Search results for: heating energy demand
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3831

Search results for: heating energy demand

2721 Experimental Study on Modified Double Slope Solar Still and Modified Basin Type Double Slope Multiwick Solar Still

Authors: Piyush Pal, Rahul Dev

Abstract:

Water is essential for life and fresh water is a finite resource that is becoming scarce day by day even though it is recycled by hydrological cycle. The fresh water reserves are being polluted due to expanding irrigation, industries, urban population and its development. Contaminated water leads to several health problems. With the increasing demand of fresh water, solar distillation is an alternate solution which uses solar energy to evaporate water and then to condense it, thereby collecting distilled water within or outside the same system to use it as potable water. The structure that houses the process is known as a 'solar still'. In this paper, ‘Modified double slope solar still (MDSSS)’ & 'Modified double slope basin type multiwick solar still (MDSBMSS)' have been designed to convert saline, brackish water into drinking water. In this work two different modified solar stills are fabricated to study the performance of these solar stills. For modification of solar stills, Fibre Reinforced Plastic (FRP) and Acrylic sheets are used. The experiments in MDSBMSS and MDSSS was carried on 10 September 2015 & 5 November 2015 respectively. Performances of the stills were investigated. The amount of distillate has been found 3624 Ml/day in MDSBMSS on 10 September 2015 and 2400 Ml/day in MDSSS on 5 November 2015.

Keywords: Contaminated water, Conventional solar still, Modified solar still, Wick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
2720 Thermal and Visual Performance of Solar Control Film

Authors: Norzita Jaafar, Nor Zaini Zakaria, Azni Zain Ahmed, Razidah Ismail

Abstract:

The use of solar control film on windows as one of solar passive strategies for building have becoming important and is gaining recognition. Malaysia located close to equator is having warm humid climate with long sunshine hours and abundant solar radiation throughout the year. Hence, befitting solar control on windows is absolutely necessary to capture the daylight whilst moderating thermal impact and eliminating glare problems. This is one of the energy efficient strategies to achieve thermal and visual comfort in buildings. Therefore, this study was carried out to investigate the effect of window solar controls on thermal and visual performance of naturally ventilated buildings. This was conducted via field data monitoring using a test building facility. Four types of window glazing systems were used with three types of solar control films. Data were analysed for thermal and visual impact with reference to thermal and optical characteristics of the films. Results show that for each glazing system, the surface temperature of windows are influenced by the Solar Energy Absorption property, the indoor air temperature are influenced by the Solar Energy Transmittance and Solar Energy Reflectance, and the daylighting by Visible Light Transmission and Shading Coefficient. Further investigations are underway to determine the mathematical relation between thermal energy and visual performance with the thermal and optical characteristics of solar control films.

Keywords: window, solar control film, natural ventilation, thermal performance, visual performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
2719 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization

Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif

Abstract:

Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.

Keywords: Routing protocols, energy optimization, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
2718 Evaluation on the Viability of Combined Heat and Power with Different Distributed Generation Technologies for Various Bindings in Japan

Authors: Yingjun Ruan, Qingrong Liu, Weiguo Zhou, Toshiyuki Watanabe

Abstract:

This paper has examined the energy consumption characteristics in six different buildings including apartments, offices, commercial buildings, hospitals, hotels and educational facilities. Then 5-hectare (50000m2) development site for respective building-s type has been assumed as case study to evaluate the introduction effect of Combined Heat and Power (CHP). All kinds of CHP systems with different distributed generation technologies including Gas Turbine (GT), Gas Engine (GE), Diesel Engine (DE), Solid Oxide Fuel Cell (SOFC) and Polymer Electrolyte Fuel Cell (PEFC), have been simulated by using HEATMAP, CHP system analysis software. And their primary energy utilization efficiency, energy saving ratio and CO2 reduction ratio have evaluated and compared respectively. The results can be summarized as follows: Various buildings have their special heat to power ratio characteristics. Matching the heat to power ratio demanded from an individual building with that supplied from a CHP system is very important. It is necessary to select a reasonable distributed generation technologies according to the load characteristics of various buildings. Distributed generation technologies with high energy generating efficiency and low heat to power ratio, like SOFC and PEFC is more reasonable selection for Building Combined Heat and Power (BCHP). CHP system is an attractive option for hotels, hospitals and apartments in Japan. The users can achieve high energy saving and environmental benefit by introducing a CHP systems. In others buildings, especially like commercial buildings and offices, the introduction of CHP system is unreasonable.

Keywords: Combined heat and power, distributed generation technologies, heat-tao-power ratio, energy saving ratio, CO2 reduction ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
2717 Present State of Local Public Transportation Service in Local Municipalities of Japan and Its Effects on Population

Authors: Akiko Kondo, Akio Kondo

Abstract:

We are facing regional problems to low birth rate and longevity in Japan. Under this situation, there are some local municipalities which lose their vitality. The aims of this study are to clarify the present state of local public transportation services in local municipalities and relation between local public transportation services and population quantitatively. We conducted a questionnaire survey concerning regional agenda in all local municipalities in Japan. We obtained responses concerning the present state of convenience in use of public transportation and local public transportation services. Based on the data gathered from the survey, it is apparent that we should some sort of measures concerning public transportation services. Convenience in use of public transportation becomes an object of public concern in many rural regions. It is also clarified that some local municipalities introduce a demand bus for the purpose of promotion of administrative and financial efficiency. They also introduce a demand taxi in order to secure transportation to weak people in transportation and eliminate of blank area related to public transportation services. In addition, we construct a population model which includes explanatory variables of present states of local public transportation services. From this result, we can clarify the relation between public transportation services and population quantitatively.

Keywords: Public transportation, local municipality, regional analysis, regional issue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
2716 Evolution of Cord Absorbed Dose during of Larynx Cancer Radiotherapy, with 3D Treatment Planning and Tissue Equivalent Phantom

Authors: Mohammad Hassan Heidari, Amir Hossein Goodarzi, Majid Azarniush

Abstract:

Radiation doses to tissues and organs were measured using the anthropomorphic phantom as an equivalent to the human body. When high-energy X-rays are externally applied to treat laryngeal cancer, the absorbed dose at the laryngeal lumen is lower than given dose because of air space, which it should pass through, before reaching the lesion. Specially, in case of high-energy X-rays, the loss of dose is considerable. Three-dimensional absorbed dose distributions have been computed for high-energy photon radiation therapy of laryngeal and hypopharyngeal cancers, using a coaxial pair of opposing lateral beams in fixed positions. Treatment plans obtained under various conditions of irradiation.

Keywords: 3D Treatment Planning, anthropomorphic phantom, larynx cancer, radiotherapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
2715 Analysis and Design of Simultaneous Dual Band Harvesting System with Enhanced Efficiency

Authors: Zina Saheb, Ezz El-Masry, Jean-François Bousquet

Abstract:

This paper presents an enhanced efficiency simultaneous dual band energy harvesting system for wireless body area network. A bulk biasing is used to enhance the efficiency of the adapted rectifier design to reduce Vth of MOSFET. The presented circuit harvests the radio frequency (RF) energy from two frequency bands: 1 GHz and 2.4 GHz. It is designed with TSMC 65-nm CMOS technology and high quality factor dual matching network to boost the input voltage. Full circuit analysis and modeling is demonstrated. The simulation results demonstrate a harvester with an efficiency of 23% at 1 GHz and 46% at 2.4 GHz at an input power as low as -30 dBm.

Keywords: Energy harvester, simultaneous, dual band, CMOS, differential rectifier, voltage boosting, TSMC 65nm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
2714 Life Time Based Analysis of MAC Protocols of Wireless Ad Hoc Networks in WSN Applications

Authors: R. Alageswaran, S. Selvakumar, P. Neelamegam

Abstract:

Wireless Sensor Networks (WSN) are emerging because of the developments in wireless communication technology and miniaturization of the hardware. WSN consists of a large number of low-cost, low-power, multifunctional sensor nodes to monitor physical conditions, such as temperature, sound, vibration, pressure, motion, etc. The MAC protocol to be used in the sensor networks must be energy efficient and this should aim at conserving the energy during its operation. In this paper, with the focus of analyzing the MAC protocols used in wireless Adhoc networks to WSN, simulation experiments were conducted in Global Mobile Simulator (GloMoSim) software. Number of packets sent by regular nodes, and received by sink node in different deployment strategies, total energy spent, and the network life time have been chosen as the metric for comparison. From the results of simulation, it is evident that the IEEE 802.11 protocol performs better compared to CSMA and MACA protocols.

Keywords: CSMA, DCF, MACA, TelosB

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
2713 Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves

Authors: Khaled M. Khader, Mamdouh I. Elimy, Omayma A. Nada

Abstract:

Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.

Keywords: Renewable energy, oscillating water column, multi-criteria selection, wells turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
2712 Thermodynamic Modeling of the High Temperature Shift Converter Reactor Using Minimization of Gibbs Free Energy

Authors: H. Zare Aliabadi

Abstract:

The equilibrium chemical reactions taken place in a converter reactor of the Khorasan Petrochemical Ammonia plant was studied using the minimization of Gibbs free energy method. In the minimization of the Gibbs free energy function the Davidon– Fletcher–Powell (DFP) optimization procedure using the penalty terms in the well-defined objective function was used. It should be noted that in the DFP procedure along with the corresponding penalty terms the Hessian matrices for the composition of constituents in the Converter reactor can be excluded. This, in fact, can be considered as the main advantage of the DFP optimization procedure. Also the effect of temperature and pressure on the equilibrium composition of the constituents was investigated. The results obtained in this work were compared with the data collected from the converter reactor of the Khorasan Petrochemical Ammonia plant. It was concluded that the results obtained from the method used in this work are in good agreement with the industrial data. Notably, the algorithm developed in this work, in spite of its simplicity, takes the advantage of short computation and convergence time.

Keywords: Gibbs free energy, converter reactors, Chemical equilibrium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
2711 Contribution of Electrochemical Treatment in Treating Textile Dye Wastewater

Authors: Usha N. Murthy, Rekha H. B., Mahaveer Devoor

Abstract:

The introduction of more stringent pollution regulations, in relation to financial and social pressures for sustainable development, has pressed toward limiting the volumes of industrial and domestic effluents discharged into the environment - as well as to increase the efforts within research and development of new or more efficient wastewater treatment technologies. Considering both discharge volume and effluent composition, wastewater generated by the textile industry is rated as the most polluting among all industrial sectors. The pollution load is mainly due to spent dye baths, which are composed of unreacted dyes, dispersing agents, surfactants, salts and organics. In the present investigation, the textile dye wastewater was characterized by high color, chemical oxygen demand (COD), total dissolved solids (TDS) and pH. Electrochemical oxidation process for four plate electrodes was carried out at five different current intensities, out of which 0.14A has achieved maximum percentage removal of COD with 75% and 83% of color. The COD removal rate in kg COD/h/m2 decreases with increase in the current intensity. The energy consumption increases with increase in the current intensity. Hence, textile dye wastewater can be effectively pretreated by electrochemical oxidation method where the process limits objectionable color while leaving the COD associated with organics left for natural degradation thus causing a sustainable reduction in pollution load.

Keywords: Electrochemical treatment, COD, color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2394
2710 An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy

Authors: Jing Fang, Yao Cui, Mingming Wang, Shengli She, Jianping Yuan

Abstract:

Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.

Keywords: Biomechanical energy management, gait rehabilitation, knee exosuit, wearable robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165
2709 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: Exergy analysis, Genetic algorithm, Rankine cycle, Single and Multi-objective function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
2708 Wormhole Attack Detection in Wireless Sensor Networks

Authors: Zaw Tun, Aung Htein Maw

Abstract:

The nature of wireless ad hoc and sensor networks make them very attractive to attackers. One of the most popular and serious attacks in wireless ad hoc networks is wormhole attack and most proposed protocols to defend against this attack used positioning devices, synchronized clocks, or directional antennas. This paper analyzes the nature of wormhole attack and existing methods of defending mechanism and then proposes round trip time (RTT) and neighbor numbers based wormhole detection mechanism. The consideration of proposed mechanism is the RTT between two successive nodes and those nodes- neighbor number which is needed to compare those values of other successive nodes. The identification of wormhole attacks is based on the two faces. The first consideration is that the transmission time between two wormhole attack affected nodes is considerable higher than that between two normal neighbor nodes. The second detection mechanism is based on the fact that by introducing new links into the network, the adversary increases the number of neighbors of the nodes within its radius. This system does not require any specific hardware, has good performance and little overhead and also does not consume extra energy. The proposed system is designed in ad hoc on-demand distance vector (AODV) routing protocol and analysis and simulations of the proposed system are performed in network simulator (ns-2).

Keywords: AODV, Wormhole attacks, Wireless ad hoc andsensor networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3469
2707 The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon

Authors: R. Chedid, R. Ghajar

Abstract:

Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws.

Keywords: Decentralized systems, microgrids, distributed generation, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
2706 The Transfer of Energy Technologies in a Developing Country Context Towards Improved Practice from Past Successes and Failures

Authors: Lindiwe O. K. Mabuza, Alan C. Brent, Maxwell Mapako

Abstract:

Technology transfer of renewable energy technologies is very often unsuccessful in the developing world. Aside from challenges that have social, economic, financial, institutional and environmental dimensions, technology transfer has generally been misunderstood, and largely seen as mere delivery of high tech equipment from developed to developing countries or within the developing world from R&D institutions to society. Technology transfer entails much more, including, but not limited to: entire systems and their component parts, know-how, goods and services, equipment, and organisational and managerial procedures. Means to facilitate the successful transfer of energy technologies, including the sharing of lessons are subsequently extremely important for developing countries as they grapple with increasing energy needs to sustain adequate economic growth and development. Improving the success of technology transfer is an ongoing process as more projects are implemented, new problems are encountered and new lessons are learnt. Renewable energy is also critical to improve the quality of lives of the majority of people in developing countries. In rural areas energy is primarily traditional biomass. The consumption activities typically occur in an inefficient manner, thus working against the notion of sustainable development. This paper explores the implementation of technology transfer in the developing world (sub-Saharan Africa). The focus is necessarily on RETs since most rural energy initiatives are RETs-based. Additionally, it aims to highlight some lessons drawn from the cited RE projects and identifies notable differences where energy technology transfer was judged to be successful. This is done through a literature review based on a selection of documented case studies which are judged against the definition provided for technology transfer. This paper also puts forth research recommendations that might contribute to improved technology transfer in the developing world. Key findings of this paper include: Technology transfer cannot be complete without satisfying pre-conditions such as: affordability, maintenance (and associated plans), knowledge and skills transfer, appropriate know how, ownership and commitment, ability to adapt technology, sound business principles such as financial viability and sustainability, project management, relevance and many others. It is also shown that lessons are learnt in both successful and unsuccessful projects.

Keywords: Technology transfer, technology management, renewable energy, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
2705 Design and Analysis of a Novel 8-DOF Hybrid Manipulator

Authors: H. Mohammadipanah, H. Zohoor

Abstract:

This paper presents kinematic and dynamic analysis of a novel 8-DOF hybrid robot manipulator. The hybrid robot manipulator under consideration consists of a parallel robot which is followed by a serial mechanism. The parallel mechanism has three translational DOF, and the serial mechanism has five DOF so that the overall degree of freedom is eight. The introduced manipulator has a wide workspace and a high capability to reduce the actuating energy. The inverse and forward kinematic solutions are described in closed form. The theoretical results are verified by a numerical example. Inverse dynamic analysis of the robot is presented by utilizing the Iterative Newton-Euler and Lagrange dynamic formulation methods. Finally, for performing a multi-step arc welding process, results have indicated that the introduced manipulator is highly capable of reducing the actuating energy.

Keywords: hybrid robot, closed form, inverse dynamic, actuating energy, arc welding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
2704 Dynamic Control Modeling and Simulation of a UPFC-SMES Compensator in Power Systems

Authors: K. Saravanan, R. Anita

Abstract:

Flexible AC Transmission Systems (FACTS) is granting a new group of advanced power electronic devices emerging for enhancement of the power system performance. Unified Power Flow Controller (UPFC) is a recent version of FACTS devices for power system applications. The back-up energy supply system incorporated with UPFC is providing a complete control of real and reactive power at the same time and hence is competent to improve the performance of an electrical power system. In this article, backup energy supply unit such as superconducting magnetic energy storage (SMES) is integrated with UPFC. In addition, comparative exploration of UPFC–battery, UPFC–UC and UPFC–SMES performance is evaluated through the vibrant simulation by using MATLAB/Simulink software.

Keywords: Power system, FACTS, UPFC, DC-DC chopper, battery, UC, SMES.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
2703 Retarding Potential Analyzer Design and Result Analysis for Ion Energy Distribution Measurement of the Thruster Plume in the Laboratory

Authors: Ma Ya-li, Tang Fu-jun, Xue Yu-xiong, Chen Yi-feng, Gao Xin, Wang Yi, Tian Kai, Yan Ze-dong

Abstract:

Plasma plume will be produced and arrive at spacecraft when the electric thruster operates on orbit. It-s important to characterize the thruster plasma parameters because the plume has significant effects or hazards on spacecraft sub-systems and parts. Through the ground test data of the desired parameters, the major characteristics of the thruster plume will be achieved. Also it is very important for optimizing design of Ion thruster. Retarding Potential Analyzer (RPA) is an effective instrument for plasma ion energy per unit charge distribution measurement. Special RPA should be designed according to certain plume plasma parameters range and feature. In this paper, major principles usable for good RPA design are discussed carefully. Conform to these principles, a four-grid planar electrostatic energy analyzer RPA was designed to avoid false data, and details were discussed including construction, materials, aperture diameter and so on. At the same time, it was designed more suitable for credible and long-duration measurements in the laboratory. In the end, RPA measurement results in the laboratory were given and discussed.

Keywords: Thruster plume ion energy distributions, retarding potential analyzer, ground test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4009
2702 Numerical Study of Hypersonic Glide Vehicle based on Blunted Waverider

Authors: Liu Jian-xia, Hou Zhong-xi, Chen Xiao-qing

Abstract:

The waverider is proved to be a remarkably useful configuration for hypersonic glide vehicle (HGV) in terms of the high lift-to-drag ratio. Due to the severe aerodynamic heating and the processing technical restriction, the sharp leading edge of waverider should be blunted, and then the flow characteristics and the aerodynamic performance along the trajectory will change. In this paper, the flow characteristics of a HGV, including the rarefied gas effect and transition phenomenon, were studied based on a reference trajectory. A numerical simulation was carried out to study the performance of the HGV under a typical condition.

Keywords: Aerodynamic, CFD, Thermodynamic, Waverider

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2903
2701 QoS Expectations in IP Networks: A Practical View

Authors: S. Arrizabalaga, A. Salterain, M. Domínguez, I. Alvaro

Abstract:

Traditionally, Internet has provided best-effort service to every user regardless of its requirements. However, as Internet becomes universally available, users demand more bandwidth and applications require more and more resources, and interest has developed in having the Internet provide some degree of Quality of Service. Although QoS is an important issue, the question of how it will be brought into the Internet has not been solved yet. Researches, due to the rapid advances in technology are proposing new and more desirable capabilities for the next generation of IP infrastructures. But neither all applications demand the same amount of resources, nor all users are service providers. In this way, this paper is the first of a series of papers that presents an architecture as a first step to the optimization of QoS in the Internet environment as a solution to a SMSE's problem whose objective is to provide public service to internet with certain Quality of Service expectations. The service provides new business opportunities, but also presents new challenges. We have designed and implemented a scalable service framework that supports adaptive bandwidth based on user demands, and the billing based on usage and on QoS. The developed application has been evaluated and the results show that traffic limiting works at optimum and so it does exceeding bandwidth distribution. However, some considerations are done and currently research is under way in two basic areas: (i) development and testing new transfer protocols, and (ii) developing new strategies for traffic improvements based on service differentiation.

Keywords: Differentiated Services, Linux, Quality of Service, queueing disciplines, web application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
2700 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation

Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan

Abstract:

Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.

Keywords: Binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
2699 Error Correction Codes in Wireless Sensor Network: An Energy Aware Approach

Authors: Mohammad Rakibul Islam

Abstract:

Link reliability and transmitted power are two important design constraints in wireless network design. Error control coding (ECC) is a classic approach used to increase link reliability and to lower the required transmitted power. It provides coding gain, resulting in transmitter energy savings at the cost of added decoder power consumption. But the choice of ECC is very critical in the case of wireless sensor network (WSN). Since the WSNs are energy constraint in nature, both the BER and power consumption has to be taken into count. This paper develops a step by step approach in finding suitable error control codes for WSNs. Several simulations are taken considering different error control codes and the result shows that the RS(31,21) fits both in BER and power consumption criteria.

Keywords: Error correcting code, RS, BCH, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3233
2698 Economic Evaluation Offshore Wind Project under Uncertainly and Risk Circumstances

Authors: Sayed Amir Hamzeh Mirkheshti

Abstract:

Offshore wind energy as a strategic renewable energy, has been growing rapidly due to availability, abundance and clean nature of it. On the other hand, budget of this project is incredibly higher in comparison with other renewable energies and it takes more duration. Accordingly, precise estimation of time and cost is needed in order to promote awareness in the developers and society and to convince them to develop this kind of energy despite its difficulties. Occurrence risks during on project would cause its duration and cost constantly changed. Therefore, to develop offshore wind power, it is critical to consider all potential risks which impacted project and to simulate their impact. Hence, knowing about these risks could be useful for the selection of most influencing strategies such as avoidance, transition, and act in order to decrease their probability and impact. This paper presents an evaluation of the feasibility of 500 MV offshore wind project in the Persian Gulf and compares its situation with uncertainty resources and risk. The purpose of this study is to evaluate time and cost of offshore wind project under risk circumstances and uncertain resources by using Monte Carlo simulation. We analyzed each risk and activity along with their distribution function and their effect on the project.

Keywords: Wind energy project; uncertain resources; risks; Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
2697 Time and Distance Dependence of Protons Energy Loss for Laser (pw-ps) Fusion Driven Ion Acceleration

Authors: B. Malekynia

Abstract:

The anomalous generation of plasma blocks by interaction of petawatt-picosecond laser pulses permits side-on ignition of uncompressed solid fusion fuel following an improved application of the hydrodynamic Chu-model for deuterium-tritium. The new possibility of side-on laser ignition depends on accelerated ions and produced ions beams of high energy particles by the nonlinear ponderomotive force of the laser pulse in the plasma block, a re-evaluation of the early hydrodynamic analysis for ignition of inertial fusion by including inhibition factor, collective effect of stopping power of alpha particles and the energy loss rate reabsorption to plasma by the protons of plasma blocks being reduced by about a factor 40.

Keywords: Block ignition, Charged particles, Reabsorption, Skin layer ponderomotive acceleration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
2696 A New Suburb Renovation Concept

Authors: A. Soikkeli, L. Sorri

Abstract:

Finnish national research project, User- and Business-oriented Suburb Renovation Concept (KLIKK), was started in January 2012 and will end in June 2014. The perspective of energy efficiency is emphasised in the project, but also it addresses what improving the energy efficiency of suburban apartment buildings means from the standpoint of architecturally valuable buildings representing different periods. The project will also test the impacts of stricter energy efficiency requirements on renovation projects.

The primary goal of the project is to develop a user-oriented, industrial, economic renovation concept for suburban apartment building renovation, extension and construction of additional storeys. The concept will make it possible to change from performance- and cost-based operation to novel service- and user-oriented, site-specifically tailored renovation methods utilizing integrated order and delivery chains.

The present project is collaborating with Ministry of the Environment and participating cities in developing a new type of lighter town planning model for suburban renovations and in-fill construction. To support this, the project will simultaneously develop practices for environmental impact assessment tools in renovation and suburban supplementary and in-fill construction.

 

Keywords: Energy efficiency, Prefabrication, Renovation concept, Suburbs, Sustainability, User-Orientated.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
2695 Reliability Based Optimal Design of Laterally Loaded Pile with Limited Residual Strain Energy Capacity

Authors: M. Movahedi Rad

Abstract:

In this study, a general approach to the reliability based limit analysis of laterally loaded piles is presented. In engineering practice the uncertainties play a very important role. The aim of this study is to evaluate the lateral load capacity of free-head and fixed-head long pile when plastic limit analysis is considered. In addition to the plastic limit analysis to control the plastic behaviour of the structure, uncertain bound on the complementary strain energy of the residual forces is also applied. This bound has significant effect for the load parameter. The solution to reliability-based problems is obtained by a computer program which is governed by the reliability index calculation.

Keywords: Reliability, laterally loaded pile, residual strain energy, probability, limit analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
2694 The Influence of Electrode Heating On the Force Generated On a High Voltage Capacitor with Asymmetrical Electrodes

Authors: Jiří Primas, Michal Malík, Darina Jašíková, Václav Kopecký

Abstract:

When a high DC voltage is applied to a capacitor with strongly asymmetrical electrodes, it generates a mechanical force that affects the whole capacitor. This is caused by the motion of ions generated around the smaller of the two electrodes and their subsequent interaction with the surrounding medium. If one of the electrodes is heated, it changes the conditions around the capacitor and influences the process of ionisation, thus changing the value of the generated force. This paper describes these changes and gives reasons behind them. Further the experimental results are given as proof of the ionic mechanism of the phenomenon.

Keywords: Capacitor with asymmetrical electrodes, Generated force, Heated electrode, High voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
2693 A Numerical Model for Studying Convectional Lifting Processes in the Tropics

Authors: Chantawan Noisri, Robert Harold Buchanan Exell

Abstract:

A simple model for studying convectional lifting processes in the tropics is described in this paper with some tests of the model in dry air. The model consists of the density equation, the wind equation, the vertical velocity equation, and the temperature equation. The model domain is two-dimensional with length 100 km and height 17.5 km. Plan for experiments to investigate the effects of the heating surface, the deep convection approximation and the treatment of velocities at the boundaries are discussed. Equations for the simplified treatment of moisture in the atmosphere in future numerical experiments are also given.

Keywords: Numerical weather prediction, Finite differences, Convection lifting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
2692 Thermodynamic Approach of Lanthanide-Iron Double Oxides Formation

Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze

Abstract:

Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity – temperature functions and by using the semi-empirical method for calculation of ΔH298.15 of formation. Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the structural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.

Keywords: Calorimetry, entropy, enthalpy, heat capacity, gibbs energy of formation, rare earth iron garnets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927