
 

 

 
Abstract—Surface Mount Technology (SMT) is widely used in 

the area of the electronic assembly in which the electronic components 
are mounted to the surface of the printed circuit board (PCB). Most of 
the defects in the SMT process are mainly related to the quality of 
solder paste printing. These defects lead to considerable 
manufacturing costs in the electronics assembly industry. Therefore, 
the solder paste inspection (SPI) machine for controlling and 
monitoring the amount of solder paste printing has become an 
important part of the production process. So far, the setting of the SPI 
threshold is based on statistical analysis and experts’ experiences to 
determine the appropriate threshold settings. Because the production 
data are not normal distribution and there are various variations in the 
production processes, defects related to solder paste printing still 
occur. In order to solve this problem, this paper proposes an online 
machine learning algorithm, called the automatic threshold adjustment 
(ATA) algorithm, and closed-loop architecture in the SMT process to 
determine the best threshold settings. Simulation experiments prove 
that our proposed threshold settings improve the accuracy from 
99.85% to 100%. 
 

Keywords—Big data analytics, Industry 4.0, SPI threshold setting, 
surface mount technology. 

I. INTRODUCTION 

ITH the rapid development of technology and market 
demand, electronic components on the PCB have 

become smaller, denser and more complex. Moreover, frequent 
changes to component specifications and combinations and 
rapid development of new products, production flexibility and 
production capacity have become essential. Electronics 
manufacturers are constantly striving to develop robust process 
methods to improve process stability and advanced process 
technology. SMT technology is a widely used method in the 
electronics assembly industry. Its advantages are not only the 
mass production of consumer electronic components in a low- 
cost way, but also the rapid adaptation and flexibility of small 
and medium-sized production and prototyping. A traditional 
SMT process is shown in Fig. 1 (a). 

According to industry reports, approximately 52% to 71% of 
SMT defect problems are related to solder paste printing [5]- 
[6]. In the actual solder paste printing process, two situations 
often occur (i) insufficient solder, which is easy to cause some 
defects such as improper solder joints, open, or offset after 
reflow oven; (ii) over solder, which can cause a solder-bridge 
and result in a short circuit, or offset defect. If the solder paste 
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on the PCB has the above defects, it is necessary to clean the 
PCB and reprint the solder paste, or it must be sent to the repair 
station for repair. Thereby, it affects the overall production 
efficiency and production quality. However, the above 
mentioned situations can be avoided by installing the SPI 
machine after solder paste printing and setting the appropriate 
threshold for the volume, area, and height of the solder paste for 
each PCB pad. SPI machine not only can set an acceptable 
solder paste volume, area and height range according to each of 
the aperture of the stencil but also provides a statistical analysis 
tool called SPC to help process engineers identify soldering 
related problems. For the volume, area, and height of the solder 
paste on each PCB pad, in addition to the customer's special 
requirements threshold setting, the threshold setting is basically 
set by senior engineers' knowledge and experiences, using the 
trial-and-error method or the threshold provided in the SPC 
statistical tool. However, there are many factors that will affect 
the judgment of the engineers and the accuracy of the threshold 
provided by the SPC statistical tool will be affected by whether 
the data are approximately normally distributed. Therefore, this 
paper proposes an ATA algorithm through a closed-loop 
feedback mechanism to find the best threshold settings for 
volume, area, and height of the solder paste for each PCB pad, 
as shown in Fig. 1 (b). The experimental results indicate that the 
proposed threshold settings improve the accuracy from 99.85% 
to 100%. 

The remainder of this paper is organized as follows. Section 
II introduces the definitions and notations used throughout the 
paper. Section III presents a proposed algorithm. Simulation 
experiment result is presented in Section IV. Finally, Section V 
offers some concluding remarks. 

II. PRELIMINARIES 

The SPI machine and AOI machine play the role of 
measurement and monitor in the SMT process. This paper will 
propose the SPI thresholds of the solder paste in volume, area, 
height based on different component types because different 
component types may have a different number of pins of an 
electronic component and corresponding pads. Whenever SPI 
inspects one or a batch of PCBs, it will produce volume, area, 
and height measurements which are denoted by 𝑉 𝐶 𝑗 , 
𝐴 𝐶 𝑗 , 𝐻 𝐶 𝑗 , respectively, and 𝐶 𝑗  represents the 𝑗th 
pad in the 𝑖th component type, where j = 1, 2, ..., 𝑘 𝑖 . Thus, if 
𝑉 = 1, then the volume of solder paste reaches the target value. 

If 𝑉 ≪ 1 (or 𝑉 ≫ 1), then the volume of the solder paste is 
insufficient (or too much). 
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Fig. 1 SMT process architecture diagram 
 

After going through reflow soldering process, the assembled 
boards are conveyed into AOI machine and optically inspected 
whether there is any surface-related defect. Because the AOI 
misjudgment rate is still high, this paper only considers the 
result of the human inspection as the correct judgment. It is 
worth noting that AOI machines usually give inspection results 
in units of components. Therefore, when the human inspection 
result of a certain component is insufficient solder (or over 
solder), we will regard the minimum (or maximum) solder 
paste measurement of the component as a representative of the 
insufficient solder defect. 

For the 𝑗th PCB pad of the component type 𝑖, the measured 
values obtained from SPI machine can be considered as a point 

𝑉 , 𝐴 , 𝐻  in a three-dimensional space. Because the amount 
of the solder paste in the solder paste printing will decrease as 
the times of printing increases, the engineer will regularly 
monitor them. Thus, the scattered plot of the set 𝑉 , 𝐴 , 𝐻 ∈
ℛ |1 𝑗 𝑘 𝑖  collected from the SPI machine can be various 
elliptical or other different shapes, rather than being restricted 
to circles. In this paper, we consider the method called 
DBSCAN (Density-based spatial clustering of applications 
with noise) [1] which is a density-based clustering algorithm. 
The advantage of this method is that it can discover clusters 
with arbitrary shape and with minimal number of input 
parameters as follows: (i) Eps: neighborhood of a point; (ii) 
MinPts: minimum number of points to create a cluster. The 
following definitions are the basic idea behind this DBSCAN 
method. For definitions of density-reachable and density- 
connected not being mentioned here, please refer to [4]. 

III. INSPECTION QUALITY REGRESSION 

This paper is based on the assumption that we do not know 
the correct SPI thresholds (upper & lower) at the beginning of 
production. The initial value of the upper and lower thresholds 
of volume, area, and height are set to 1. 

In the actual production process, it takes at least 15~20 
minutes for the PCB to pass from the SPI inspection to the 
human inspection. Because we use the results from human 
inspection as the correct answer to determine whether the 
threshold settings are appropriate, we use the unsupervised 

clustering method to find the appropriate thresholds before 
getting the human inspection results. Once we have the results 
of the human inspection, we will label those corresponding data 
and adopt a supervised classification to find the optimal 
thresholds. Therefore, the proposed ATA algorithm is divided 
into two stages as follows: (i) Shape-based threshold algorithm 
(Algorithm 1) which is based on the unsupervised clustering 
method - DBSCAN; (ii) AOI feedback-based threshold 
algorithm (Algorithm 2) which is based on supervised 
classification – Support Vector Machine (SVM). 

A. Shape-Based Threshold 

Whenever we collect data from an SPI machine, we will do 
basic data preprocessing to convert the raw data into a clean and 
meaningful data set according to (1). Ideally, for each 
component type 𝑖, the data set 𝑉 , 𝐴 , 𝐻 ∈ ℛ |1 𝑗 𝑘 𝑖  
collected from the SPI machine should be aggregated into one 
cluster, but the actual production process may experience the 
amount of solder paste decrease, just like mentioned in Section 
II; or it may have solder paste material problems so that the data 
distribution will become elliptical or other shapes, rather than 
being restricted to circles. However, in the solder paste printing 
process, if we consider the pads’ neighbor relationships and/or 
its symmetry, the difference in the amount of solder paste in 
volume, area, and height of these red PCB pads will be 
relatively small. In addition, under the normal operation of the 
solder paste printing, the difference in the amount of solder 
paste will be less than 𝜀, where 𝜀 0. 

According to mentioned above, it is better to use the 
DBSCAN clustering method which is mentioned in Section II, 
we set Eps = 𝜀 which can be obtained by history data and set 
MinPts = 2 ~ 6. After executing DBSCAN on the data set, it 
will output the clusters and noise data points according to 
Definition 1 and Definition 2 in [4], respectively. In general, if 
the parameter settings are appropriate, there are 1~3 resulting 
clusters and only one of them is the largest. In our algorithm we 
will set the largest cluster as the main cluster 𝐶 (called core 
cluster) and the others as noise data points. Then, we set the 
thresholds as follows: 

 

𝐿 , 𝑈 min ∈ 𝑆 , max ∈ 𝑆 ,  
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(𝐿 , 𝑈 min ∈ 𝑆 , max ∈ 𝑆   

 𝐿 , 𝑈 min ∈ 𝑆 , max ∈ 𝑆     (1) 

                   
where 𝑆 𝑉 |1 𝑗 𝑘 𝑖 , 𝑆 𝐴 |1 𝑗 𝑘 𝑖 , 

𝑆 𝐻 |1 𝑗 𝑘 𝑖  and 𝐿 , 𝐿  , 𝐿  represent the lower 

threshold in volume, area, and height, respectively, and 𝑈 , 

𝑈 , 𝑈  represent the upper threshold in volume, area, and 
height, respectively. According to the mentioned above, we 
propose Algorithm 1 in Table I and the main idea of Algorithm 
1 is to classify the core cluster and noise data points. 

 
TABLE I 

ALGORITHM 1: SHAPE BASED THRESHOLD 

     Input: Raw data from SPI machine for each component type 𝑖, 𝜀, 𝑛 . 
     Output: 𝐿 , 𝑈 , 𝐿 , 𝑈 , 𝐿 , 𝑈  

Step 1. Collect raw data set 𝑆 𝑉 , 𝐴 , 𝐻 ∈ ℛ |1 𝑗 𝑘 𝑖   
from SPI machine; 

Step 2. 𝐶 , 𝐶 , … , 𝐶 𝐷𝐵𝑆𝐶𝐴𝑁 𝑆 , 𝐸𝑝𝑠 𝜀, 𝑀𝑖𝑛𝑃𝑡𝑠 𝑛 ,  
             where m is depend on 𝜀 and 𝑛 ; 
Step 3. 𝐶 ≡ argmax ∈ , ,…, |𝐶|  and  𝑁 ≡ 𝑆 \𝐶 ; 
Step 4. return the thresholds 𝐿 , 𝑈 , 𝐿 , 𝑈 , 𝐿 , 𝑈  

according to (1) 

B. AOI Feedback-Based Threshold 

This section is mainly considered when we get feedback 
from the human inspection, as shown in Fig. 1 (b). This paper 
considers a binary classification problem where we want to 

predict label y ∈ {0, 1} based on observation �⃑�. A SVM [3], [7] 
is a type of supervised machine learning algorithm which is 
mostly used in classification problems and applied in a variety 
of fields. The main idea of SVM is to find a hyperplane 
(classifier) such that there exists the largest margin where we 
can separate the labelled data into two categories well. 
However, there are extremely low number of defect samples in 
the actual SMT process, therefore, we adopt LIBSVM tool [2] 
which is a simple, and efficient software for SVM classification 
and regression on imbalanced dataset by choosing the weights 
for different classes. 

 Let 𝑥 , �⃑� , … , �⃑�  be the data points in the set 𝑆  which is 
mentioned in Algorithm 1, where 𝑥 𝑉 , 𝐴 , 𝐻 ∈ ℛ  and 
𝑦 , 𝑦 , … , 𝑦  denote the corresponding labels and 𝑦 ∈

1, 1 , where the value 1 represents ”re-pass” and the 1 
represents the defect of ”insufficient solder” or ”over solder”. 
We are given a training dataset of 𝑛  points of the form 
�⃑� , 𝑦 , �⃑� , 𝑦 , … , �⃑� , 𝑦 , and for any hyperplane can be 

written as the set of points �⃑� satisfying �⃑� ∙ �⃑� 𝑏 0, where �⃑� 
is the weight vector and b is the bias. In order to individually 
find the thresholds of volume, area and height, we divided the 
training dataset �⃑� , 𝑦 , 𝑥 , 𝑦 , … , 𝑥 , 𝑦  into three 
training datasets as follows: 

 
         𝑽𝒊 𝑉 , 𝑦 , 𝑉 , 𝑦 , … , 𝑉 , 𝑦 ,         (2) 

 
         𝑨𝒊 𝐴 , 𝑦 , 𝐴 , 𝑦 , … , 𝐴 , 𝑦 ,         (3) 

 
         𝑯𝒊 𝐻 , 𝑦 , 𝐻 , 𝑦 , … , 𝐻 , 𝑦 .       (4) 

 

For finding the optimal lower threshold of the volume of the 
solder paste, we first consider the training dataset 𝑽𝒊 in (2) and 
define the following sets: 

 
                        𝐼𝑁𝑆𝑈 𝑉  𝑦 1 ,                     (5) 

 
𝐶𝑜𝑟𝑒  𝑉 | 𝑉 , 𝐴 , 𝐻 ∈ 𝐶 ,               (6) 

 
             𝑁𝑜𝑖𝑠𝑒  𝑉 | 𝑉 , 𝐴 , 𝐻 ∈ 𝑁 ,             (7) 

 
where 𝐼𝑁𝑆𝑈  is a set of collecting all of the insufficient solder 
data in the volume of the solder paste inspected by the human 
inspection, 𝐶𝑜𝑟𝑒  and 𝑁𝑜𝑖𝑠𝑒  are the sets of collecting all of 

the data in the volume of the solder paste in cluster 𝐶  and 
Noise 𝑁 , respectively. We consider two sets 𝑁  and 

𝐶𝐼𝑁𝑆𝑈  as 𝑁𝐼𝑁𝑆𝑈 𝑁𝑜𝑖𝑠𝑒 ∩ 𝐼𝑁𝑆𝑈  and 𝐶 𝐶𝑜𝑟𝑒 ∩

𝐼𝑁𝑆𝑈 , respectively, where the set 𝑁𝐼𝑁𝑆𝑈  represents the 

insufficient solder data belonging to the noise data and the set 
𝐶  represents insufficient solder data belonging to the core 

data. It is worth noting that the amount of solder paste of the 
data in the set 𝐶  is normal under the SPI inspection, 

which means that the material of the solder paste, improper 
reflow soldering, or other factors which are independent with 
the solder paste printing may cause the insufficient solder 
results. Because the data in set 𝐶  is independent with the 

solder paste printing and they cannot be controlled by the SPI 
threshold, we relabel those data as “re-pass” (i.e.,  𝑦 ≡ 1 , 
where 𝑉 ∈ 𝐶 ) unless those data 𝑉  in 𝐶  satisfies the 

condition that 𝑉 𝑉 , ∀ 𝑉 ∈ 𝐶𝑜𝑟𝑒 \𝐶  . In addition, in 

order to avoid the AOI machine for the missed inspection on the 
solder paste, we relabel the data in 𝑁𝑜𝑖𝑠𝑒  when 𝑁𝑜𝑖𝑠𝑒 ∅ 
and 𝑁𝐼𝑁𝑆𝑈 ∅. According to the mentioned above, we propose 

the main idea of Algorithm 2 (Table II) is to find the SVM 
classifiers based on the training dataset 𝑽𝒊 , 𝑨𝒊  , and 𝑯𝒊 , 
respectively. 

 
TABLE II 

ALGORITHM 2: AOI FEEDBACK BASED THRESHOLD 

     Input: Training dataset 𝑽𝒊 (𝑨𝒊 𝒐𝒓 𝑯𝒊) 

     Output: 𝐿  (𝐿  or 𝐿 ) 

Step 1.Collect the set 𝐼𝑁𝑆𝑈 , 𝐶𝑜𝑟𝑒 , 𝑁𝑜𝑖𝑠𝑒  according to (5), 
(6), and (7), respectively; 

Step 2. 𝑁 ≡ 𝑁𝑜𝑖𝑠𝑒 ∩ 𝐼𝑁𝑆𝑈 & 𝐶 ≡ 𝐶𝑜𝑟𝑒 ∩   𝐼𝑁𝑆𝑈 ; 

Step 3. if 𝑁 ∅ and 𝐶 ∅  then 

        relabel the 𝑦 ≡ 1, where  𝑉 ∈ 𝐶  and 

∃𝑉 ∈ 𝐶𝑜𝑟𝑒 \𝐶  such that 𝑉 𝑉; 

else if 𝑁 ∅  then 

relabel the data in 𝑁  according to the ratio of the distance 

𝑑 𝑁 , 𝐶𝑜𝑟𝑒  to the density of 𝐶𝑜𝑟𝑒 ; 

if 𝐶 ∅ then 

relabel the 𝑦 ≡ 1, where  𝑉 ∈ 𝐶 ; 

Step 4. Find the classifier 𝐿  by using imbalanced-SVM [2]; 

Step 5. return 𝐿  

 
The method for finding the upper thresholds is similar to the 
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method for finding the lower thresholds mentioned above, so 
the description will not be repeated here. 

C. ATA Algorithm  

When the product is starting to be produced, the initial 
thresholds 𝐿 , 𝑈 , 𝐿 , 𝑈 , 𝐿 , 𝑈  are set to 1. The SPI machine 
inspects one or a batch of PCB each time and outputs the 
measured results for volume, area, and height of the solder 
paste for each PCB pad. Because there is no correct answer to 
those results whether there are defects of insufficient solder or 
over solder, we use Algorithm 1 (unsupervised learning) at the 
beginning. After obtaining the values 𝐿 , 𝑈 , 𝐿 , 𝑈 , 𝐿 , 𝑈 , 
we update the thresholds as follows: 

 
𝐿 , 𝑈 min 𝐿 , 𝐿 , max 𝑈 , 𝑈  

𝐿 , 𝑈 min 𝐿 , 𝐿 , max 𝑈 , 𝑈  

   𝐿 , 𝑈 min 𝐿 , 𝐿 , max 𝑈 , 𝑈  
 
If we still do not have a correct answer to those results, we 

will repeat the above steps for measured results each time until 
we get the results of the human inspection. Once we have the 
results of the human inspection correspond to previous SPI 
measured values, we use Algorithm 2 (supervised learning) and 
obtained the values 𝐿 , 𝑈 , 𝐿 , 𝑈 , 𝐿 , and 𝑈 . Then we 
update the thresholds as follows: 

 
   𝐿 , 𝑈 𝑚𝑖𝑛 𝐿 , 𝐿 , 𝑚𝑎𝑥 𝑈 , 𝑈  
   𝐿 , 𝑈 𝑚𝑖𝑛 𝐿 , 𝐿 , 𝑚𝑎𝑥 𝑈 , 𝑈  

   𝐿 , 𝑈 𝑚𝑖𝑛 𝐿 , 𝐿 , 𝑚𝑎𝑥 𝑈 , 𝑈  
 
We repeat the above process until the number of updates is 

greater than a certain value (𝑁 ) or the difference between the 
updated values is less than a certain value (𝜀 ), and the update 

process is stopped. 

IV. EXPERIMENTAL RESULTS 

 

Fig. 2 Illustration of defect of insufficient solder in the connector 
 
In this section, we collect the data from SPI and its 

corresponding results from human inspection on one of the 
component types (called connector). There are a total of 28,872 
connectors, 12 connectors inspected each time, and each 
connector has corresponding 62 PCB pads (i.e., a total of 744 
PCB pads are inspected each time). In the results of human 
inspection, there are totally 7 connectors with the defect and all 
of them are insufficient solder, one of them as shown in Fig. 2 
(a). In addition, three of 7 defects are independent with the 
solder paste printing because their amounts of the solder paste 
are normal, as shown in the red region of Fig. 3. We simulate 
the production process and inspect 2406 times, each time we 
obtain 744 measured values for the connector from the SPI 
machine, and the corresponding results of the human inspection 
will be obtained after 20 minutes. In Fig. 2 (b), it is a scattered 
plot containing the data of Fig. 2 (a) at a certain timestamp. It is 
clear that the data in the red region of Fig. 2 (b) correspond to 
the defect of insufficient solder in the yellow region of Fig. 2 
(a).  

 

 

Fig. 3 Illustration of the scattered plot of all results of the human inspection 
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Fig. 4 Illustration of the defects of insufficient solder in four timestamps 
 

For the initial parameter settings, we set 𝜀 0.04 , 𝑛
2, 𝑁 700, 𝜀 0.01. After executing the ATA algorithm, we 
obtain the thresholds as follows: 𝐿 0.60, 𝑈 1.34, 𝐿
0.48, 𝑈 1.16, 𝐿 0.85, and 𝑈 1.48. In addition, in the 
timestamps of the four real defects of insufficient solder, our 
proposed thresholds can filter out these defects, as shown in 
Fig. 4. But in the original threshold setting will miss filtering 
one of the defects. Thus, our proposed threshold setting 

improves the accuracy from 99.85% 99.85%  to 

100%. 

V. CONCLUDING REMARKS 

In this paper, we propose ATA algorithm with closed-loop 
architecture in the SMT process to determine the best threshold 
setting. Our proposed threshold settings improve the accuracy 
from 99.85% to 100% in our simulated experiment. In addition, 
the ATA algorithm not only provides more accurate threshold 
settings than the threshold settings provided by traditional 
method but also plays an important role in automated 
manufacturing in the future. 
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