Search results for: Data Flow Analysis
13783 Enhanced GA-Fuzzy OPF under both Normal and Contingent Operation States
Authors: Ashish Saini, A.K. Saxena
Abstract:
The genetic algorithm (GA) based solution techniques are found suitable for optimization because of their ability of simultaneous multidimensional search. Many GA-variants have been tried in the past to solve optimal power flow (OPF), one of the nonlinear problems of electric power system. The issues like convergence speed and accuracy of the optimal solution obtained after number of generations using GA techniques and handling system constraints in OPF are subjects of discussion. The results obtained for GA-Fuzzy OPF on various power systems have shown faster convergence and lesser generation costs as compared to other approaches. This paper presents an enhanced GA-Fuzzy OPF (EGAOPF) using penalty factors to handle line flow constraints and load bus voltage limits for both normal network and contingency case with congestion. In addition to crossover and mutation rate adaptation scheme that adapts crossover and mutation probabilities for each generation based on fitness values of previous generations, a block swap operator is also incorporated in proposed EGA-OPF. The line flow limits and load bus voltage magnitude limits are handled by incorporating line overflow and load voltage penalty factors respectively in each chromosome fitness function. The effects of different penalty factors settings are also analyzed under contingent state.Keywords: Contingent operation state, Fuzzy rule base, Genetic Algorithms, Optimal Power Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161513782 Experimental Validation of the Predicted Performance of a Wind Driven Venturi Ventilator
Authors: M. A. Serag-Eldin
Abstract:
The paper presents the results of simple measurements conducted on a model of a wind-driven venturi-type room ventilator. The ventilator design is new and was developed employing mathematical modeling. However, the computational model was not validated experimentally for the particular application considered. The paper presents the performance of the ventilator model under laboratory conditions, for five different wind tunnel speeds. The results are used to both demonstrate the effectiveness of the new design and to validate the computational model employed to develop it.Keywords: Venturi-flow, ventilation, Wind-energy, Wind flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135713781 Research of Data Cleaning Methods Based on Dependency Rules
Authors: Yang Bao, Shi Wei Deng, Wang Qun Lin
Abstract:
This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSql), and gives 6 data cleaning methods based on these algorithms.Keywords: Data cleaning, dependency rules, violation data discovery, data repair.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 261213780 An Improved Preprocessing for Biosonar Target Classification
Authors: Turgay Temel, John Hallam
Abstract:
An improved processing description to be employed in biosonar signal processing in a cochlea model is proposed and examined. It is compared to conventional models using a modified discrimination analysis and both are tested. Their performances are evaluated with echo data captured from natural targets (trees).Results indicate that the phase characteristics of low-pass filters employed in the echo processing have a significant effect on class separability for this data.
Keywords: Cochlea model, discriminant analysis, neurospikecoding, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149313779 The Classification Performance in Parametric and Nonparametric Discriminant Analysis for a Class- Unbalanced Data of Diabetes Risk Groups
Authors: Lily Ingsrisawang, Tasanee Nacharoen
Abstract:
The problems arising from unbalanced data sets generally appear in real world applications. Due to unequal class distribution, many researchers have found that the performance of existing classifiers tends to be biased towards the majority class. The k-nearest neighbors’ nonparametric discriminant analysis is a method that was proposed for classifying unbalanced classes with good performance. In this study, the methods of discriminant analysis are of interest in investigating misclassification error rates for classimbalanced data of three diabetes risk groups. The purpose of this study was to compare the classification performance between parametric discriminant analysis and nonparametric discriminant analysis in a three-class classification of class-imbalanced data of diabetes risk groups. Data from a project maintaining healthy conditions for 599 employees of a government hospital in Bangkok were obtained for the classification problem. The employees were divided into three diabetes risk groups: non-risk (90%), risk (5%), and diabetic (5%). The original data including the variables of diabetes risk group, age, gender, blood glucose, and BMI were analyzed and bootstrapped for 50 and 100 samples, 599 observations per sample, for additional estimation of the misclassification error rate. Each data set was explored for the departure of multivariate normality and the equality of covariance matrices of the three risk groups. Both the original data and the bootstrap samples showed nonnormality and unequal covariance matrices. The parametric linear discriminant function, quadratic discriminant function, and the nonparametric k-nearest neighbors’ discriminant function were performed over 50 and 100 bootstrap samples and applied to the original data. Searching the optimal classification rule, the choices of prior probabilities were set up for both equal proportions (0.33: 0.33: 0.33) and unequal proportions of (0.90:0.05:0.05), (0.80: 0.10: 0.10) and (0.70, 0.15, 0.15). The results from 50 and 100 bootstrap samples indicated that the k-nearest neighbors approach when k=3 or k=4 and the defined prior probabilities of non-risk: risk: diabetic as 0.90: 0.05:0.05 or 0.80:0.10:0.10 gave the smallest error rate of misclassification. The k-nearest neighbors approach would be suggested for classifying a three-class-imbalanced data of diabetes risk groups.Keywords: Bootstrap, diabetes risk groups, error rate, k-nearest neighbors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200913778 Energy and Exergy Analysis of Dual Purpose Solar Collector
Authors: I. Jafari, A. Ershadi, E. Najafpour, N. Hedayat
Abstract:
Energy and exergy study of air-water combined solar collector which is called dual purpose solar collector (DPSC) is investigated. The method of ε - NTU is used. Analysis is performed for triangle channels. Parameters like the air flow rate and water inlet temperature are studied. Results are shown that DPSC has better energy and exergy efficiency than single collector. In addition, the triangle passage with water inlet temperature of 60O C has shown better exergy and energy efficiency.
Keywords: Efficiency, Exergy, Irreversibility, Solar collector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 263213777 Investigation of the Aerodynamic Characters of Ducted Fan System
Authors: Wang Bo , Guo Zheng , Wang Peng , Shan Shangqiu , Hou Zhongxi
Abstract:
This paper investigates the aerodynamic characters of a model ducted fan system, analyses the basic principle of the effect of thrust promotion and torque reduction, discovers the relationship between the revolutions per minute(RPM) of the fan and the characters of thrust, as well as system torque. Firstly a model ducted fan has been designed and manufactured according to the specific structure of flow field, then CFD simulation has been carried out to analyze such aerodynamics, finally bench tests have been used to validate the simulation results and system configuration.
Keywords: ducted fan, free vortex flow, stator blade, screw torque, thrust increase
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 440813776 Numerical and Experimental Investigation of Airflow inside a Car Cabin
Authors: Mokhtar Djeddou, Amine Mehel, Georges Fokoua, Anne Tanière, Patrick Chevrier
Abstract:
Commuters’ exposure to air pollution, particularly to particle matter inside vehicles, is a significant health issue. Assessing particle concentrations and characterizing their distribution is an important first step in understanding and proposing solutions to improve car cabin air quality. It is known that particle dynamics is intimately driven by particle-turbulence interactions. In order to analyze and model pollutants distribution inside car cabins, it is crucial to examine first the single-phase flow topology and its associated turbulence characteristics. Within this context, Computational Fluid Dynamics (CFD) simulations were conducted to model airflow inside a full-scale car cabin using Reynolds Averaged Navier-Stokes (RANS) approach combined with the first order Realizable k-ε model to close the RANS equations. To assess the numerical model, a campaign of velocity field measurements at different locations in the front and back of the car cabin has been carried out using hot-wire anemometry technique. Comparison between numerical and experimental results shows a good agreement of velocity profiles. Additionally, visualization of streamlines shows the formation of jet flow developing out of the dashboard air vents and the formation of large vortex structures, particularly between the front and back-seat compartments. These vortical structures could play a key role in the accumulation and clustering of particles in a turbulent flow.
Keywords: Car cabin, CFD, hot-wire anemometry, vortical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47013775 A Study on the Effect of Variation of the Cross-sectional Area of Spiral Volute Casing for Centrifugal Pump
Authors: Hyun Bae Jin, Myung Jin Kim, Wui Jun Chung
Abstract:
The impeller and the casing are the key components of a centrifugal pump. Although there have been many studies on the impeller and the volute casing of centrifugal pump, further study of the volute casing to improve the performance of centrifugal pumps is needed. In this paper, the effect of cross-sectional area on the performance of volute casing was investigated using a commercial CFD code. The performance characteristics, not only at the off-design point but also for a full type model are required these days. So we conducted numerical analysis for all operating points by using complete geometry through transient analysis. Transient analysis on the complete geometry of a real product has the advantage of simulating realistic flow. The results of this study show the variation of a performance curve by modifying the above-mentioned design parameter.Keywords: Centrifugal Pump, Volute Casing, Cross-Section area, CFD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 374013774 Computational Fluid Dynamics Simulation Approach for Developing a Powder Dispensing Device
Authors: Rallapalli Revanth, Shivakumar Bhavi, Vijay Kumar Turaga
Abstract:
Dispensing powders manually can be difficult as it requires to gradually pour and check the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and is user dependent and it is also difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various powder dispensing mechanisms are being designed to overcome these challenges. Battery operated screw conveyor mechanism is being innovated to overcome above problems faced. These inventions are numerically evaluated at concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in the development of such devices, saving time and money by reducing the number of prototypes and testing. In this study, powder dispensation from the trocar's end is simulated by using the Dense Discrete Phase Model technique along with Kinetic Theory of Granular Flow. The powder is viewed as a secondary flow in air (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation side is done by rotation of the screw conveyor. The performance is calculated for 1 sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and the effective area within a quick turnaround time frame.
Keywords: Multiphase flow, screw conveyor, transient, DDPM - KTGF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37313773 Representing Data without Lost Compression Properties in Time Series: A Review
Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.
Keywords: Compression properties, uncertainty, uncertain time series, mining technique, weather prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162013772 Are XBRL-based Financial Reports Better than Non-XBRL Reports? A Quality Assessment
Authors: Zhenkun Wang, Simon S. Gao
Abstract:
Using a scoring system, this paper provides a comparative assessment of the quality of data between XBRL formatted financial reports and non-XBRL financial reports. It shows a major improvement in the quality of data of XBRL formatted financial reports. Although XBRL formatted financial reports do not show much advantage in the quality at the beginning, XBRL financial reports lately display a large improvement in the quality of data in almost all aspects. With the improved XBRL web data managing, presentation and analysis applications, XBRL formatted financial reports have a much better accessibility, are more accurate and better in timeliness.Keywords: Data Quality; Financial Report; Information; XBRL
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 256813771 Numerical Simulations of Electronic Cooling with In-Line and Staggered Pin Fin Heat Sinks
Authors: Yue-Tzu Yang, Hsiang-Wen Tang, Jian-Zhang Yin, Chao-Han Wu
Abstract:
Three-dimensional incompressible turbulent fluid flow and heat transfer of pin fin heat sinks using air as a cooling fluid are numerically studied in this study. Two different kinds of pin fins are compared in the thermal performance, including circular and square cross sections, both are in-line and staggered arrangements. The turbulent governing equations are solved using a control-volume- based finite-difference method. Subsequently, numerical computations are performed with the realizable k - ԑ turbulence for the parameters studied, the fin height H, fin diameter D, and Reynolds number (Re) in the range of 7 ≤ H ≤ 10, 0.75 ≤ D ≤ 2, 2000 ≤ Re ≤ 126000 respectively. The numerical results are validated with available experimental data in the literature and good agreement has been found. It indicates that circular pin fins are streamlined in comparing with the square pin fins, the pressure drop is small than that of square pin fins, and heat transfer is not as good as the square pin fins. The thermal performance of the staggered pin fins is better than that of in-line pin fins because the staggered arrangements produce large disturbance. Both in-line and staggered arrangements show the same behavior for thermal resistance, pressure drop, and the entropy generation.
Keywords: Pin-fin, heat sinks, simulations, turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127013770 Performance Evaluation of a ‘Priority-Controlled’ Intersection Converted to Signal-Controlled Intersection
Authors: Ezenwa Chinenye Amanamba
Abstract:
There is a call to ensure that the issues of safety and efficient throughput are considered during design; the solutions to these issues can also be retrofitted at locations where they were not captured during design, but have become problems to road users over time. This paper adopts several methods to analyze the performance of an intersection which was formerly a ‘priority-controlled’ intersection, but has now been converted to a ‘signal-controlled’ intersection. Extensive review of literature helped form the basis for result analysis and discussion. The Ikot-Ekpene/Anagha-Ezikpe intersection, located at the heart of Umuahia was adopted as case study; considering the high traffic volume on the route. Anecdotal evidence revealed that traffic signals imposed enormous delays at the intersection, especially for traffic on the major road. The major road has arrival flow which surpasses the saturation flow obtained from modelling of the isolated signalized intersection. Similarly, there were several geometric elements that did not agree with the specific function of the road. A roundabout, particularly flower roundabout was recommended as a better traffic control measure.Keywords: Highway function, level of service, roundabout, traffic delays, Umuahia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 110913769 Numerical Study of Base Drag Reduction Using Locked Vortex Flow Management Technique for Lower Subsonic Regime
Authors: Kailas S. Jagtap, Karthik Sundarraj, Nirmal Kumar, S. Rajnarasimha, Prakash S. Kulkarni
Abstract:
The issue of turbulence base streams and the drag related to it have been of important attention for rockets, missiles, and aircraft. Different techniques are used for base drag reduction. This paper presents the numerical study of numerous drag reduction technique. The base drag or afterbody drag of bluff bodies can be reduced easily using locked vortex drag reduction technique. For bluff bodies having a cylindrical shape, the base drag is much larger compared to streamlined bodies. For such bodies using splitter plates, the vortex can be trapped between the base and the plate, which results in smooth flow. Splitter plate with round and curved corner shapes has influence in drag reduction. In this paper, the comparison is done between single splitter plate as different positions and with the bluff body. Base drag for the speed of 30m/s can be reduced about 20% to 30% by using single splitter plate as compared to the bluff body.
Keywords: Base drag, bluff body, splitter plate, vortex flow, ANSYS, Fluent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92213768 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.
Keywords: Conditional Generative Adversarial Net, market and credit risk management, neural network, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120013767 Mixed Convection Heat Transfer of Copper Oxide-Heat Transfer Oil Nanofluid in Vertical Tube
Authors: Farhad Hekmatipour, M. A. Akhavan-Behabadi, Farzad Hekmatipour
Abstract:
In this paper, experiments were conducted to investigate the heat transfer of Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid laminar flow in vertical smooth and microfin tubes as the surface temperature is constant. The effect of adding the nanoparticle to base fluid and Richardson number on the heat transfer enhancement is investigated as Richardson number increases from 0.1 to 0.7. The experimental results demonstrate that the combined forced-natural convection heat transfer rate may be improved significantly with an increment of mass nanoparticle concentration from 0% to 1.5%. In this experiment, a correlation is also proposed to predict the mixed convection heat transfer rate of CuO-HTO nanofluid flow. The maximum deviation of both correlations is less than 14%. Moreover, a correlation is presented to estimate the Nusselt number inside vertical smooth and microfin tubes as Rayleigh number is between 2´105 and 6.8´106 with the maximum deviation of 12%.
Keywords: Nanofluid, heat transfer oil, mixed convection, vertical tube, laminar flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96113766 Identification of an Appropriate Alternative Waste Technology for Energy Recovery from Waste through Multi-Criteria Analysis
Authors: Sharmina Begum, M. G. Rasul, Delwar Akbar
Abstract:
Waste management is now a global concern due to its high environmental impact on climate change. Because of generating huge amount of waste through our daily activities, managing waste in an efficient way has become more important than ever. Alternative Waste Technology (AWT), a new category of waste treatment technology has been developed for energy recovery in recent years to address this issue. AWT describes a technology that redirects waste away from landfill, recovers more useable resources from the waste flow and reduces the impact on the surroundings. Australia is one of the largest producers of waste per-capita. A number of AWTs are using in Australia to produce energy from waste. Presently, it is vital to identify an appropriate AWT to establish a sustainable waste management system in Australia. Identification of an appropriate AWT through Multi-criteria analysis (MCA) of four AWTs by using five key decision making criteria is presented and discussed in this paper.Keywords: Alternative waste technology (AWT), Energy fromwaste, Gasification, Multi-criteria Analysis (MCA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161113765 Measuring Heterogeneous Traffic Density
Authors: V. Thamizh Arasan, G. Dhivya
Abstract:
Traffic Density provides an indication of the level of service being provided to the road users. Hence, there is a need to study the traffic flow characteristics with specific reference to density in detail. When the length and speed of the vehicles in a traffic stream vary significantly, the concept of occupancy, rather than density, is more appropriate to describe traffic concentration. When the concept of occupancy is applied to heterogeneous traffic condition, it is necessary to consider the area of the road space and the area of the vehicles as the bases. Hence, a new concept named, 'area-occupancy' is proposed here. It has been found that the estimated area-occupancy gives consistent values irrespective of change in traffic composition.Keywords: Density Measurement, Heterogeneity, Occupancy, Traffic Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 324113764 Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
The widespread popularity of mobile devices and the development of artificial intelligence (AI) have led to the widespread adoption of deep learning (DL) in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace, a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Additionally, we propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. Using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We conduct an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace outperformed FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.
Keywords: Mobile computing, deep learning apps, sensitive information, static analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60013763 Application of Digital Image Correlation Technique on Vacuum Assisted Resin Transfer Molding Process and Performance Evaluation of the Produced Materials
Authors: Dingding Chen, Kazuo Arakawa, Masakazu Uchino, Changheng Xu
Abstract:
Vacuum assisted resin transfer moulding (VARTM) is a promising manufacture process for making large and complex fiber reinforced composite structures. However, the complexity of the flow of the resin in the infusion stage usually leads to nonuniform property distribution of the produced composite part. In order to control the flow of the resin, the situation of flow should be mastered. For the safety of the usage of the produced composite in practice, the understanding of the property distribution is essential. In this paper, we did some trials on monitoring the resin infusion stage and evaluation for the fiber volume fraction distribution of the VARTM produced composite using the digital image correlation methods. The results showthat3D-DIC is valid on monitoring the resin infusion stage and it is possible to use 2D-DIC to estimate the distribution of the fiber volume fraction on a FRP plate.
Keywords: Digital image correlation, VARTM, FRP, fiber volume fraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243813762 AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining
Authors: Suelane Garcia Fontes, Silvio Luiz Stanzani, Pedro L. Pizzigatti Corrła Ronaldo G. Morato
Abstract:
Environmental changes and major natural disasters are most prevalent in the world due to the damage that humanity has caused to nature and these damages directly affect the lives of animals. Thus, the study of animal behavior and their interactions with the environment can provide knowledge that guides researchers and public agencies in preservation and conservation actions. Exploratory analysis of animal movement can determine the patterns of animal behavior and with technological advances the ability of animals to be tracked and, consequently, behavioral studies have been expanded. There is a lot of research on animal movement and behavior, but we note that a proposal that combines resources and allows for exploratory analysis of animal movement and provide statistical measures on individual animal behavior and its interaction with the environment is missing. The contribution of this paper is to present the framework AniMoveMineR, a unified solution that aggregates trajectory analysis and data mining techniques to explore animal movement data and provide a first step in responding questions about the animal individual behavior and their interactions with other animals over time and space. We evaluated the framework through the use of monitored jaguar data in the city of Miranda Pantanal, Brazil, in order to verify if the use of AniMoveMineR allows to identify the interaction level between these jaguars. The results were positive and provided indications about the individual behavior of jaguars and about which jaguars have the highest or lowest correlation.Keywords: Data mining, data science, trajectory, animal behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91913761 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements
Authors: Alexander Buhr, Klaus Ehrenfried
Abstract:
Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.Keywords: Boundary layer, high-speed PIV, ICE3, moving train model, roughness elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152813760 Airfoils Aerodynamic Efficiency Study in Heavy Rain via Two Phase Flow Approach
Authors: M. Ismail, Cao Yihua, Zhao Ming
Abstract:
Heavy rainfall greatly affects the aerodynamic performance of the aircraft. There are many accidents of aircraft caused by aerodynamic efficiency degradation by heavy rain. In this Paper we have studied the heavy rain effects on the aerodynamic efficiency of NACA 64-210 & NACA 0012 airfoils. For our analysis, CFD method and preprocessing grid generator are used as our main analytical tools, and the simulation of rain is accomplished via two phase flow approach-s Discrete Phase Model (DPM). Raindrops are assumed to be non-interacting, non-deforming, non-evaporating and non-spinning spheres. Both airfoil sections exhibited significant reduction in lift and increase in drag for a given lift condition in simulated rain. The most significant difference between these two airfoils was the sensitivity of the NACA 64-210 to liquid water content (LWC), while NACA 0012 performance losses in the rain environment is not a function of LWC . It is expected that the quantitative information gained in this paper will be useful to the operational airline industry and greater effort such as small scale and full scale flight tests should put in this direction to further improve aviation safety.
Keywords: airfoil, discrete phase modeling, heavy rain, Reynolds number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 364313759 Conceptional Design of a Hyperloop Capsule with Linear Induction Propulsion System
Authors: Ahmed E. Hodaib, Samar F. Abdel Fattah
Abstract:
High-speed transportation is a growing concern. To develop high-speed rails and to increase high-speed efficiencies, the idea of Hyperloop was introduced. The challenge is to overcome the difficulties of managing friction and air-resistance which become substantial when vehicles approach high speeds. In this paper, we are presenting the methodologies of the capsule design which got a design concept innovation award at SpaceX competition in January, 2016. MATLAB scripts are written for the levitation and propulsion calculations and iterations. Computational Fluid Dynamics (CFD) is used to simulate the air flow around the capsule considering the effect of the axial-flow air compressor and the levitation cushion on the air flow. The design procedures of a single-sided linear induction motor are analyzed in detail and its geometric and magnetic parameters are determined. A structural design is introduced and Finite Element Method (FEM) is used to analyze the stresses in different parts. The configuration and the arrangement of the components are illustrated. Moreover, comments on manufacturing are made.Keywords: High-speed transportation, Hyperloop, railways transportation, single-sided linear induction motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 366813758 Simulation of Lid Cavity Flow in Rectangular, Half-Circular and Beer Bucket Shapes using Quasi-Molecular Modeling
Authors: S. Kulsri, M. Jaroensutasinee, K. Jaroensutasinee
Abstract:
We developed a new method based on quasimolecular modeling to simulate the cavity flow in three cavity shapes: rectangular, half-circular and bucket beer in cgs units. Each quasi-molecule was a group of particles that interacted in a fashion entirely analogous to classical Newtonian molecular interactions. When a cavity flow was simulated, the instantaneous velocity vector fields were obtained by using an inverse distance weighted interpolation method. In all three cavity shapes, fluid motion was rotated counter-clockwise. The velocity vector fields of the three cavity shapes showed a primary vortex located near the upstream corners at time t ~ 0.500 s, t ~ 0.450 s and t ~ 0.350 s, respectively. The configurational kinetic energy of the cavities increased as time increased until the kinetic energy reached a maximum at time t ~ 0.02 s and, then, the kinetic energy decreased as time increased. The rectangular cavity system showed the lowest kinetic energy, while the half-circular cavity system showed the highest kinetic energy. The kinetic energy of rectangular, beer bucket and half-circular cavities fluctuated about stable average values 35.62 x 103, 38.04 x 103 and 40.80 x 103 ergs/particle, respectively. This indicated that the half-circular shapes were the most suitable shape for a shrimp pond because the water in shrimp pond flows best when we compared with rectangular and beer bucket shape.Keywords: Quasi-molecular modelling, particle modelling, lid driven cavity flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173113757 Effect of Valve Pressure Drop in Exergy Analysis of C2+ Recovery Plants Refrigeration Cycles
Authors: B. Tirandazi, M. Mehrpooya, A. Vatani
Abstract:
This paper provides an exergy analysis of the multistage refrigeration cycle used for C2+ recovery plant. The behavior of an industrial refrigeration cycle with refrigerant propane has been investigated by the exergy method. A computational model based on the exergy analysis is presented for the investigation of the effects of the valves on the exergy losses, the second law of efficiency, and the coefficient of performance (COP) of a vapor compression refrigeration cycle. The equations of exergy destruction and exergetic efficiency for the main cycle components such as evaporators, condensers, compressors, and expansion valves are developed. The relations for the total exergy destruction in the cycle and the cycle exergetic efficiency are obtained. An ethane recovery unit with its refrigeration cycle has been simulated to prepare the exergy analysis. Using a typical actual work input value; the exergetic efficiency of the refrigeration cycle is determined to be 39.90% indicating a great potential for improvements. The simulation results reveal that the exergetic efficiencies of the heat exchanger and expansion sections get the lowest rank among the other compartments of refrigeration cycle. Refrigeration calculations have been carried out through the analysis of T–S and P–H diagrams where coefficient of performance (COP) was obtained as 1.85. The novelty of this article includes the effect and sensitivity analysis of molar flow, pressure drops and temperature on the exergy efficiency and coefficient of performance of the cycle.
Keywords: exergy; Valve; CRP; refrigeration cycle; propane refrigerant; C2+ Recovery; Ethane Recovery;.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120813756 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation
Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski
Abstract:
A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.
Keywords: Air bubbles, CFD simulation, jet pump, practical applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201813755 Numerical Study of Hypersonic Glide Vehicle based on Blunted Waverider
Authors: Liu Jian-xia, Hou Zhong-xi, Chen Xiao-qing
Abstract:
The waverider is proved to be a remarkably useful configuration for hypersonic glide vehicle (HGV) in terms of the high lift-to-drag ratio. Due to the severe aerodynamic heating and the processing technical restriction, the sharp leading edge of waverider should be blunted, and then the flow characteristics and the aerodynamic performance along the trajectory will change. In this paper, the flow characteristics of a HGV, including the rarefied gas effect and transition phenomenon, were studied based on a reference trajectory. A numerical simulation was carried out to study the performance of the HGV under a typical condition.Keywords: Aerodynamic, CFD, Thermodynamic, Waverider
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290413754 Detached-Eddy Simulation of Vortex Generator Jet Using Chimera Grids
Authors: Saqib Mahmood, Rolf Radespiel
Abstract:
This paper aims at numerically analysing the effect of an active flow control (AFC) by a vortex generator jet (VGJ) submerged in a boundary layer via Chimera Grids and Detached- Eddy Simulation (DES). The performance of DES results are judged against Reynolds-Averaged Navier-Stokes (RANS) and compared with the experiments that showed an unsteady vortex motion downstream of VGJ. Experimental results showed that the mechanism of embedding logitudinal vortex structure in the main stream flow is quite effective in increasing the near wall momentum of separated aircraft wing. In order to simulate such a flow configuration together with the VGJ, an efficient numerical approach is required. This requirement is fulfilled by performing the DES simulation over the flat plate using the DLR TAU Code. The DES predictions identify the vortex region via smooth hybrid length scale and predict the unsteady vortex motion observed in the experiments. The DES results also showed that the sufficient grid refinement in the vortex region resolves the turbulent scales downstream of the VGJ, the spatial vortex core postion and nondimensional momentum coefficient RVx .Keywords: VGJ, Chimera Grid, DES, RANS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481