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Abstract—In this paper, an automatic determination algorithm for 
nuclear magnetic resonance (NMR) spectra of the metabolites in the 
living body by magnetic resonance spectroscopy (MRS) without 
human intervention or complicated calculations is presented. In such 
method, the problem of NMR spectrum determination is transformed 
into the determination of the parameters of a mathematical model of 
the NMR signal. To calculate these parameters efficiently, a new 
model called modified Hopfield neural network is designed. The 
main achievement of this paper over the work in literature [30] is that 
the speed of the modified Hopfield neural network is accelerated. 
This is done by applying cross correlation in the frequency domain 
between the input values and the input weights. The modified 
Hopfield neural network can accomplish complex dignals perfectly 
with out any additinal computation steps. This is a  valuable 
advantage as NMR signals are complex-valued. In addition, a 
technique called “modified sequential extension of section (MSES)” 
that takes into account the damping rate of the NMR signal is 
developed to be faster than that presented in [30]. Simulation results 
show that the calculation precision of the spectrum improves when 
MSES is used along with the neural network. Furthermore, MSES is 
found to reduce the local minimum problem in Hopfield neural 
networks. Moreover, the performance of the proposed method is 
evaluated and there is no effect on the performance of 
calculations when using the modified Hopfield neural networks.

Keywords—Hopfield Neural Networks, Cross Correlation, 
Nuclear Magnetic Resonance, Magnetic Resonance Spectroscopy, 
Fast Fourier Transform.

I.  INTRODUCTION
PPLICATIONS of magnetic resonance imaging were 
started in magnetic resonance imaging (MRI) which is a 

technique imaging the human anatomy, and they include 
various specialized technique such as diffusion-weighted 
imaging (DWI), perfusion-weighted imaging (PWI), magnetic 
resonance angiography (MRA) and magnetic resonance 
cholangio-pancreatography (MRCP). Functional MRI (fMRI) 
that is an innovative tool for functional measurement of 
human brain and that is a technique imaging brain functions, 
also became practical and has been widely used in recent 
years. In contrast with MRI and fMRI, magnetic resonance 
spectroscopy (MRS) is a technique that measures the spectra 
of the metabolites in a single region, and magnetic resonance 
spectroscopic imaging (MRSI), which obtains the spectra  
from many regions by applying imaging techniques to MRS, 
has also been developed.  
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Although 31P-MRS was widely performed in MRS before, 
proton MRS is primarily  performed  recently.  13C-MRS  
using   heteronuclear   single-quantum coherence (HSQC) 
method has also been developed recently. MRS and MRSI, 
however, have remained underutilized together due to their 
technical complexities compared with MRI.  

At present, MRS is technically evolved and its operation has 
remarkably improved. The measurement of MRS also has 
started to be automatically analyzed and indicated, and there 
are some representative analysis software introduced in the 
Internet, LCModel: an automatic software packages for in-
vivo proton MR spectra including the curve-fitting procedure 
[41], and MRUI: Magnetic Resonance User Interface 
including the time-domain analysis of in-vivo MR data 
[31,44]. The technique proposed in this paper is also used for 
in the time-domain. It probably a better result of the analysis is 
obtained by combining the algorithms of MRUI with our 
technique, because both of them are performed in the time-
domain.  

MRSI has the big feature that is not in MRI and fMRI, that 
is, it can detect internal metabolite non-invasively, track the 
metabolic process and perform the imaging. Thus the 
importance of it is huge. Furthermore, MRSI is also expected 
as an imaging technique realizing the molecular imaging. I 
believe that MRSI has the value beyond fMRI, because of its 
potential. 

For commonly performing the MRSI, it is an indispensable 
technique to quantify NMR spectra automatically, and it is 
also expected to progress the automatic analysis techniques. 
Therefore, it is necessary to develop a novel method 
introducing neural network techniques including our 
proposing method, as well as existing analysis software. 
Consequently, it is important to proceed with the research of 
this territory. 

MRS is used to determine the quantity of metabolites, such 
as creatine phosphate (PCr) and adenocine triphosphate 
(ATP), in the living body by collecting their nuclear magnetic 
resonance (NMR) spectra. In the field of MRS, the frequency 
spectrum of metabolites is usually obtained by applying the 
algorithm of fast Fourier transform (FFT [4]) to the NMR 
signal obtained from the living body. Then, quantification of 
the metabolites is carried out by estimating the area under each 
spectral peak using a curve fitting procedure [25,29,45]. 
However, this method is not suitable for processing large 
quantities of data because human intervention is necessary. 
The purpose of this paper is to present an efficient automatic 
spectral determination method to process large quantities of 
data without human intervention.  
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This paper is organized as follows: in section II, 
Conventional determination methods of NMR spectra are 
described and a brief outlines of the proposed algorithm is 
given. An over efficient view of NMR signal theory; a 
mathematical model of the NMR signal are discussed. The 
proposed approach to spectral determination is presented. 
Design of complex-valued Hopfield neural networks for fast 
and efficient spectral estimation is introduced in section III. 
SEQUENTIAL EXTENSION OF SECTION (SES) explains 
the concept of SES. For performance evaluation of the 
proposed method, simulations were carried out using sample 
signals that imitate an actual NMR signal, and the results of 
those simulations are given. The results are evaluated and 
discussed in Section IV. Finally, conclusions and future work 
are given. 

II. MATHEMATICAL MODEL OF THE NMR SIGNAL AND
DETERMINATION OF SPECTRA

Magnetic resonance imaging (MRI) systems, which produce 
medical images using the nuclear magnetic resonance (NMR) 
phenomenon, have recently become popular. Additional 
technological innovations, such as high-speed imaging 
technologies [10,15,26,27,28] and imaging of brain function 
using functional MRI [2,24,40] are also rapidly progressing. 
Currently, the above-mentioned imaging technologies mainly 
take advantage of the NMR phenomena of protons. The 
atomic nuclei used for analyzing metabolism in the living 
body include proton, phosphorus-31, carbon-13, fluorine-19 
and sodium-22. Phosphorus-31 NMR spectroscopy has been 
widely used for measurement of the living body, because it is 
able to track the metabolism of energy. 

NMR was originally developed and used in the field of 
analytical chemistry. In that field, NMR spectra are used to 
analyze the chemical structure of various materials. This is 
called NMR spectroscopy. In medical imaging, it is also 
possible to obtain NMR spectra. In this case, the technique is 
called magnetic resonance spectroscopy (MRS), and it can be 
used to collect the spectra of metabolites in organs such as the 
brain, heart, lung and muscle. The difference between NMR 
spectroscopy and MRS is that in MRS, spectra is collected 
from the living body in a relatively low magnetic field 
(usually, about 1.5 Tesla); in NMR spectroscopy, small 
chemical samples are measured in a high magnetic field. 

In MRI systems, Fourier transform is widely used as a 
standard tool to produce an image from the measured data and 
to obtain NMR spectra. In NMR spectroscopy, a frequency 
spectrum can be obtained by applying the fast Fourier 
transform (FFT) to the free induction decay (FID) that is 
observed as a result of the magnetic relaxation phenomenon 
[7]. Here the FID is an NMR signal in the time domain and it 
is a time series, that is, it can be modeled as a set of sinusoids 
exponentially damping with time. When FFT is applied to 
such a signal, the spectral peaks obtained are of the form 
called a Lorentz curve [7]. If the signal is damped rapidly, the 
height of the spectral peaks will be decreased and the width of 
the peaks will increase. This is an inevitable result of applying 
FFT to FIDs. In addition, the resolution of the spectrum 
collected in a low magnetic field is much lower than a typical 

spectrum obtained by NMR spectroscopy. Therefore, the 
problems of spectral analysis in MRS and NMR spectroscopy 
are quite different. The spectral peaks obtained in MRS are 
spread out and the spectral distribution obtained is very 
different from the original distribution. Therefore, peak height 
to quantify metabolites cannot be used. Instead, the area under 
each peak is estimated by using curve-fitting procedures (non-
linear least square methods) [25,29,45]. However, existing 
curve-fitting procedures are inadequate for processing large 
quantities of data because they require human intervention. 
The aim of our research is to devise a method that does not 
require such human intervention. 

Two approaches can be considered to solve this problem: (1) 
automating the description of spectral peaks and the 
determination of the peak areas, and (2) using methods of 
determination and quantification other than the Fourier 
transform. In the first approach, attempts at automatic 
quantification of NMR spectra using hierarchical neural 
networks have been reported [1,22]. In this research, a three-
layered network based on back propagation [42] was 
employed and the spectra in the frequency domain were used 
as the training data of the network. The fully-trained network 
had the ability to quantify unknown spectra automatically, and 
curve fitting procedures were not necessary. However, large 
amounts of training data were necessary to increase the 
precision of quantification. These methods quantify the spectra 
instead of performing the curve fitting procedures. In the 
second approach, the maximum entropy method (MEM), 
derived from the autoregressive (AR) model and the linear 
prediction (LP) method, and other similar methods have been 
studied widely [14,44]. These are parametric methods, that is, 
in these methods, a mathematical model of the signal is 
assumed and the parameters of that model are estimated from 
observed data. The spectrum can then be estimated from the 
model parameters. However, methods based on AR modeling 
require large amounts of calculation. 

The main objective of this research is to develop a method to 
estimate NMR spectra without human intervention or 
complicated calculations. Therefore, a parametric approach, in 
which a neural network is used [13], is considered. Fixed 
weights Hopfield neural networks [82,84] are used. It is 
possible to estimate the parameters using the ability of these 
neural networks to find a local minimum solution or a 
minimum solution. In addition, it was noted that NMR signals 
are complex-valued and a method to estimate the spectrum 
using complex-valued Hopfield networks [18,46], in which the 
weights and thresholds of conventional networks are expanded 
to accommodate complex numbers, was developed. Both a 
hierarchical type [3,12,32] and a recurrent type [21] have been 
proposed. The operation of these networks was accelerated as 
described by [8,9] and this is main achievement of this paper. 
Furthermore, a technique that takes into account the damping 
of the NMR signal, which we call “sequential extension of 
section” (SES) has been devised, and used with the above-
mentioned network. 

a) Mathematical model of NMR signal 
If an atomic nucleus possessing a spin is placed in a static 

magnetic field, it begins a rotation called “precession” around 
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the direction of the static magnetic field. It is assumed that the 
direction of the static magnetic field is the z-direction, and the 
orthogonal plane for the z-direction is the x-y plane. 
Considering an atomic ensemble, a macroscopic 
magnetization M resulting from the sum of the spin of each 
nucleus appears in the z-direction. When the ensemble is 
exposed to an external rotating magnetic field at the resonance 
frequency of the precession, each nucleus in the ensemble 
resonates. As a result, a component of magnetization in the x-y 
plane appears, and the component in the z-direction decreases. 
It is assumed that the magnetization M has rotated and is now 
operating around the z-axis. The resonant magnetic field pulse 
that tilts M 90 degrees to the x-y plane is called a 90-degree 
pulse. 

After a 90-degree pulse, the magnetization M returns to its 
original orientation in the z-direction. During that time, the 
component in the x-y plane is exponentially damped with time 
t and time constant T2, so the signal is represented by an 
equation in the form )/exp( 2Tt . The component in the z-
direction recovers with time t and time constant T1; this 
process is represented by an equation in the 
form )/exp(1 1Tt . This phenomenon is called the 
magnetic relaxation. The change in the component in the x-y 
plane is called the transverse relaxation, and the change in the 
component in the z-direction is called the longitudinal 
relaxation. T2 and T1 are called the transverse relaxation time 
and the longitudinal relaxation time, respectively. Because of 
inhomogeneity in the static magnetic field, the transverse 
relaxation time is actually shortened. Thus, we usually observe 
this shortened transverse relaxation, called T2

* (T2
*< T2),

unless we use a technique such as the spin echo method [7].
In NMR, the component in the x-y plane is called an “NMR 

signal” or “free-induction decay” (FID), and it is expressed in 
a complex form because it is in essence a rotation. 

 An NMR signal (FID) with m components is modeled as 
follows: 

1,,1,0

,)]2(exp[)exp(ˆ
1

Nn

nfjnbAx
m

k
kkkkn             (1) 

where )1,,1,0(ˆ Nnxn  denotes the observed signal, 
which is complex-valued, and n  denotes the sample point on 
the time axis. kkkk fbA and,,,  denote the spectral 
composition, damping factor, rotation frequency, and phase in 
the rotation, respectively, of each metabolite, and m  is the 
number of the metabolites composing a spectrum (each of 
these is a real number, and 1j ). 

b) NMR spectra 

The position of each peak appearing in a NMR spectrum 
depends on its offset frequencies (chemical shifts) from the 
resonance frequency of a target nucleus under a specified 
static magnetic field [7]. These offset frequencies are fk
(k=1,…,m).   

In a common pulse method, each peak possesses the offset 
phase expressed by a linear function of its offset 
frequencies f , as follows [7]: 

ff )(                         (2) 

where, is called the zero-dimensional term of phase 
correction, and is a common phase error influencing each 
peak.  is called the one-dimensional term of phase 
correction, and is a phase error that is dependent on the offset 
frequencies, or more specifically, the positions of each peak.
Thus, in NMR spectra, the position of each peak and the scale 

of their offset phase are decided by the measurement condition 
used. Because of this fact, it is possible to make a rough 
prediction of the position of each peak of a NMR spectrum 
under specified measurement conditions. This positional can 
be used as a constrained condition when estimating unknown 
parameters using neural networks. In addition, because the 
relationship between a specified static magnetic field and the 
apparent transverse relaxation time T2

* of a target nucleus are 
known in MRS [14], it is possible to determine the rough scale 
of T2

* for a target nucleus when the strength of the static 
magnetic field is known. This information regarding T2

* can
also be used as a constrained condition. That is, it can be used 
for the determination of bk.

c) Determination of NMR spectra 

The following approach is used in our method of parametric 
spectral determination. 
(1) A mathematical model of the NMR signal is given, as 

described above. 
(2) Adequate values are supplied as initial values of the 

parameters kkkk fbA and,,, , and an NMR signal is 
simulated. 

(3) The sum of the squares of the difference, at each sample 
point, between the simulated signal and the actual 
observed signal is calculated. 

(4) The parameters are changed to give optimum estimates 
for the observed signal by minimizing the sum-squared 
error. 

III. DESIGN OF MODIFIED HOPFIELD NEURAL
NETWORK FOR SPECTRAL ESTIMATION 

Conventional Hopfield neural networks accept input signal 
with fixed size (n). Therefore, the number of neurons equals to 
(n). Instead of treating (n) inputs, the idea is to collect all the 
input data together in a long signal (for example 100xn). Then 
the input signal is processed by Hopfield neural networks as a 
single pattern with length L (L=100xn). Such a process is 
performed in the frequency domain. 
Given any two functions f and d, their cross correlation can be 
obtained by: 

n
n)d(n)f(xf(x)d(x)                  (3) 
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Therefore, the output of each neuron can be written as follows 
[8,9]: 

ZiWgiO                              (4) 

where Z is the long input signal, W is the weight matrix, Oi is 
the output of each neuron and g is the activation function.  

Now, the above cross correlation can be expressed in terms of 
one dimensional Fast Fourier Transform as follows: 

iW*FZF1FZiW               (5) 

It is clear that the operation of the modified Hopfield neural 
network depends on computing the Fast Fourier Transform for 
both the input and weight matrices and obtaining the resulting 
two matrices. After performing dot multiplication for the 
resulting two matrices in the frequency domain, the Inverse 
Fast Fourier Transform is calculated for the final matrix. Here, 
there is an excellent advantage with the modified Hopfield 
neural network that should be mentioned. The Fast Fourier 
Transform is already dealing with complex numbers, so there 
is no change in the number of computation steps required for 
the modified Hopfield neural network. Hence, by evaluating 
this cross correlation, a speed up ratio can be obtained 
comparable to conventional Hopfield neural networks.  

For the determination of NMR spectra, the sum-squared 
error of the parameter determination problem is defined as the 
energy function of a Hopfield network. This converts the 
parameter determination problem to an optimization problem 
for the Hopfield network. The energy function is defined as:

1

0

2

1
)}2(exp{)exp(ˆ

2
1 N

n
k

m

k
kkkn nfjnbAxE (6) 

where, as in Eq.(1), n  denotes the sample point on the time 
axis and nx̂  denotes the complex-valued observed signal at 
n .

The energy function E  of complex-valued neural networks 
should have the following properties [23]: 

(1) A function that relates the state x̂  denoted by a 
complex number to a real-valued number. 

(2) To converge on the optimum solution, it is always 
necessary to satisfy the following condition in the 
dynamic updating of the Hopfield network: 

0)(
dt

dE
                            (7)  

The energy function defined by Eq.(6) satisfies property 1. In 
Eq.(6), if 

)}2(exp{)exp(ˆˆ
1

k

m

k
kkknn nfjnbAxd ,  (8) 

then the energy function can be expressed as: 

conjugate)complexthedenotes:(*

ˆˆ
2
1ˆ

2
1 *

1

0

1

0

2

n

N

n
n

N

n
n dddE

   (9) 

From Eq.(6), when the parameters kkkk fbA and,,,  in 

Eq.(1) are replaced by kP , the time variation of the above 
energy function can be expressed as 

m

k P
kkkkk

k

kk

mkfbAP
dt

dP
P
E

dt
dE

1
),,1,,,,;(,   (10) 

Here, suppose that 
*

k

k

P
E

dt
dP

  (11) 

Then,

0
1

2m

k P kk
P
E

dt
dE

            (12) 

will hold, and property 2 is satisfied, so convergence in the 
dynamic updating of the modified complex-valued Hopfield 
neural network is guaranteed. 
From Eq.(9), the variation of the energy function with the 

variation of the parameters is as follows: 

1

0

*
* ˆ

ˆ
ˆ

ˆ

2
1 N

n
n

k

n
n

k

n

k

d
P
d

d
P
d

P
E

       (13) 

From the form of the right-hand side of Eq.(13), 

kk P
E

P
E

*

  (14) 

Then, by Eqs.(11) and (14), we have 

1

0

*
* ˆ

ˆ
ˆ

ˆ

2
1 N

n
n

k

n
n

k

n

k

k d
P
d

d
P
d

P
E

dt
dP

    (15) 

Equation (15) expresses the time variation of the 
parameters kP , that is, the updating of the parameters. 

Suppose that *ˆ
nd  and nd̂  on the right-hand side of the 

equation are the inputs to the modified Hopfield neural 
network and kn Pd̂  and kn Pd *ˆ  are the input weights 
in the network, then a Hopfield complex-valued network can 
be designed. The inputs and the input weights are then 
calculated by Eq.(8). In this network, two complex-valued 
input systems conjugated to each other are input to the 
network. The updating of the parameters is then carried out by 
complex calculation. However, because the two terms on the 
right-hand side of Eq.(15) are complex conjugates of each 
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other, the left-hand side is a real number. The structure of the 
complex-valued network is depicted in Fig.1, where the 
coefficient 1/2 in Eq.(15) is omitted. Two complex-valued 
input systems conjugated to each other are input to one unit, 
and the updating of the parameters is carried out by complex-
valued calculation.
 Eq.(8) can be decomposed into a real part )(ndre  and an 

imaginary part )(ndim :

)()(ˆ njdndd imren    (16) 

Suppose that the real and imaginary parts of nx̂ are denoted as 

)(nxr and )(nxi , respectively. Then we have: 

)}2(cos{)exp(

)()(

1
k

m

k
kkk

rere

nfjnbA

nxnd
         (17) 

)}2(sin{)exp(

)()(

1
k

m

k
kkk

imim

nfjnbA

nxnd
       (18) 

From these, 

22

*
2

)()(

)()()()(

)conjugatecomplex:(*ˆˆˆ

ndnd

njdndnjdnd

ddd

imre

imreimre

nnn

    (19) 

Then, Eq.(9) can be developed as follows: 

imre

N

n
n EEdE

1

0

2ˆ
2
1

                (20) 

1

0

2)(
2
1 N

n
rere ndE                       (21) 

1

0

2)(
2
1 N

n
imim ndE                      (22)                                      

From Eqs.(10) and (20), we obtain 

m

k

k

P k

im

k

re

imre

k
m

k P k

dt
dP

P
E

P
E
dt

dE
dt

dE
dt
dP

P
E

dt
dE

k

k

1

1

                     (23) 

where,

dt
dP

P
E

dt
dE k

m

k k

rere

1
                   (24) 

),,,;(
1

kkkkk

k
m

k k

imim

fbAP
dt

dP
P
E

dt
dE

           (25) 

Assume that 

),,1,,,,;( mkfbAP
P
E

P
E

dt
dP

kkkkk

k

im

k

rek

        (26) 

We can get the following:  

m

k P k

im

k

re

k
P
E

P
E

dt
dE

1

2

0           (27) 

From Eqs.(21) and (22), we obtain 
1

0
)()(N

n
re

k

re

k

re nd
P

nd
P
E

                    (28)   

1

0
)()(N

n
im

k

im

k

im nd
P

nd
P
E

                   (29) 

Hence, Eq.(26) can be expressed as follows: 

),,1,,,,;(

)(
)(

)(
)(1

0

mkfbAP

nd
P

nd
nd

P
nd

P
E

P
E

dt
dP

kkkkk

N

n
im

k

im
re

k

re

k

im

k

rek

   (30) 

From Eqs.(15) and (30), the complex-valued network can be 
expressed as an equivalent real-valued network which has two 
real-valued input systems. That is, let the parameters change 
with time as shown in Eq.(30). Then, the energy function E
satisfies property 2, above. Thus, convergence in the updating 
of the complex-valued network can be guaranteed. The 
equivalent network is depicted in Fig.2. The parameters are 
updated by the steepest descent method as follows: 

),,1,,,,;(

)0(,

mkfbAP
dt

dPPP

kkkkk

k
kk (31) 
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For every parameter kP , this equivalent network forms a 
unit which has two input systems, corresponding to the real 
and imaginary parts of the NMR signal. Each input system has 
an input d  and an input weight kn Pd̂  corresponding to 

the number of sample points. d  is calculated by Eqs.(17) and 
(18), which means that the inputs and input weights are 
calculated using the previous values of the parameters and the 
observed signal. By means of this input, the state of the unit is 
changed and each parameter is updated. The input and the 
input weights are recalculated with the updated parameters. 
This is the equivalent network implemented in this paper. 

Incidentally, k  in Eqs.(30) and (31) represents one of the 
components of an NMR signal. Because Eq.(30) is applied to 
each k , the updating of parameters kkkk fbA and,,,  is 

simultaneously carried out on k . As described, in the network 
used in this paper, the sequential updating of each unit, which 
is a feature of the Hopfield network, is transformed to 
sequential updating of every unit group kkkk fbA and,,,
on k .

As expressed in Eq.(1), the NMR signal is a set of sinusoidal 
waves in which the spectral components kA  are exponentially 
damped with time n . The operation shown in Fig. 3 is 
introduced so that the proposed network would recognize the 
decay state more accurately. In the figure, the horizontal axis 
shows the sample points at time n , and the vertical axis shows 
the NMR signal. In this operation, first, appropriate values are 
assigned as initial values for each of the parameters. Then, our 
network operates on section A from time 0 ( 0n ) to an 
adequate time )( 11 knk . The parameter estimates are 
obtained when the network has equilibrated. Next, the network 
operates on section B from time 0 to an adequate 
time )( 212 kkk . The equilibrium values in section A are 
used as the initial values in section B. Thereafter, we extend 
the section in the same way, and finally, the network operates 
on the entire time interval corresponding to all sample points. 
This operation is equivalent to recognizing the shape of the 
signal by gradually extending the observation section while 
taking into account the detailed aspects of the signal during its 
most rapid change. 

IV. SIMULATION RESULTS AND DISCUSSION

A) Sample signals 
Sample signals, equivalent to NMR signals that consisted of 

1024 data points on a spectrum with a bandwidth of 2000 Hz 
for the atomic nucleus of phosphorus-31 in a static magnetic 
field of 2 Tesla, are simulated. The three signals shown in 
Table 1 and Figs.4-6 were used.  
In Table 1, peaks 1 through 7 represent phosphomonoesters 
(PME), inorganic phosphate (Pi), phosphodiesters (PDE), 
creatine phosphate (PCr), -adenocine triphosphate ( -ATP),

-ATP, and -ATP, respectively. 
    Signal 1 and 3 are equivalent to the spectra of healthy cells 
with a normal energy metabolism. Pi is relatively small in the 

spectral components in their signals. Signal 2 is equivalent to 
the spectrum of a cell that is approaching necrosis. In such 
cells, the metabolism of energy is decreased and Pi is large in 
comparison with other components, as shown in Table 1. This 
signal is analogous to a single-component spectral signal (a 
monotonic damped signal) compared with signal 1 and 3. 
Among these signals, only the spectral component Ak is 
different.

B) Implementation of the network 
We next introduce some auxiliary operations that are 

necessary for stable implementation of the proposed network. 
The settings of the initial values of the parameters are shown 
in Table 2. For the amplitude Ak, the amplitudes of the real 
part and the imaginary part are compared; the larger is divided 
by 7, the number of signal components; and the result is used 
as the initial value for all seven components. For the initial 
values of the frequency fk and the damping coefficient bk of 
each metabolite, rough values are known for fk and bk under 
observation conditions, as described in “NMR spectra” above.
Therefore, the initial values were set close to their rough 
values. All of the initial phases are set to zero. 

In the steepest descent method in Eq.(15), two values, 10-5

and 10-6 are used as . By setting the upper limit of the number 
of the parameter updates to 50,000, we ensure that the units 
continue to be renewed until the energy function decreases. 
Then, the parameters can be updated while the energy function 
is decreasing and the number of renewals does not exceed the 
upper limit. By using these procedures, it is possible to operate 
the network in a stable condition. In addition, the following 
two conditions for stopping the network are set. 

(1) The updates of all parameters are terminated. 
(2) The energy function reaches an equilibrium point. 

The criterion for condition 1 is a limit on the time variation 
of the parameter Pk: if 01.0dtdPk , we set 0dtdPk

and terminate the updating of the parameter. 
Regarding condition 2, we judge that the energy function has 
reached an equilibrium point when the energy function 
increases, or when the number of updates exceeds the upper 
limit mentioned above. Theoretically, the network stops and 
an optimum solution is obtained when the above two 
conditions are satisfied simultaneously. However, because a 
monotonic decrease of the energy function is produced by the 
above-mentioned operations, in practice, we force the network 
to stop when either of the two conditions occurs. 

In each renewal of the unit, we also adjust the network so 
that the update values do not depart greatly from the actual 
values by using the prior knowledge of the spectrum outlined 
in “Initial values of the parameters” above. For the 
frequency kf , we adopt only values within a range of 0.05 
around the values in Table 1. A similar procedure is also 
carried out for the phase k : the range is ±1.0. For the 

damping coefficient kb , we adopt only values below 0.1.  

As shown in Figs.4-6, the sample signals have decayed to 
near-zero amplitude after 255 points on the time axis (each full 
data set has 1024 points). Therefore, we performed the SES 
method for the following three sets of sections: 
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1. Four sections: [0-63], [0-127], [0-255], [0-1023] 
2. Five sections: [0-31], [0-63], [0-127], [0-255], [0-1023] 
3. Six sections: [0-15], [0-31], [0-63], [0-127], [0-255], [0-
1023] 

c) Determination by using modified Hopfield neural network 

First parameter estimations of the sample signals are 
performed using the modified Hopfield neural network without 
the SES technique. For signal 1, the result of the determination 
using = 10-6 was better than for = 10-5. In the case using =
10-6, the spectral composition kA and the frequency kf  were 

more accurately estimated than the damping coefficient kb
and the phase k . Except for peaks 1 and 2, the errors in kA
were less than 20% in relative terms, and all of the errors in 

kf  were less than 10%. 
Although the effect of the difference in  became quite small 

for signals 2 and 3, the same tendency was also shown. 
However, even using = 10-6, the estimation of signals 2 and 3 
was not as good as the estimation of signal 1. In these results, 
all of the errors in kf  are less than 10%, but the only peaks 

with errors of less than 20% of kA were peak 3 (about 11%) 
in signal 2, and peaks 3 (19.7%) and 6 (4.38%) in signal 3. 

In summary, the estimation for signal 1 was the best of the 
three signals. The estimation errors for signals 1 and 2 using 
= 10-6 are shown in Tables 3 and 4.  

d) Determination combined with sequential extension of 
section (SES) 

Using the SES technique, the determination results were 
improved. For signal 1, which was best estimated using 
modified Hopfield neural network alone, when we applied the 
four-section extension method using = 10-6, we were able to 
obtain the best result. For signal 1, the result of the estimation 
using = 10-6 and four sections is shown in Table 5. Compared 
to Table 3, the accuracy of estimation of the damping 
coefficient kb  and the phase k  are improved. However, the 

accuracy of estimation of the frequency kf  is only slightly 
improved overall, and the resolution of the spectrum is also 
only slightly improved. The accuracy of the spectral 
composition kA  is improved at peaks 2 and 4, but degraded at 
peaks 1 and 3. 

For signal 2, when we applied the SES technique using six 
sections with = 10-5, the errors were improved overall, 
compared to using the complex-valued network alone, but we 
still did not obtain an estimation as accurate as that for signal 
1 (Table 6). For signal 3, we could not obtain accurate 
estimation using any combination of the choices for  and the 
number of sections, especially for the spectral 
composition kA .
e) Estimation for the signal with noise 

Real NMR signals always include noise. Therefore, we need 
to verify the ability of the proposed method, that is, the 
modified Hopfield neural network combined with SES, to 
estimate parameters for NMR signals that include noise. For 
that purpose, we used sample signals in which three levels of 
white Gaussian noise with signal to noise ratios (SNRs) of 10, 
5, or 2 were added to signal 1, which was well-estimated 
compared to other two signals. The SNR is defined as follows: 

2
1

0

2|)(| ntFSNR
n

k
k              (32) 

Where, )( ktF  is the signal composition at time kt , 2  is 
the variance of the noise, and n  is the total number of sample 
points (in this case, 1024). The sample signal with SNR = 2 is 
shown in Fig.8, and the results of the estimation of signals 
with each SNR are shown in Tables 7-9. For these results, we 
used = 10-6 and the SES method with four sections. 

Comparing these results to those obtained from the sample 
data with no noise reported in Table 5, there is almost no 
change in estimation error for the frequency kf , and the 
estimation error exceeds 10% only at peak 2 (11.9%) for SNR 
= 2. For the spectral composition kA , peaks 4, 5, 6, and 7 had 
less than 10% error in Table 5. In the case where noise was 
added with SNR = 2, peaks 4 and 6 are estimated with better 
than 10% error, but -16.3% is obtained at peak 5 and -21.9% is 
obtained at peak 7. For the damping coefficient kb , the peaks 
with small estimation errors in Table 5 maintain the same error 
level in the presence of noise. Thus, we conclude that the 
proposed estimation method is not significantly influenced by 
noise for the estimation of kf , kA , and kb . However, the 

phase k had greater variation than in Table 5, revealing that 
the estimation of phase is easily influenced by noise. 

f) Discussion 

The results of the simulations indicate that the modified
Hopfield neural network has the ability to estimate four 
different parameters of the NMR signal. The simulation results 
show that the frequency composition kf  and the spectral 

composition kA  can be estimated with less error than the 

damping coefficient kb  and the phase k . When SES was 
applied to this neural network method, it was found that the 
estimation precisions of kb  and k were improved. In 
addition, it was shown that this combined method experiences 
no rapid decline in accuracy when applied to signals to which 
noise was added. However, the optimal sections on which to 
apply SES and the optimal step size of  are different for every 
simulated NMR signal, and it was verified that they do 
influence the estimation accuracy.  

In the proposed estimation method, preliminary knowledge 
about the targeted spectrum is indispensable when determining 
the initial value of the parameters and updating them during 
the estimation process. If there is no preliminary knowledge, 
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the network must search for the solution in an unlimited 
solution space, and the probability of reaching an optimum 
solution in a reasonable time period becomes very small. In 
addition, because the steepest-descent method is used to 
update the parameters, it is difficult for the network to reach 
the optimum solution if it starts from inappropriate initial 
values. 

SES uses the equilibrium values of the parameters calculated 
using one section as the initial values for the following section 
in a sequence. In other words, every time a section is 
extended, the neural network is used to minimize a new 
energy function with new initial values and a new group of 
data. Therefore, when calculation on the new section begins, 
the direction in which a minimum solution has previously 
been sought is reset, and the network is free to search in 
another direction. This may reduce the danger of falling into a 
local minimum solution. However, when the damping of the 
target signal is monotonic (depending on the determination of 
the initial section), it appears that the search direction may no 
longer be effectively reset and the network cannot escape from 
a local solution.  

The signal in Fig.7, which contains noise, maintains the 
characteristics of the initial damping for the noise-free version 
of the same signal in Fig.4. It seems that this fact was 
advantageous in SES. Therefore, comparably stable estimation 
accuracy in the presence of noise is obtained using preliminary 
knowledge of the parameters and the SES method. 

Usually, a Hopfield network cannot reach the optimum 
solution from a local solution without restarting from different 
initial values [6]. SES carries out this operation automatically. 
A Boltzmann machine [5,11,16] might be used to avoid local 
solutions and approach the optimum solution. However, in 
that method, the state of the network is not indeterminate and 
it is changed stochastically. Thus, stability of the decrease in 
energy with state transitions is not guaranteed. Compared with 
the avoidance of the local solution by the Boltzmann machine, 
SES seems to be more elegant because it is free of the 
uncertainty associated with the stochastic operation. However, 
the stability of convergence to the optimal solution is 
influenced by the damping state of the targeted signal, and we 
must overcome this problem. 

V. CONCLUSION

An efficient modified Hopfield neural network for NMR 
spectrum estimation has been presented. The main valuable 
achievement of this paper is that the estimation operation is 
accelerated by performing cross correlation in the frequency 
domain between the input data and the input weights of neural 
networks. Unlike the conventional quantitative methods of 
NMR spectrum estimation using hierarchical neural networks, 
the proposed algorithm does not need a learning process. In 
addition, the SES method has been devised and used in 
combination with Hopfield neural network in order to take 
into account the damping state of the NMR signal. For 
performance evaluation of the proposed estimation method, 
simulations have been carried out using sample signals 
composed of seven different metabolites to simulate in vivo 
31P-NMR spectra, with and without added noise. 

Simulations results have shown that the proposed method 
has the ability to estimate the modeling parameters of the 
NMR signal. However, it was also shown that its ability 
differs according to the damping state of the signals. 

The investigation here has indicated that SES reduces the 
danger of falling into a local minimum in the search for the 
optimum solution using a Hopfield neural network. Although 
there another technique such as a Boltzmann machine might 
be used to avoid local solutions, it is stochastic and requires 
much futile searching before it reaches the optimum solution. 
On the other hand, it has been observed that the proposed 
method could find the optimum solution stably if the variation 
in the targeted signal could be identified accurately.
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Fig. 1 Structure of the modified Hopfield neural network 
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Fig. 3 Illustration of the sequential extension of section (SES) method. 

Fig. 4 Signal 1 

Fig. 5 Signal 2 
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Fig. 6 Signal 3 
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Fig. 7 Noisy NMR signal with SNR = 2. 

TABLE I PARAMETERS OF SAMPLE SIGNALS

Ak Ak AkPeak fk* bk k**
(1) (2) (3) 

1 0.368 0.05395 0.4774 0.726 0.7 0.996
2 0.397 0.03379 0.3699 1.02 6.246 0.5 
3 0.435 0.05918 0.2296 2.1 1.8 2.1 
4 0.485 0.03785 0.051 2.37 1.2 3.6 
5 0.526 0.04858 -0.1002 1.89 0.5 1.15 
6 0.616 0.05744 -0.4264 2.04 0.5 2.2 
7 0.763 0.04035 -0.9657 1.1 0.3 0.7 

TABLE II INITIAL VALUES OF PARAMETERS

Ak Ak AkPeak fk bk k (1) (2) (3) 
1 0.35 0.1 0.0 1.481595 1.502836 1.505209
2 0.4 0.1 0.0 1.481595 1.502836 1.505209
3 0.45 0.1 0.0 1.481595 1.502836 1.505209
4 0.5 0.1 0.0 1.481595 1.502836 1.505209
5 0.55 0.1 0.0 1.481595 1.502836 1.505209
6 0.6 0.1 0.0 1.481595 1.502836 1.505209
7 0.75 0.1 0.0 1.481595 1.502836 1.505209
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TABLE III THE ESTIMATED ERROR (%) OF SIGNAL 1 USING THE 
COMPLEX-VALUED NEURAL NETWORK

Peak fk bk k Ak

1 7.82 -20.9 -83.4 58.9 
2 9.65 195.9 -25.4 37.5 
3 0.16 57.5 22.9 -14.6
4 0.47 -32.9 -100.4 -19.9
5 0.08 -29.3 -13.1 -2.1 
6 -0.28 -2.92 49.3 -3.97
7 0.05 0.77 0.58 0.45 

TABLE IV THE ESTIMATED ERROR (%) OF SIGNAL 2 USING THE 
COMPLEX-VALUED NEURAL NETWORK

Peak fk bk k Ak

1 7.80 -61.4 -109.5 258.4 
2 0.29 3.0 47.0  -66.7  
3 -8.05 -53.2 -421.0 11.1  
4 -0.78 164.2 -625.1 38.0  
5 -4.94 105.8 180.5  206.4  
6 -0.75 74.0 -55.9  97.4  
7 -1.68 147.8 -111.1 98.2  

TABLE V THE ESTIMATED ERROR (%) OF SIGNAL 1 WITH 
SEQUENTIAL EXTENSION OF SECTION USING 4 SECTIONS ( = 10-

6)
Peak fk bk k Ak

1 8.67 -20.8 -163.2 78.9 
2 5.26 195.9 6.84 28.4 
3 -0.11 -15.1 123.4 -18.8 
4 0.04 -3.9 55.9 -4.3 
5 0.08 -0.5 3.4 -1.2 
6 0.02 -1.83 -2.1 -1.96 
7 0.09 -2.03 -0.99 -2.1 

TABLE VI THE ESTIMATED ERROR (%) OF SIGNAL 2 WITH 
SEQUENTIAL EXTENSION OF SECTION USING 6 SECTIONS ( = 10-5)

Peak fk bk k Ak

1 -0.33 85.4 -220.8 205.7 
2 -2.14 96.2 170.3  29.1  
3 3.59 68.8 -535.5 26.7  
4 0.39 43.7 55.2  38.2  
5 0.87 39.9 365.1  50.2  
6 -0.10 15.7 -21.3  19.3  
7 -0.30 5.84 -45.5  2.40  

TABLE VII THE ESTIMATED ERROR (%) OF SIGNAL 1 WITH NOISE,
SNR = 10

Peak fk bk k Ak

1 8.69 -13.7 -135.6 91.7 
2 6.78 195.9 -0.53 15.3 
3 0.14 -26.7 82.7 -31.4 
4 -0.04 2.01 144.7 0.97 
5 0.13 -1.59 -24.1 0.26 
6 0.03 4.14 4.92 -0.34 
7 0.16 -4.83 -3.54 -5.45 

TABLE VIII THE ESTIMATED ERROR (%) OF SIGNAL 1 WITH NOISE,
SNR = 5

Peak fk bk k Ak

1 8.67 -31.5 -111.1 81.8 
2 7.68 195.9 -16.40 15.9 
3 0.16 -31.2 49.2 -34.6 
4 0.04 -11.0 38.2 -8.31 
5 0.27 -1.34 -115.5 0.11 
6 -0.16 1.83 18.6 4.75 
7 0.08 11.4 -3.55 5.0 

TABLE IX THE ESTIMATED ERROR (%) OF SIGNAL 1 WITH NOISE, SNR = 2
Peak fk bk k Ak

1 8.39 -60.4 -121.8 26.7 
2 11.9 195.9 -60.4 72.6 
3 0.29 -18.9 -216.4 -24.8 
4 -0.29 9.33 420.4 7.97 
5 0.17 -22.2 -53.7 -16.30
6 -0.52 -1.49 49.4 -5.54 
7 0.07 -3.84 -1.44 -21.9 
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