
 

 

  
Abstract—Traditionally, Internet has provided best-effort service 

to every user regardless of its requirements. However, as Internet 
becomes universally available, users demand more bandwidth and 
applications require more and more resources, and interest has 
developed in having the Internet provide some degree of Quality of 
Service. Although QoS is an important issue, the question of how it 
will be brought into the Internet has not been solved yet. Researches, 
due to the rapid advances in technology are proposing new and more 
desirable capabilities for the next generation of IP infrastructures. 
But neither all applications demand the same amount of resources, 
nor all users are service providers. In this way, this paper is the first 
of a series of papers that presents an architecture as a first step to the 
optimization of QoS in the Internet environment as a solution to a 
SMSE´s problem whose objective is to provide public service to 
internet with certain Quality of Service expectations. The service 
provides new business opportunities, but also presents new 
challenges. We have designed and implemented a scalable service 
framework that supports adaptive bandwidth based on user demands, 
and the billing based on usage and on QoS. The developed 
application has been evaluated and the results show that traffic 
limiting works at optimum and so it does exceeding bandwidth 
distribution. However, some considerations are done and currently 
research is under way in two basic areas: (i) development and testing 
new transfer protocols, and (ii) developing new strategies for traffic 
improvements based on service differentiation. 
 

Keywords—Differentiated Services, Linux, Quality of Service, 
queueing disciplines, web application.  

I. INTRODUCTION 
NTERNET provides new business opportunities to service 
providers, application developers, infrastructure builders 

and researchers in general, because it allows mobility, sharing 
information, etc. Therefore the concept of always being 
connected exists and is demanded more and more by all users 
so internet is becoming a basic necessity and compel industry 
and governments to offer Internet services as a mandatory rule 
[1], [2].  
 

This work was supported in part by the Basque Government, the SMSEs 
IKUSI and Donewtech Solutions, S.A. 

 S. Arrizabalaga is with the Department of Automatic and Control 
Engineering, CEIT and Tecnun (University of Navarra), Manuel de 
Lardizabal 15, San Sebastian 20018 Spain (phone: (+34) 943-212800; fax: 
(+34) 943-213076; e-mail: sarrizabalaga@ceit.es).  

A. Salterain is with the Department of Automatic and Control Engineering, 
CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, San 
Sebastian 20018 Spain (e-mail: asalterain@ceit.es). 

M. Dominguez is with the DIFE Division, IKUSI-Angel Iglesias S.A., 
Paseo Miramón 170, San Sebastian 20009, Spain (e-mail: 
dominguez.m@ikusi.es). 

I. Alvaro is with the DIFE Division, IKUSI-Angel Iglesias S.A., Paseo 
Miramón 170, San Sebastian 20009, Spain  (e-mail: alvaro.i@ikusi.es). 

However, offering internet connection is not enough. 
Nowadays users, on the one hand, expect a good service, 
being unacceptable that a user connected in a P2P mode for 
example, consumes nearly all the bandwidth, leaving the 
others with no connection at all when all have paid for a 
connection. On the other hand, developers create new and 
more powerful applications demanding new and different 
resources.  

So in a scenario where a user demands a service, several 
questions arise; how services with some QoS management are 
served? [3] What is the economical model used to pricing? 

Regarding the first question, several approaches could be 
followed: one technique could be to assure QoS based on the 
type of transferred data, where objectives would be: 
1) Keep low latency for interactive traffic, where 

downloading or uploading files should neither hinder 
SSH nor Telnet. 

2) Allow “navigation” to a reasonable speed while 
information is being transferred. 

3) Assure that sending data does not disturb downloading 
data, and vice versa.  

Another method could be to guarantee a specific bandwidth 
to each user, without taking into account the type of services it 
uses. It could also be possible to mix both approaches: to 
guarantee a specific bandwidth to some users and to manage 
the remaining bandwidth based on the services they use (QoS 
assuring strategy). But in either case, the link is used by 
different types of services at the same time, so, a service 
differentiation must be made. The Internet Engineering Task 
Force (IETF) has defined the Differentiated Services 
(DiffServ) framework [4], [5] as a simple mechanism to 
provide Quality of Service to traffic aggregates. Services 
classes and their forwarding treatment are defined by a 
Service Level Agreement (SLA) and a Traffic Conditioning 
Agreement (TCA). The TCA is part of the SLA and specifies 
the practical details of the service parameters for traffic 
profiles.  

Each DiffServ node from a logical point of view has two 
functionalities: packet classification and traffic conditioning. 

The packet classification policy (Fig.1) identifies the subset 
of traffic which may receive a differentiated service. Packet 
classifiers select packets in a traffic stream based on the 
content of some fields of the packet header. 

A traffic conditioner (Fig.1) may contain the following 
elements: meter, marker, shaper and dropper. A traffic stream 
is selected by a classifier (based on the content of some fields 
of the packet header), which steers the packets to a logical 

QoS Expectations in IP Networks: A Practical 
View 

S. Arrizabalaga, A. Salterain, M. Domínguez, and I. Alvaro 

I 

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:1, No:12, 2007 

4079International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
12

, 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
48

97
.p

df



 

 

instance of a traffic conditioner. A meter is used (where 
appropriate) to measure the traffic stream against a traffic 
profile (previously determined in TCA). The state of the meter 
with respect to a particular packet may be used to affect a 
marking, dropping, or shaping action. Shapers delay some or 
all of the packets in a traffic stream in order to bring the 
stream into compliance with a traffic profile. 

 

 
Fig. 1 Logical view of a packet classifier and traffic conditioner 

 
Once several classes have been defined and their traffic 

profile specified (a kind of SLA agreement) the developed 
architecture follows the Differentiated Service philosophy in 
terms of classifying and marking packets to differentiate 
services. As a component of the link sharing, the packet 
scheduler performs the central task of selecting a packet to 
transmit when the outgoing link is ready and also performs the 
task of shaping, by delaying or dropping packets to make a 
traffic flow conform to the configured traffic profile. 

But what about the facilities that are offered by today’s 
operating systems for its implementation? As explained in [6] 
traffic control capabilities have been available in the Linux 
kernel since the 2.2 series. Shaping configurations are 
implemented using a variety of available packet schedulers 
and shapers which can be configured using the tc binary 
included in the iproute2 package of tools [7]. Netfilter [8], [9] 
framework also aids the tc and iproute2 systems used to build 
sophisticated QoS and policy routers. Qdisc is the term used 
to refer to these schedulers under Linux. Apart from qdiscs, 
there are more traffic control components in Linux, such as 
classes (used for shaping functionalities) or filters (capable of 
classifying packets), both also configurable by the tc binary. 
For further details, Linux network traffic control is explained 
in depth in [10], and how Differentiated Services are 
supported in Linux in [11].  

Therefore qdisc also called a queuing discipline is the 
major building block which all Linux traffic control is being 
built on. Basically there are two types of qdiscs: 

The classless queueing disciplines: contain neither classes, 
nor is possible to attach filters to it. Since a classless qdisc 
contains no children of any kind, there is no utility to classify 
packets. This means that no filter can be attached to a classless 
qdisc. Examples: 
1) The simple drop-tail FIFO: a FIFO stores and sends 

packets in the order in which they arrive (“First-In First-
Out”). A drop-tail FIFO drops newly arriving packets 
when it has reached its maximum size. 

2) A Random Early Detection (RED) FIFO [12]: RED 
starts dropping packets before reaching the maximum 
queue size, so that congestion-controlled protocols like 

TCP can slow down in time. 
3) The Token Bucket Filter (TBF), a shaper that emits 

packets at a fixed rate. 
4) Stochastic Fair Queueing (SFQ) [13], one of the several 

implementations of a set of algorithms called Fair 
Queueing (FQ) [14], [15]. The basic idea of the SQF is to 
provide to each flow with a fair share of resources. 

The classful queueing disciplines: contain classes, and 
provide a handle which attach filters to. There is no 
prohibition on using a classful qdisc without child classes, 
although this will usually consume system resources for no 
benefit. Important queueing disciplines include: 
1) PRIO (Priority scheduler): in classic Priority Queueing, 

packets are first classified by the system and then placed 
into different priority queues. Packets are scheduled from 
the head of a given queue only if all queues of higher 
priority are empty. Within each of the priority queues, 
packets are scheduled in FIFO order [16]. 

2) Schedulers implementing the model called “Hierarchical 
Link-Sharing” described in [17]. First, “Class Based 
Queueing” (CBQ) was created, but a better 
implementation of the model and easier in its 
configuration called “Hierarchical Token Bucket” (HTB) 
[18] is recommended to be used nowadays. A key feature 
is that the model gives us some tools to avoid starvation 
of a low priority class, as the framework has the ability to 
share bandwidth between classes with different priorities. 
The model also allows a packet scheduler to be assigned 
to each class, which determines which packet is selected 
when the class is allowed to transmit a packet. 

Concerning the second question, two facts must be 
considered: a pricing model and a simple mechanism for 
payment. From the pricing point of view, again several 
alternatives: logging time, amount of transferred data, type of 
service, etc. From the payment point of view the user should 
have as many possibilities as possible to make the payment. A 
new bonus system could be designed so that the user could 
freely use services or simply pay at the end of the connection. 

II. PROBLEM AND IMPLEMENTED SOLUTION 

A. Problem 
In our case the problem to be solved is posted as: there 

exists a SMSE that wants to offer public access to Internet 
with certain Quality of Service expectations to both 
administrative staff and general domains, the solution must be 
cost effective and easy to use and to install so that it provides 
new business opportunity. 

B. Problem Solution 
The design and the implementation of the solution to our 

problem are based on the answers to the two questions above 
described: How services with some QoS management are 
served? What is the economical model used for pricing? 

To “how services with some QoS management are served?” 
we propose a topology based on three networks, a single link 

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:1, No:12, 2007 

4080International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
12

, 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
48

97
.p

df



 

 

connection shared by both domains and guaranteeing no 
interference between them, Linux as the Operating System 
and open source software products (Fig. 2). In this scenario to 
have exclusive internet connections for each domain may not 
be the best economical solution. Therefore we believe that 
sharing a connection is a good alternative. 

 
Fig. 2 Basic architecture 

 
Fig. 2 shows the basic connection structure of the design: 

1) WAN: denotes the connection to Internet. 
2) Private LAN: This LAN represents the network which 

management staff and other SMSE´s personnel are 
connected to. This LAN network has not any restriction to 
access to Internet. 

3) Client LAN: This LAN stands for the network where a 
general customer is connected to. The administrator may 
force to this network’s users into authenticating before 
accessing to Internet, or may restrict internet connectivity 
based either on user’s navigation time or on the amount 
of transferred data (sent or received) by the user. 

To the question of “what is the economical model used for 
pricing?” a new bonus model that offers different connection 
modalities has been design to facilitate the payment: 
1) Prepaid bonus for different amount of bytes (500 kB, 1 

GB, for example) 
2) Prepaid bonus for different time-steps (half an hour, 2 

hours, 10 hours, for example) 
3) Consumed data bonus (payment based on the amount of 

data being transferred) 
4) Consumed time bonus (payment based on logging 

connection time) 
We are of the opinion that the utilization of bonuses is very 

important, firstly, because they are sharable, that is, a bonus 
can be used by several customers simultaneously allowing, 
organizers of meetings, lecture classes etc., to use just one 
bonus, and secondly, because bonuses can be assigned to 
special users. Definitely, this type of pricing represents a clear 
business opportunity to the SMSE. 

C. Implementation 
A web-based user-friendly interface with a high level of 

abstraction has been developed which allows the SMSE’s 
administrator to keep up to date the system configuration 

without knowing how it really works. 
There are several parameters which can be configured by 

the administrator, however, based on Differentiated Services 
philosophy, the administrator simply defines, specifies and 
groups services into classes or levels which will have different 
treatment. Selected configurations are saved and retrieved 
to/from a database and scripts are generated and executed 
internally and transparently. 

Based on DiffServ philosophy, and concerning the packet 
classification, in each of the interfaces, traffic is classified 
based on the services and classes defined for that interface. 
For each defined service, an iptables rule [9] is introduced, to 
classify and to mark all traffic that follows the pattern 
identifying that service. All services grouped in the same class 
are marked with the same specific number. This number will 
be used by traffic conditioning module to give packets from 
each class different treatment. Concerning traffic 
conditioning, a Class-Based-Queueing (HTB queueing 
discipline) packet scheduler [18] has been selected because its 
hierarchical approach is well suited for setups where a fixed 
amount of bandwidth is divided for different purposes, giving 
each purpose a guaranteed bandwidth, with the possibility of 
specifying how much bandwidth can be borrowed. Moreover, 
it can be combined with SFQ queues, trying to prevent any 
single client or flow from dominating the network usage. 
Summing up, traffic is selected and marked by iptables (with 
same number for each class). Based on this identifying 
number, filters attached to the root qdisc are responsible for 
assigning packets to the associated HTB class, which 
represents the differentiated service treatment for each class. 
To end, Stochastic Fair Queueing scheduler is used within 
each class to achieve a fair sharing of resources within each 
class (Fig. 3). 

 
Fig. 3 Implemented scheme 

 
Traffic classification: The administrator defines the 

services that need to be differentiated. By default the most 
common services are already defined in the web application, 
but the administrator can modify, delete and introduce new 
services. A service is defined by a set of parameters, basically: 
1) Name: identifies the service; for example, HTTP, SMTP.  
2) Protocol: “ICMP”, “TCP”, “UDP” or “TCP/UDP” 
3) Type (enabled when protocol is TCP or UDP): “port” or 

“packet’s length”. 
4) Value (enabled when type is defined): numeric value. In 

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:1, No:12, 2007 

4081International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
12

, 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
48

97
.p

df



 

 

case type has been defined as a “port”, single ports or port 
ranges can be defined. In case type is defined as “packet’s 
length”, an integer defining packet’s length is introduced. 
It is recommended to classify short packets, ACKs, etc. 

This first step does not associate services and classes. This 
association will be done in the following steps. 

Service classes and differentiation: Firstly, the 
administrator must specify the amount of bandwidth that is 
available (download/upload from/to Internet), and decide how 
to divide it between both domains: Client LAN and Private 
LAN. This information is obtained by requesting: 
1) Download rate (kb/s) 
2) Upload rate (kb/s) 
3) Percentage of available bandwidth for Client LAN (%) 

Since, the developed application supports service 
differentiation in outgoing traffic in the network interfaces it 
is necessary to know the amount of bandwidth that is actually 
available in each interface. These approximations are made: 
1) WAN interface outgoing traffic is interpreted as upload 

traffic 
2) Client LAN interface outgoing traffic is interpreted as 

download traffic in Client LAN 
3) Private LAN interface outgoing traffic is interpreted as 

download traffic in Private LAN 
It should be clear that, these approximations do not lead to 

error since outgoing traffic in both Client LAN and Private 
LAN comes from WAN interface (traffic between Client LAN 
and Private LAN is not generally allowed, if it were permitted 
this traffic would be minimum due to the functionality of the 
architecture). Consequently, available bandwidth in each 
interface is obtained after applying a penalization factor (0.90) 
to the theoretical values as shown below: 
1) WAN interface: 0.90 * upload rate. (kb/s) 
2) Client LAN interface: 0.90 * download rate * percentage 

/ 100 (kb/s) 
3) Private LAN interface: 0.90 * download rate * (100 – 

percentage) / 100 (kb/s) 
Secondly, it is necessary to group services defined in the 

previous step into service classes and to define traffic 
conditioning rules for each traffic class as if they were 
bandwidth rules for the administrator. Bandwidth rules are 
defined in each one of the network interfaces. To define a 
rule, it is necessary to set the following parameters: 
1) Priority: “Low”, “Medium” or “High”.  
2) By default: “Yes” or “No”. Only one of the rules of each 

network interface must be defined as default. This is 
necessary to define which rule will be applied to the 
services that have not been specifically defined. 

3) Minimum BW (%): Minimum BW guaranteed. 
4) Maximum BW (%): If BW is available, maximum BW 

will be used. 
5) Type: “Services” or “User”. In case that “services” is 

selected it is necessary to specify which ones will be 
included among the services that were defined in previous 
step (to help the administrator, a list box will be shown 
with all defined services). In case that “user” is selected, 

this rule will be reserved for a user that asks for a 
guaranteed bandwidth no matter what services are used.  

These rules automatically generate an identification number 
for ordering and identification purposes.  Each of these rules 
is a service class, where applications are included, having all 
of them the same treatment, defined by the HTB class 
assigned to them. 

Pricing and counting: To price and to count Client LAN’s 
users’ consumption, their accesses are controlled through a 
captive portal functionality. To allow user navigate correctly 
after authentication, and once user’s ip address has been 
obtained by the servlet attending user’s authentication 
petition, new iptables rules are introduced. These specific 
rules are responsible for: 
1) Skipping http redirection rules 
2) Data transfer counting rules 
3) Packet marking rules (in case the bonus has got 

associated a guaranteed bandwidth) 
When a user closes its session, session’s consumption is 

saved into a database and rules are deleted. 
This operational mode indicates that, the administrator must 

define all the modalities that will be offered to the users. 
These will be the patterns of the individual bonus that will be 
created when client requests them. These patterns specify how 
long the bonus will be valid, if it is prepaid or not, if it is 
based on time or transferred data, how much it costs (if it is 
prepaid) or how much the defined unit on time (hour, minutes, 
etc) or on data quantity (bytes, kbytes, etc) costs.  

III. TESTING 
To evaluate the performance of the developed application a 

thorough testing has been performed to one interface. For that 
a PC acting as traffic generator is placed in the Private LAN, 
and another PC is positioned in the Client LAN to collect the 
generated traffic. WAN network has not been used since total 
control on the networks is needed. To carry out this testing, 
communication between Private LAN and Client LAN has 
been enabled. A software tool called IPERF [19] is used for 
traffic generation (iperf acting as a client) as well as for 
generated traffic collection (iperf acting as a server). For 
monitoring use of bandwidth, a perl script (monitor_tc.pl) [20] 
is used. It monitors the HTB classes by using tc utility 
periodically and writes down bandwidth consumption 
information in a log file. 

In our case four flows are generated at different time steps. 
In all cases, source is Client A, connecting to Server B in a 
specific port.  
1) Flow 1: port 5001, from t=1 minute to t=5 minutes. 
2) Flow 2: port 5002, from t=2 minutes to t=6 minutes. 
3) Flow 3: port 5003, from t=3 minutes to t=7 minutes. 
4) Flow 4: port 5004, from t=4 minutes to t=8 minutes. 

And four services have been created to classify these flows. 
Following the description given in traffic classification, 
services’ names are “Flow 1”, “Flow 2”, “Flow 3” and “Flow 
4”, all of them are characterized by “TCP” protocol and “port” 

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:1, No:12, 2007 

4082International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
12

, 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
48

97
.p

df



 

 

Type. The number of the port is the previously mentioned for 
each one of the flows. 

In Client LAN, four rules are created, one for each service 
(F1, F2, F3 and F4). Traffic generation process is the same in 
all of the tests, as well as the services associated to each rule, 
but rules’ characteristics are modified as described.  

Client LAN’s download bandwidth (after considering a 
penalizing factor) is 1620 kb/s, and the rate parameter for all 
rules is 405 kb/s (25% of the available bandwidth (Minimum 
BW)). In Test 1 and Test 2, Maximum BW is 100%, whereas in 
Test 3 and Test 4 it is 50%. In Test 1 and Test 3, all rules have 
the same priority, whereas in Test 2 and Test 4, F1 has high 
priority, F2 and F3 have medium priority and F1 low priority. 

Tests are done from t = 0 seconds to t = 9 minutes. Fig. 4 
shows the results graphically and in Table I some comments 
about them are made. Traffic limiting works at optimum and 
so it does exceeding bandwidth distribution.  

Fig. 4. Results for tests. 

TABLE I 
COMMENTS ABOUT TESTS 

Time 
interval 
(min) 

Existing 
flows’ 
number 

TEST 1 
• Max BW 100% 
• = priority 

TEST 2 
• Max BW 100% 
• ≠ priority 

TEST 3 
• Max BW 50% 
• = priority 

TEST 4 
• Max BW 50% 
• ≠ priority 

1-2 F1 Assured 25% for F1. All 
remaining BW is used by F1 
as there is no more traffic and 
F1 can use up to 100 %. 

Same as TEST 1. Assured 25% for F1. 
Remaining BW: 75%. As there 
is no more traffic, F1 uses its 
maximum quantity of BW, 
50%. 

Same as TEST 3. 

2-3 F1-F2 Assured 25% for both F1 and 
F2. 
Remaining BW is 50%, which 
is shared by F1 and F2 (25% 
for each) as they have the 
same priority. 

Assured 25% for F1 and 25% 
for F2. 
Remaining BW is 50%, which 
is used only by F1 as it has 
higher priority than F2. So 
25% for F2 and 75% for F1. 

Same as TEST 1. Assured 25% for F1 and 25% 
for F2.Remaining BW is 50%,
which is firstly used only by 
F1 as it has higher priority 
until it arrives at its maximum 
(50%). At this point, rest of 
BW (25%) is used by F2. So, 
50% for F1 and 50% for F2. 

3-4 F1-F2-F3 Assured 25% for F1, 25% for 
F2 and 25% for F3. 
Remaining BW is 25%, which 
is shared between F1, F2 and 
F3 as they have the same 
priority. 

Assured 25% for F1, 25% for 
F2 and 25% for F3. 
Remaining BW is 25%, which 
is used by F1, as it has the 
highest priority and can use 
up to 100% of the total BW. 

Same as TEST 1. Assured 25% for F1, 25% for 
F2 and 25% for F3. 
Remaining BW is 25%, which 
is used by F1, as it has the 
highest priority and can use 
up to 50% of the total BW. 

4-5 F1-F2-F3-
F4 

Assured 25% for each flow. 
There is no remaining BW 

Same as TEST 1 Same as TEST 1 Same as TEST 1 

5-6 F2-F3-F4 Assured 25% for F2, 25% for 
F3 and 25% for F4. 
Remaining BW is 25%, which 
is shared between F2, F3 and 
F4 as they have the same 
priority. 

Assured 25% for F2, 25% for 
F3 and 25% for F4. 
Remaining BW is 25%, which 
is shared between F2 and F3, 
as they have the same priority 
(and higher than F4’s). 

Same as TEST 1. Assured 25% for F2, 25% for 
F3 and 25% for F4. 
Remaining BW is 25%, which 
is shared between F2 and F3, 
as they have the same priority 
(and higher than F4’s). 

6-7 F3-F4 Assured 25% for both F3 and 
F4. 
Remaining BW is 50%, which 
is shared by F3 and F4 (25% 
for each) as they have the 
same priority. 

Assured 25% for F3 and 25% 
for F4. 
Remaining BW is 50%, which 
is used only by F3 as it has a 
higher priority than F4. So 
25% for F4 and 75% for F3. 

Same as TEST 1. Assured 25% for both F3 and 
F4. Remaining BW is 50%, 
which is used firstly by F3 as 
it has a higher priority, but 
when it arises up to its 
maximum (50%) the rest of 
the BW is consumed by F4. 

7-8 F4 Assured 25% for F4. 
All remaining BW is used by 
F4 as there is no more traffic 
and F4 can use up to 100 %. 

Same as TEST 1 Assured 25% for F4.  
Remaining BW: 75%. As there 
is no more traffic, F4 uses its 
maximum quantity of BW, 
50%. 

Same as TEST 3 

 

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:1, No:12, 2007 

4083International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
12

, 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
48

97
.p

df



 

 

IV. CONCLUDING REMARKS 
A solution to a SMSE´s problem as a first step to the 

optimization of QoS in the Internet environment has been 
presented and thoroughly tested. The obtained profiles show 
that the main objectives: simplicity, easily configurable, 
pricing modalities based both on login time and/or quantity of 
data and a relatively complete bandwidth management 
solution are satisfied. 

The profiles (Fig. 4) and comments (Table I) show that, 
exceeding bandwidth distribution works as desired and 
assured bandwidth is always achieved. Bandwidth limiting 
works also at optimun.  

However, some considerations must be done: 
The approximation of considering Client LAN interface’s 

outgoing traffic as download bandwidth for users, Private 
LAN interface’s outgoing traffic as downloading bandwidth 
for management staff and WAN interface’s outgoing traffic as 
upload bandwidth, imposes some limitations: 

--Download bandwidth separation between Client LAN 
and Private LAN is static: one LAN’s unused bandwidth is 
not available for the other LAN.  

--There is no separation between upload traffic from 
Client LAN and upload traffic from Private LAN.  
Yet, improvements could be made by using IMQ 

(Intermediate Queueing Device) [21], as it allows to shape 
over multiple interfaces.  

b) For this first implementation, some restrictions have 
been assumed: 

--Configuration rules are static. Bandwidth parameters 
need to be assigned statically. 

--Traffic classification’s filters are limited to ICMP 
protocol, tcp/udp ports or packet length. 

--All rules are converted to HTB classes which have SFQ 
queues attached, however, for interactive traffic SFQ 
queues are not the best solution as SFQ perturb causes 
packet reordering. 
c) Traffic classification could be improved by several ways: 

--L7 filters [22] (filters that are able to classify 
application level packets) and ipp2p filters [23] (filters that 
are able to detect peer to peer traffic). This is an area that is 
being improved continuously. 

--Flag detection in TCP packets: SYN, FIN, RST. 
Currently research is under way in two basic areas: (i) 

development and testing new transfer protocols, and (ii) 
developing new strategies for traffic improvements leading to 
the optimization of network level QoS parameters [24] in IP 
networks and also for new ways of pricing based on service 
differentiation. 

REFERENCES   
[1] Behrouz and A. Forouzan, Data Communications and Networking, Ed. 

New York: McGraw-Hill, 2003. 
[2] Alberto Leon-Garcia and Indra Widjaja, Communication Networks, Ed. 

New York: McGraw-Hill, 2004. 
[3] Ajmone Marsan et al. (Eds), Quality of Service in Multiservice IP 

Networks, QoS-IP 2005. Springer-Verlag, 2005. 

[4] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, 
RFC2475 – An architecture for differentiated service. Technical report, 
RFC Editor, December 1998. 

[5] D. Grossman, RFC3260 – New terminology and clarifications for 
diffserv. Technical report, RFC Editor, April 2002. 

[6] Jason Boxman. (2005, November 15) A practical Guide to Linux Traffic 
Control. [Online]. Available: 
http://edseek.com/~jasonb/articles/traffic_shaping  

[7] Bert Hubert, Thomas Graf, Greg Maxwell, Remco van Mook, Martijn 
van Oosterhout, Paul B Schroeder, Jasper Spaans, and Pedro Larroy. 
(2002, March). Linux Advanced Routing & Traffic Control. [Online]. 
Available: http://lartc.org/howto 

[8] Harald Welte, et al. (2005). Netfilter/iptables Project. [Online]. 
Available: http://www.netfilter.org 

[9] Oscar Andreasson. (2005, July 20). Iptables Tutorial 1.2.0. [Online]. 
Available: http://iptables-tutorial.frozentux.net/iptables-tutorial.html 

[10] Werner Almesberger. “Linux Network Traffic Control - Implementation 
Overview”. Proceedings of 5th Annual Linux Expo, Raleigh, NC, pp. 
153-164, May 1999. Available: 
http://www.almesberger.net/cv/papers/tcio8.pdf 

[11] Werner Almesberger, Jamal Hadi Salim and Alexey Kuznetsov. 
“Differentiated Services on Linux”. Proceedings of Globecom ’99, vol.1, 
pp. 831-836, December 1999. Available: 
http://www.almesberger.net/cv/papers/18270721.pdf 

[12] Sally Floyd, Van Jacobson. “Random Early Detection Gateways for 
Congestion Avoidance”, IEEE/ACM Transactions on Networking, 
August 1993. 

[13] Paul E. McKenney. “Stochastic fairness queueing”. Interworking: 
Research and Experience, Vol.2, January 1991. Available: 
http://citeseer.ist.psu.edu/mckenney91stochastic.html 

[14] A. Demers, S. Keshav, and S. Shenker. “Analysis and simulation of a 
fair queueing algorithm”. In SIGCOMM ’89: Symposium proceedings 
on Communications architectures & Protocols, pp. 1-12. ACM Press, 
1989. ISBN 0-89791-332-9. 

[15] Srinivasan Keshav. “On the efficient implementation of fair queueing”. 
Journal of Internetworking Research and Experience, 1991.  

[16] Chuck Semeria., "Supporting Differentiated Service Classes: Queue 
Scheduling Disciplines", Juniper Networks, December 2001. 

[17] Sally Floid and Van Jacobson. “Link-sharing and resource management 
models for packet networks”. IEEE/ACM Transaction on Networking, 
3(4):365-386, 1995. Available: 
http://citeseer.ist.psu.edu/article/floyd95linksharing.html. 

[18] Martin Devera. (2002, May 5). Hierarchical token bucket theory. 
[Online]. Available: 
http://luxik.cdi.cz/~devik/qos/htb/manual/theory.htm 

[19] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson and Kevin Gibbs. 
(2003 March) IPERF: Tool for measuring UDP and TCP bandwidth 
performance. [Online]. Available: http://dast.nlanr.net/Projects/Iperf 

[20] Stef Coene. Bandwidth monitoring. [Online]. Available: 
http://www.docum.org/docum.org/monitor/ 

[21] Linux IMQ: Intermediate Queueing Device. (2005, August). [Online]. 
Available: http://www.linuximq.net 

[22] Application Layer Packet Classifier for Linux. (2005, August). [Online]. 
Available: http://l7filter.sourceforge.net/ 

[23] Official IPP2P homepage. [Online]. Available: http://www.ipp2p.org 
[24] Jha, Sanjay. Engineering Internet QoS. Norwood, MA, USA: Artech 

House, Incorporated, 2002.  

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:1, No:12, 2007 

4084International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
12

, 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
48

97
.p

df




