Search results for: Feedback Linearization controller
102 Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections
Authors: Zhiyuan Du, Baisravan Hom Chaudhuri, Pierluigi Pisu
Abstract:
In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.
Keywords: Connected vehicles, automated vehicles, intersection coordination systems, multiple interconnected intersections, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848101 A Novel Receiver Algorithm for Coherent Underwater Acoustic Communications
Authors: Liang Zhao, Jianhua Ge
Abstract:
In this paper, we proposed a novel receiver algorithm for coherent underwater acoustic communications. The proposed receiver is composed of three parts: (1) Doppler tracking and correction, (2) Time reversal channel estimation and combining, and (3) Joint iterative equalization and decoding (JIED). To reduce computational complexity and optimize the equalization algorithm, Time reversal (TR) channel estimation and combining is adopted to simplify multi-channel adaptive decision feedback equalizer (ADFE) into single channel ADFE without reducing the system performance. Simultaneously, the turbo theory is adopted to form joint iterative ADFE and convolutional decoder (JIED). In JIED scheme, the ADFE and decoder exchange soft information in an iterative manner, which can enhance the equalizer performance using decoding gain. The simulation results show that the proposed algorithm can reduce computational complexity and improve the performance of equalizer. Therefore, the performance of coherent underwater acoustic communications can be improved greatly.Keywords: Underwater acoustic communication, Time reversal (TR) combining, joint iterative equalization and decoding (JIED)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723100 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection
Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen
Abstract:
Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.
Keywords: Big data analytics, Industry 4.0, SPI threshold setting, surface mount technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81499 DC Bus Voltage Regulator for Renewable Energy Based Microgrid Application
Authors: Bakari M. M. Mwinyiwiwa
Abstract:
Renewable Energy based microgrids are being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. The technical challenges associated with the operation and controls are immense. Electricity generation by Renewable Energy Sources is of stochastic nature such that there is a demand for regulation of voltage output in order to satisfy the standard loads’ requirements. In a renewable energy based microgrid, the energy sources give stochastically variable magnitude AC or DC voltages. AC voltage regulation of micro and mini sources pose practical challenges as well as unbearable costs. It is therefore practically and economically viable to convert the voltage outputs from stochastic AC and DC voltage sources to constant DC voltage to satisfy various DC loads including inverters which ultimately feed AC loads. This paper presents results obtained from SEPIC converter based DC bus voltage regulator as a case study for renewable energy microgrid application. Real-Time Simulation results show that upon appropriate choice of controller parameters for control of the SEPIC converter, the output DC bus voltage can be kept constant regardless of wide range of voltage variations of the source. This feature is particularly important in the situation that multiple renewable sources are to be integrated to supply a microgrid under main grid integration or isolated modes of operation.
Keywords: DC Voltage Regulator, microgrid, multisource, Renewable Energy, SEPIC Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 431198 Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton
Authors: Brahmi Brahim, Mohammad Habibur Rahman, Maarouf Saad, Cristóbal Ochoa Luna
Abstract:
A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances.Keywords: Backstepping control, iterative control, rehabilitation, ETS-MARSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136997 Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration
Authors: A. Ghodbane, M. Saad, J.-F. Boland, C. Thibeault
Abstract:
Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model.
Keywords: Actuators’ faults, Fault detection and diagnosis, Fault tolerant flight control, Sliding mode control, Geometric approach for fault reconstruction, Lyapunov stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257696 Correlation Analysis to Quantify Learning Outcomes for Different Teaching Pedagogies
Authors: Kanika Sood, Sijie Shang
Abstract:
A fundamental goal of education includes preparing students to become a part of the global workforce by making beneficial contributions to society. In this paper, we analyze student performance for multiple courses that involve different teaching pedagogies: a cooperative learning technique and an inquiry-based learning strategy. Student performance includes student engagement, grades, and attendance records. We perform this study in the Computer Science department for online and in-person courses for 450 students. We will perform correlation analysis to study the relationship between student scores and other parameters such as gender, mode of learning. We use natural language processing and machine learning to analyze student feedback data and performance data. We assess the learning outcomes of two teaching pedagogies for undergraduate and graduate courses to showcase the impact of pedagogical adoption and learning outcome as determinants of academic achievement. Early findings suggest that when using the specified pedagogies, students become experts on their topics and illustrate enhanced engagement with peers.
Keywords: Bag-of-words, cooperative learning, education, inquiry-based learning, in-person learning, Natural Language Processing, online learning, sentiment analysis, teaching pedagogy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8195 System Identification with General Dynamic Neural Networks and Network Pruning
Authors: Christian Endisch, Christoph Hackl, Dierk Schröder
Abstract:
This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.Keywords: System identification, dynamic neural network, recurrentneural network, GDNN, optimization, Levenberg Marquardt, realtime recurrent learning, network pruning, quasi-online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193794 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.
Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109493 Spacecraft Neural Network Control System Design using FPGA
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGAs have higher speed and smaller size for real time application than the VLSI and DSP chips. So, many researchers have made great efforts on the realization of neural network (NN) using FPGA technique. In this paper, an introduction of ANN and FPGA technique are briefly shown. Also, Hardware Description Language (VHDL) code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic. Synthesis results for ANN controller are developed using Precision RTL. Proposed VHDL implementation creates a flexible, fast method and high degree of parallelism for implementing ANN. The implementation of multi-layer NN using lookup table LUT reduces the resource utilization for implementation and time for execution.
Keywords: Spacecraft, neural network, FPGA, VHDL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 300992 Siding Mode Control of Pitch-Rate of an F-16 Aircraft
Authors: Ekprasit Promtun, Sridhar Seshagiri
Abstract:
This paper considers the control of the longitudinal flight dynamics of an F-16 aircraft. The primary design objective is model-following of the pitch rate q, which is the preferred system for aircraft approach and landing. Regulation of the aircraft velocity V (or the Mach-hold autopilot) is also considered, but as a secondary objective. The problem is challenging because the system is nonlinear, and also non-affine in the input. A sliding mode controller is designed for the pitch rate, that exploits the modal decomposition of the linearized dynamics into its short-period and phugoid approximations. The inherent robustness of the SMC design provides a convenient way to design controllers without gain scheduling, with a steady-state response that is comparable to that of a conventional polynomial based gain-scheduled approach with integral control, but with improved transient performance. Integral action is introduced in the sliding mode design using the recently developed technique of “conditional integrators", and it is shown that robust regulation is achieved with asymptotically constant exogenous signals, without degrading the transient response. Through extensive simulation on the nonlinear multiple-input multiple-output (MIMO) longitudinal model of the F-16 aircraft, it is shown that the conditional integrator design outperforms the one based on the conventional linear control, without requiring any scheduling.Keywords: Sliding-mode Control, Integral Control, Model Following, F-16 Longitudinal Dynamics, Pitch-Rate Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 322191 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions
Authors: Alireza Gholami, Amir H. D. Markazi
Abstract:
In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.
Keywords: Adaptive algorithm, fuzzy systems, membership functions, observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77990 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%-40% compared to a traditional RL model.
Keywords: Control system, hydroponics, machine learning, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20789 Design and Performance of Adaptive Polarized MIMO MC-SS-CDMA System for Downlink Mobile Communications
Authors: Joseph V. M. Halim, Hesham El-Badawy, Hadia M. El-Hennawy
Abstract:
In this paper, an adaptive polarized Multiple-Input Multiple-Output (MIMO) Multicarrier Spread Spectrum Code Division Multiple Access (MC-SS-CDMA) system is designed for downlink mobile communications. The proposed system will be examined in Frequency Division Duplex (FDD) mode for both macro urban and suburban environments. For the same transmission bandwidth, a performance comparison between both nonoverlapped and orthogonal Frequency Division Multiplexing (FDM) schemes will be presented. Also, the proposed system will be compared with both the closed loop vertical MIMO MC-SS-CDMA system and the synchronous vertical STBC-MIMO MC-SS-CDMA system. As will be shown, the proposed system introduces a significant performance gain as well as reducing the spatial dimensions of the MIMO system and simplifying the receiver implementation. The effect of the polarization diversity characteristics on the BER performance will be discussed. Also, the impact of excluding the cross-polarization MCSS- CDMA blocks in the base station will be investigated. In addition, the system performance will be evaluated under different Feedback Information (FBI) rates for slowly-varying channels. Finally, a performance comparison for vehicular and pedestrian environments will be presentedKeywords: Closed loop technique, MC-SS-CDMA, Polarized MIMO systems, Transmit diversity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162288 The Phatic Function and the Socializing Element of Personal Blogs
Authors: Emelia Noronha, Milind Malshe
Abstract:
The phatic function of communication is a vital element of any conversation. This research paper looks into this function with respect to personal blogs maintained by Indian bloggers. This paper is a study into the phenomenon of phatic communication maintained by bloggers through their blogs. Based on a linguistic analysis of the posts of twenty eight Indian bloggers, writing in English, studied over a period of three years, the study indicates that though the blogging phenomenon is not conversational in the same manner as face-to-face communication, it does make ample provision for feedback that is conversational in nature. Ordinary day to day offline conversations use conventionalized phatic utterances; those on the social media are in a perpetual mode of innovation and experimentation in order to sustain contact with its readers. These innovative methods and means are the focus of this study. Though the personal blogger aims to chronicle his/her personal life through the blog, the socializing function is crucial to these bloggers. In comparison to the western personal blogs which focus on the presentation of the ‘bounded individual self’, we find Indian personal bloggers engage in the presentation of their ‘social selves’. These bloggers yearn to reach out to the readers on the internet and the phatic function serves to initiate, sustain and renew social ties on the blogosphere thereby consolidating the social network of readers and bloggers.Keywords: Personal blogs, phatic, social-selves, blog readers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194087 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: Model predictive control, unscented Kalman filter, nonlinear systems, implicit systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94886 Earth Station Neural Network Control Methodology and Simulation
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.
Keywords: Satellite, neural network, MATLAB, power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186885 Closing the Achievement Gap Within Reading and Mathematics Classrooms by Fostering Hispanic Students- Educational Resilience
Authors: Hersh C. Waxman, Yolanda N. Padrón, Jee-Young Shin, Héctor H. Rivera
Abstract:
While many studies have conducted the achievement gap between groups of students in school districts, few studies have utilized resilience research to investigate achievement gaps within classrooms. This paper aims to summarize and discuss some recent studies Waxman, Padr├│n, and their colleagues conducted, in which they examined learning environment differences between resilient and nonresilient students in reading and mathematics classrooms. The classes consist of predominantly Hispanic elementary school students from low-income families. These studies all incorporated learning environment questionnaires and systematic observation methods. Significant differences were found between resilient and nonresilient students on their classroom learning environments and classroom behaviors. The observation results indicate that the amount and quality of teacher and student academic interaction are two of the most influential variables that promote student outcomes. This paper concludes by suggesting the following teacher practices to promote resiliency in schools: (a) using feedback from classroom observation and learning environment measures, (b) employing explicit teaching practices; and (c) understanding students on a social and personal level.Keywords: achievement gap, classroom learning environments, educational resilience, systematic classroom observation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198484 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters
Authors: Satish Kumar Peddapelli
Abstract:
This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have became popular and considerable interest by researcher are given on them. A fast space-vector pulse width modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analyzed.
Keywords: Five-level inverter, Space vector pulse wide modulation, diode clamped inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777083 Didactical and Semiotic Affordance of GeoGebra in a Productive Mathematical Discourse
Authors: I. Benning
Abstract:
Using technology to expand the learning space is critical for a productive mathematical discourse. This is a case study of two teachers who developed and enacted GeoGebra-based mathematics lessons following their engagement in a two-year professional development. The didactical and semiotic affordance of GeoGebra in widening the learning space for a productive mathematical discourse was explored. The approach of thematic analysis was used for lesson artefact, lesson observation, and interview data. The results indicated that constructing tools in GeoGebra provided a didactical milieu where students used them to explore mathematical concepts with little or no support from their teacher. The prompt feedback from the GeoGebra motivated students to practice mathematical concepts repeatedly in which they privately rethink their solutions before comparing their answers with that of their colleagues. The constructing tools enhanced self-discovery, team spirit, and dialogue among students. With regards to the semiotic construct, the tools widened the physical and psychological atmosphere of the classroom by providing animations that served as virtual concrete to enhance the recording, manipulation, testing of a mathematical idea, construction, and interpretation of geometric objects. These findings advance the discussion of widening the classroom for a productive mathematical discourse within the context of the mathematics curriculum of Ghana and similar sub-Saharan African countries.
Keywords: GeoGebra, theory of didactical situation, semiotic mediation, mathematics laboratory, mathematical discussion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39582 Careers-Outreach Programmes for Children: Lessons for Perceptions of Engineering and Manufacturing
Authors: Niall J. English, Sylvia Leatham, Maria Isabel Meza Silva, Denis P. Dowling
Abstract:
The training and education of under- and post-graduate students can be promoted by more active learning especially in engineering, overcoming more passive and vicarious experiences and approaches in their documented effectiveness. However, the possibility of outreach to young pupils and school-children in primary and secondary schools is a lesser explored area in terms of Education and Public Engagement (EPE) efforts – as relates to feedback and influence on shaping 3rd-level engineering training and education. Therefore, the outreach and school-visit agenda constitutes an interesting avenue to observe how active learning, careers stimulus and EPE efforts for young children and teenagers can teach the university sector, to improve future engineering-teaching standards and enhance both quality and capabilities of practice. This intervention involved careers-outreach efforts to lead to statistical determinations of motivations towards engineering, manufacturing and training. The aim was to gauge to what extent this intervention would lead to an increased careers awareness in engineering, using the method of the schools-visits programme as the means for so doing. It was found that this led to an increase in engagement by school pupils with engineering as a career option and a greater awareness of the importance of manufacturing.
Keywords: outreach, education and public engagement, careers, peer interactions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50681 A Weighted-Profiling Using an Ontology Basefor Semantic-Based Search
Authors: Hikmat A. M. Abd-El-Jaber, Tengku M. T. Sembok
Abstract:
The information on the Web increases tremendously. A number of search engines have been developed for searching Web information and retrieving relevant documents that satisfy the inquirers needs. Search engines provide inquirers irrelevant documents among search results, since the search is text-based rather than semantic-based. Information retrieval research area has presented a number of approaches and methodologies such as profiling, feedback, query modification, human-computer interaction, etc for improving search results. Moreover, information retrieval has employed artificial intelligence techniques and strategies such as machine learning heuristics, tuning mechanisms, user and system vocabularies, logical theory, etc for capturing user's preferences and using them for guiding the search based on the semantic analysis rather than syntactic analysis. Although a valuable improvement has been recorded on search results, the survey has shown that still search engines users are not really satisfied with their search results. Using ontologies for semantic-based searching is likely the key solution. Adopting profiling approach and using ontology base characteristics, this work proposes a strategy for finding the exact meaning of the query terms in order to retrieve relevant information according to user needs. The evaluation of conducted experiments has shown the effectiveness of the suggested methodology and conclusion is presented.Keywords: information retrieval, user profiles, semantic Web, ontology, search engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321780 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation
Authors: W. Du, X. Wang, Jun Cao, H. F. Wang
Abstract:
Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.
Keywords: Frequency regulation, virtual inertia control, installation locations, observability, wind farms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 215079 A Neurofuzzy Learning and its Application to Control System
Authors: Seema Chopra, R. Mitra, Vijay Kumar
Abstract:
A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.
Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 259278 Transforming Construction: Integrating Off-Site Techniques and Advanced Technologies
Authors: Layla Mujahed, Gang Feng, Jianghua Wang
Abstract:
An increasing number of construction projects are adopting off-site construction techniques over traditional methods to address longstanding challenges. This research paper explores the integration of design for manufacture and assembly (DfMA), modern methods of construction (MMC), and building information modeling (BIM) within the construction industry. This study employs a mixed-methods approach, using case studies and a review of the existing literature, to examine the role and combined application of each methodology in building projects of varying scales and durations. The study focuses on application mechanisms, stakeholder engagement, knowledge sharing, feedback, and performance metrics to explore the benefits, challenges, and transformative potential of integrating these methodologies. The findings indicate that the synergy among DfMA, MMC, and BIM significantly improves project efficiency, cost reduction, and overall quality. Standardization, increased collaboration among stakeholders, and the adoption of advanced technologies are also highlighted as necessary considerations to fully realize the benefits of this integration. The paper concludes with practical recommendations for industry practitioners seeking to efficiently implement these integrated approaches.
Keywords: BIM, building information modeling, case study, DfMA, design for manufacture and assembly, MMC, modern methods of construction, prefabrication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7377 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Taiki Baba, Tomoaki Hashimoto
Abstract:
The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.Keywords: Model predictive control, stochastic systems, probabilistic constraints, random dither quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 102076 Applications of Building Information Modeling (BIM) in Knowledge Sharing and Management in Construction
Authors: Shu-Hui Jan, Shih-Ping Ho, Hui-Ping Tserng
Abstract:
Construction knowledge can be referred to and reused among involved project managers and jobsite engineers to alleviate problems on a construction jobsite and reduce the time and cost of solving problems related to constructability. This paper proposes a new methodology to provide sharing of construction knowledge by using the Building Information Modeling (BIM) approach. The main characteristics of BIM include illustrating 3D CAD-based presentations and keeping information in a digital format, and facilitation of easy updating and transfer of information in the 3D BIM environment. Using the BIM approach, project managers and engineers can gain knowledge related to 3D BIM and obtain feedback provided by jobsite engineers for future reference. This study addresses the application of knowledge sharing management in the construction phase of construction projects and proposes a BIM-based Knowledge Sharing Management (BIMKSM) system for project managers and engineers. The BIMKSM system is then applied in a selected case study of a construction project in Taiwan to verify the proposed methodology and demonstrate the effectiveness of sharing knowledge in the BIM environment. The combined results demonstrate that the BIMKSM system can be used as a visual BIM-based knowledge sharing management platform by utilizing the BIM approach and web technology.
Keywords: Construction knowledge management, building information modeling, project management, web-based information system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 435175 Hi-Fi Traffic Clearance Technique for Life Saving Vehicles using Differential GPS System
Authors: N. Yuvaraj, V. B. Prakash, D. Venkatraj
Abstract:
This paper may be considered as combination of both pervasive computing and Differential GPS (global positioning satellite) which relates to control automatic traffic signals in such a way as to pre-empt normal signal operation and permit lifesaving vehicles. Before knowing the arrival of the lifesaving vehicles from the signal there is a chance of clearing the traffic. Traffic signal preemption system includes a vehicle equipped with onboard computer system capable of capturing diagnostic information and estimated location of the lifesaving vehicle using the information provided by GPS receiver connected to the onboard computer system and transmitting the information-s using a wireless transmitter via a wireless network. The fleet management system connected to a wireless receiver is capable of receiving the information transmitted by the lifesaving vehicle .A computer is also located at the intersection uses corrected vehicle position, speed & direction measurements, in conjunction with previously recorded data defining approach routes to the intersection, to determine the optimum time to switch a traffic light controller to preemption mode so that lifesaving vehicles can pass safely. In case when the ambulance need to take a “U" turn in a heavy traffic area we suggest a solution. Now we are going to make use of computerized median which uses LINKED BLOCKS (removable) to solve the above problem.Keywords: Ubiquitous computing, differential GPS, fleet management system, wireless transmitter and receiver computerized median i.e. linked blocks (removable).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199074 Design and Fabrication of a Programmable Stiffness-Sensitive Gripper for Object Handling
Authors: Mehdi Modabberifar, Sanaz Jabary, Mojtaba Ghodsi
Abstract:
Stiffness sensing is an important issue in medical diagnostic, robotics surgery, safe handling, and safe grasping of objects in production lines. Detecting and obtaining the characteristics in dwelling lumps embedded in a soft tissue and safe removing and handling of detected lumps is needed in surgery. Also in industry, grasping and handling an object without damaging in a place where it is not possible to access a human operator is very important. In this paper, a method for object handling is presented. It is based on the use of an intelligent gripper to detect the object stiffness and then setting a programmable force for grasping the object to move it. The main components of this system includes sensors (sensors for measuring force and displacement), electrical (electrical and electronic circuits, tactile data processing and force control system), mechanical (gripper mechanism and driving system for the gripper) and the display unit. The system uses a rotary potentiometer for measuring gripper displacement. A microcontroller using the feedback received by the load cell, mounted on the finger of the gripper, calculates the amount of stiffness, and then commands the gripper motor to apply a certain force on the object. Results of Experiments on some samples with different stiffness show that the gripper works successfully. The gripper can be used in haptic interfaces or robotic systems used for object handling.Keywords: Gripper, haptic, stiffness, robotic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115473 Feasibility and Penetration of Electric Vehicles in Indian Power Grid
Authors: Kashyap L. Mokariya, Varsha A. Shah, Makarand M. Lokhande
Abstract:
As the current status and growth of Indian automobile industry is remarkable, transportation sectors are the main concern in terms of energy security and climate change. Due to rising demand of fuel and its dependency on foreign countries that affects the GDP of nation, suggests that penetration of electrical vehicle will increase in near future. So in this context analysis is done if the 10 percent of conventional vehicles including cars, three wheelers and two wheelers becomes electrical vehicles in near future which is also a part of Nations Electric Mobility Mission Plan then the saving which improves the nation’s economy is analyzed in detail. Whether the Indian electricity grid is capable of taking this load with current generation and demand all over the country is also analyzed in detail. Current situation of Indian grid is analyzed and how the gap between generation and demand can be reduced is discussed in terms of increasing generation capacity and energy conservation measures. Electrical energy conservation measures in Industry and especially in rural areas have been analyzed to improve performance of Indian electricity grid in context of electrical vehicle penetration in near future. Author was a part of Vishvakarma yojna in which energy losses were measured in 255 villages of Gujarat and solutions were suggested to mitigate them and corresponding reports was submitted to the authorities of Gujarat government.
Keywords: Vehicle penetration, feasibility, Energy conservation, future grid, Energy security, Automatic pf controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4109