Fiber-Reinforced Sandwich Structures Based on Selective Laser Sintering: A Technological View
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Fiber-Reinforced Sandwich Structures Based on Selective Laser Sintering: A Technological View

Authors: T. Häfele, J. Kaspar, M. Vielhaber, W. Calles, J. Griebsch

Abstract:

The demand for an increasing diversification of the product spectrum associated with the current huge customization desire and subsequently the decreasing unit quantities of each production lot is gaining more and more importance within a great variety of industrial branches, e.g. automotive industry. Nevertheless, traditional product development and production processes (molding, extrusion) are already reaching their limits or fail to address these trends of a flexible and digitized production in view of a product variability up to lot size one. Thus, upcoming innovative production concepts like the additive manufacturing technology basically create new opportunities with regard to extensive potentials in product development (constructive optimization) and manufacturing (economic individualization), but mostly suffer from insufficient strength regarding structural components. Therefore, this contribution presents an innovative technological and procedural conception of a hybrid additive manufacturing process (fiber-reinforced sandwich structures based on selective laser sintering technology) to overcome these current structural weaknesses, and consequently support the design of complex lightweight components.

Keywords: Additive manufacturing, fiber-reinforced plastics, hybrid design, lightweight design.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1131363

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223

References:


[1] R. Heuss, N. Müller, W. van Sintern, A. Starke, and A. Tschiesner, “Lightweight, heavy impact”, in Advanced Industries, McKinsey & Company, 2012.
[2] S. H. Huang, P. Liu, A. Mokasdar, and L. Hou, “Additive manufacturing and its societal impact: a literature review”, Int. J. Adv. Manuf. Technol., vol. 67, pp. 1191–1203, 2013.
[3] Y. Huang, M.C. Leu, J. Mazumder, and A. Donmez, “Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations”, J. Manuf. Sci. Eng., vol 137, no. 1, pp. 014001–014010, 2015.
[4] J. Kaspar, and M. Vielhaber, “Cross-Component Systematic Approach for Lightweight and Material-Oriented Design”, Proceedings of Nord Design, vol. DS 81, no. 1, pp. 332–341, 2016.
[5] Federal Ministry for Economic Affairs and Energy (BMWi), “Bestandsaufnahme Leichtbau in Deutschland“, in Project I C4-10/15. Berlin: VDI Zentrum Ressourceneffizienz, 2015.
[6] M. A. Carruth, J. M. Allwood, and R. L. Milford, “Reducing CO2 Emissions through Lightweight Design and Manufacturing”, AIP Conf. Proc., pp. 1632–1637, 2011.
[7] P. K. Mallick, “Materials, design, and manufacturing for lightweight vehicles”. Cambridge: Woodhead Publishing Limited, 2010.
[8] T. Campbell, C. Williams, O. Ivanova, and B. Garrett, “Could 3D Printing Change the World? Technologies, Potential, and Implications of Additive Manufacturing”, Washington (DC): Atlantic Council - Strategic Forsight Report, Oct. 2011.
[9] Wohlers Associates, Inc., “History of Additive Manufacturing”, Wohlers Report, 2014.
[10] J. Gausemeier, N. Echterhoff, M. Kokoschka, and M. Wall, “Thinking ahead the Future of Additive Manufacturing – Analysis of Promising Industries”, University of Paderborn, 2011.
[11] Verein Deutscher Ingenieure, VDI-Guideline 3405: Additive manufacturing processes: Basics, definitions, processes. Düsseldorf: VDI-Verlag, 2014.
[12] I. Gibson, D.W. Rosen, and B. Stucker, “Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing”, New York, Springer, 2010.
[13] M. Schmid, „Selektives Lasersintern (SLS) mit Kunststoffen: Technologie, Prozess und Werkstoffe“, München: Hanser Verlag, 2015.
[14] S. Ford, M. Despeisse, “Additive manufacturing and sustainability: an exploratory study”, Journal of Cleaner Production, pp. 3-4, 2016.
[15] S. Kuma, and J-P Kruth, “Composites by rapid prototyping technology”, in Materials and Design, vol. 31, pp. 850–856, 2010.
[16] W. Zhong et al., “Short fiber reinforced composites for fused deposition modeling”, Mater. Sci. Eng., vol. 301, pp. 125–130, 2001.
[17] R. Matsuzaki et al, “Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation”, Scientific Reports, 6(23058) 2016.
[18] N. Li, Y. Li, and S. Liu, “Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing”, J. Mater. Process Technol., vol. 238, pp. 218–225, 2016.
[19] R. Hornfeck, „Rapid Shaping Prozess zur Herstellung von CFK-Bauteilen“, Schriftenreihe 52: Georg-Ohm-Hochschule Nürnberg, 2013.
[20] S.S. Gill, and M. Kaplas, “Comparative Study of 3D Printing Technologies for Rapid Casting of Aluminium Alloy”, Mater. Manuf. Process, vol. 24, no. 12, pp. 1405–1411, 2009.
[21] Fraunhofer Institute for Production Technology IPT, ”3D meets FRP: More flexibility for highly stressed components”, Press release / 7.3.2016
[22] J. Kaspar, T. Häfele, C. Kaldenhoff, J. Griebsch, and M. Vielhaber, “Hybrid Additive Design of FRP Components – Fiber-Reinforced Sandwich Structures Based on Selective Laser Sintering Technology”, Procedia CIRP, vol. 60, pp. 235–240, 2017.
[23] J. Kaspar, and M. Vielhaber, “Fiber-Reinforced Composite Design Within a LMOD process”, accepted at 21th ICED, Vancouver: 21.-25.08.2017.