optimum weight and cost of a laminated composite plate is seeked, while it undergoes the heaviest load prior to a complete failure. Various failure criteria are defined for such structures in the literature. In this work, the Tsai-Hill theory is used as the failure criterion. The theory of analysis was based on the Classical Lamination Theory (CLT). A newly type of Genetic Algorithm (GA) as an optimization technique with a direct use of real variables was employed. Yet, since the optimization via GAs is a long process, and the major time is consumed through the analysis, Radial Basis Function Neural Networks (RBFNN) was employed in predicting the output from the analysis. Thus, the process of optimization will be carried out through a hybrid neuro-GA environment, and the procedure will be carried out until a predicted optimum solution is achieved.

Keywords: Composite Laminates, GA, Multi-objectiveOptimisation, Neural Networks, RBFNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
3319 Novel Trends in Manufacturing Systems with View on Implementation Possibilities of Intelligent Automation

Authors: Roman Ružarovský, Radovan Holubek, Peter Košťál

Abstract:

The current trend of increasing quality and demands of the final product is affected by time analysis of the entire manufacturing process. The primary requirement of manufacturing is to produce as many products as soon as possible, at the lowest possible cost, but of course with the highest quality. Such requirements may be satisfied only if all the elements entering and affecting the production cycle are in a fully functional condition. These elements consist of sensory equipment and intelligent control elements that are essential for building intelligent manufacturing systems. The intelligent manufacturing paradigm includes a new approach to production system structure design. Intelligent behaviors are based on the monitoring of important parameters of system and its environment. The flexible reaction to changes. The realization and utilization of this design paradigm as an "intelligent manufacturing system" enables the flexible system reaction to production requirement as soon as environmental changes too. Results of these flexible reactions are a smaller layout space, be decreasing of production and investment costs and be increasing of productivity. Intelligent manufacturing system itself should be a system that can flexibly respond to changes in entering and exiting the process in interaction with the surroundings.

Keywords: Sensory equipment, intelligent manufacturing systems, manufacturing process, control system, smart automation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
3318 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: Convolutional neural networks, deep learning, foot recognition, knee rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
3317 Fiber-Reinforced Sandwich Structures Based on Selective Laser Sintering: A Technological View

Authors: T. Häfele, J. Kaspar, M. Vielhaber, W. Calles, J. Griebsch

Abstract:

The demand for an increasing diversification of the product spectrum associated with the current huge customization desire and subsequently the decreasing unit quantities of each production lot is gaining more and more importance within a great variety of industrial branches, e.g. automotive industry. Nevertheless, traditional product development and production processes (molding, extrusion) are already reaching their limits or fail to address these trends of a flexible and digitized production in view of a product variability up to lot size one. Thus, upcoming innovative production concepts like the additive manufacturing technology basically create new opportunities with regard to extensive potentials in product development (constructive optimization) and manufacturing (economic individualization), but mostly suffer from insufficient strength regarding structural components. Therefore, this contribution presents an innovative technological and procedural conception of a hybrid additive manufacturing process (fiber-reinforced sandwich structures based on selective laser sintering technology) to overcome these current structural weaknesses, and consequently support the design of complex lightweight components.

Keywords: Additive manufacturing, fiber-reinforced plastics, hybrid design, lightweight design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1221
3316 A Novel Hopfield Neural Network for Perfect Calculation of Magnetic Resonance Spectroscopy

Authors: Hazem M. El-Bakry

Abstract:

In this paper, an automatic determination algorithm for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations is presented. In such method, the problem of NMR spectrum determination is transformed into the determination of the parameters of a mathematical model of the NMR signal. To calculate these parameters efficiently, a new model called modified Hopfield neural network is designed. The main achievement of this paper over the work in literature [30] is that the speed of the modified Hopfield neural network is accelerated. This is done by applying cross correlation in the frequency domain between the input values and the input weights. The modified Hopfield neural network can accomplish complex dignals perfectly with out any additinal computation steps. This is a valuable advantage as NMR signals are complex-valued. In addition, a technique called “modified sequential extension of section (MSES)" that takes into account the damping rate of the NMR signal is developed to be faster than that presented in [30]. Simulation results show that the calculation precision of the spectrum improves when MSES is used along with the neural network. Furthermore, MSES is found to reduce the local minimum problem in Hopfield neural networks. Moreover, the performance of the proposed method is evaluated and there is no effect on the performance of calculations when using the modified Hopfield neural networks.

Keywords: Hopfield Neural Networks, Cross Correlation, Nuclear Magnetic Resonance, Magnetic Resonance Spectroscopy, Fast Fourier Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
3315 Artificial Neural Network Application on Ti/Al Joint Using Laser Beam Welding – A Review

Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan

Abstract:

Today automobile and aerospace industries realise Laser Beam Welding for a clean and non contact source of heating and fusion for joining of sheets. The welding performance is mainly based on by the laser welding parameters. Some concepts related to Artificial Neural Networks and how can be applied to model weld bead geometry and mechanical properties in terms of equipment parameters are reported in order to evaluate the accuracy and compare it with traditional modeling schemes. This review reveals the output features of Titanium and Aluminium weld bead geometry and mechanical properties such as ultimate tensile strength, yield strength, elongation and reduction of the area of the weld using Artificial Neural Network.

Keywords: Laser Beam Welding (LBW), Artificial Neural Networks (ANN), Optimization, Titanium and Aluminium sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
3314 Optimal Embedded Generation Allocation in Distribution System Employing Real Coded Genetic Algorithm Method

Authors: Mohd Herwan Sulaiman, Omar Aliman, Siti Rafidah Abdul Rahim

Abstract:

This paper proposes a new methodology for the optimal allocation and sizing of Embedded Generation (EG) employing Real Coded Genetic Algorithm (RCGA) to minimize the total power losses and to improve voltage profiles in the radial distribution networks. RCGA is a method that uses continuous floating numbers as representation which is different from conventional binary numbers. The RCGA is used as solution tool, which can determine the optimal location and size of EG in radial system simultaneously. This method is developed in MATLAB. The effect of EG units- installation and their sizing to the distribution networks are demonstrated using 24 bus system.

Keywords: Embedded generation (EG), load flow study, optimal allocation, real coded genetic algorithm (RCGA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
3313 Understanding Health Behavior Using Social Network Analysis

Authors: Namrata Mishra

Abstract:

Health of a person plays a vital role in the collective health of his community and hence the well-being of the society as a whole. But, in today’s fast paced technology driven world, health issues are increasingly being associated with human behaviors – their lifestyle. Social networks have tremendous impact on the health behavior of individuals. Many researchers have used social network analysis to understand human behavior that implicates their social and economic environments. It would be interesting to use a similar analysis to understand human behaviors that have health implications. This paper focuses on concepts of those behavioural analyses that have health implications using social networks analysis and provides possible algorithmic approaches. The results of these approaches can be used by the governing authorities for rolling out health plans, benefits and take preventive measures, while the pharmaceutical companies can target specific markets, helping health insurance companies to better model their insurance plans.

Keywords: Health behaviors, social network analysis, directed graph, breadth first search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
3312 A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process

Authors: Salvatore L., Pires B., Campos M. C. M., De Souza Jr M. B.

Abstract:

It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.

Keywords: Fault detection, hydrotreatment, hybrid systems, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646