Search results for: waste characterization
274 An Innovative Green Cooling Approach Using Peltier Chip in Milling Operation for Surface Roughness Improvement
Authors: Md. Anayet U. Patwari, Mohammad Ahsan Habib, Md. Tanzib Ehsan, Md Golam Ahnaf, Md. S. I. Chowdhury
Abstract:
Surface roughness is one of the key quality parameters of the finished product. During any machining operation, high temperatures are generated at the tool-chip interface impairing surface quality and dimensional accuracy of products. Cutting fluids are generally applied during machining to reduce temperature at the tool-chip interface. However, usages of cutting fluids give rise to problems such as waste disposal, pollution, high cost, and human health hazard. Researchers, now-a-days, are opting towards dry machining and other cooling techniques to minimize use of coolants during machining while keeping surface roughness of products within desirable limits. In this paper, a concept of using peltier cooling effects during aluminium milling operation has been presented and adopted with an aim to improve surface roughness of the machined surface. Experimental evidence shows that peltier cooling effect provides better surface roughness of the machined surface compared to dry machining.
Keywords: Aluminium, surface roughness, Peltier cooling effect, milling operation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952273 Characterization Study of Aluminium 6061 Hybrid Composite
Authors: U. Achutha Kini, S. S. Sharma, K. Jagannath, P. R. Prabhu, Gowri Shankar M. C.
Abstract:
Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.Keywords: Hybrid composite, hardness test, wear test, heat treatment, pin on disc wear testing machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2934272 Study on the Pavement Structural Performance of Highways in the North China Region Based on Pavement Distress and Ground Penetrating Radar
Authors: Mingwei Yi, Liujie Guo, Zongjun Pan, Xiang Lin, Xiaoming Yi
Abstract:
With the rapid expansion of road construction mileage in China, the scale of road maintenance needs has concurrently escalated. As the service life of roads extends, the design of pavement repair and maintenance emerges as a crucial component in preserving the excellent performance of the pavement. The remaining service life of asphalt pavement structure is a vital parameter in the lifecycle maintenance design of asphalt pavements. Based on an analysis of pavement structural integrity, this study presents a characterization and assessment of the remaining life of existing asphalt pavement structures. It proposes indicators such as the transverse crack spacing and the length of longitudinal cracks. The transverse crack spacing decreases with an increase in maintenance intervals and with the extended use of semi-rigid base layer structures, although this trend becomes less pronounced after maintenance intervals exceed 4 years. The length of longitudinal cracks increases with longer maintenance intervals, but this trend weakens after five years. This system can support the enhancement of standardization and scientific design in highway maintenance decision-making processes.
Keywords: Structural integrity, highways, pavement evaluation, asphalt concrete pavement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19271 Influence of Radio Frequency Identification Technology in Logistic, Inventory Control and Supply Chain Optimization
Authors: H. Amoozad-khalili, R. Tavakkoli-Moghaddam, N.Shahab-Dehkordi
Abstract:
The main aim of Supply Chain Management (SCM) is to produce, distribute, logistics and deliver goods and equipment in right location, right time, right amount to satisfy costumers, with minimum time and cost waste. So implementing techniques that reduce project time and cost, and improve productivity and performance is very important. Emerging technologies such as the Radio Frequency Identification (RFID) are now making it possible to automate supply chains in a real time manner and making them more efficient than the simple supply chain of the past for tracing and monitoring goods and products and capturing data on movements of goods and other events. This paper considers concepts, components and RFID technology characteristics by concentration of warehouse and inventories management. Additionally, utilization of RFID in the role of improving information management in supply chain is discussed. Finally, the facts of installation and this technology-s results in direction with warehouse and inventory management and business development will be presented.Keywords: Logistics, Supply Chain Management, RFIDTechnology, Inventory Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835270 Characterization of Metallurgical and Mechanical Properties of the Welded AISI 304L Using Pulsed and Non-Pulsed Current TIG Welding
Authors: A. A. Ugla
Abstract:
The present paper aims to investigate the effects of the welding process parameters and cooling state on the weld bead geometry, mechanical properties and microstructure characteristics for weldments of AISI 304L stainless steel. The welding process was carried out using TIG welding with pulsed/non-pulsed current techniques. The cooling state was introduced as an input parameter to investigate the main effects on the structure morphology and thereby the mechanical property. This paper clarifies microstructure- mechanical property relationship of the welded specimens. In this work, the selected pulse frequency levels were 5-500 Hz in order to study the effect of low and high frequencies on the weldment characteristics using filler metal of ER 308LSi. The key findings of this work clarified that the pulse frequency has a significant effect on the breaking of the dendrite arms during the welding process and so strongly influences on the tensile strength and microhardness. The cooling state also significantly affects on the microstructure texture and thereby, the mechanical properties. The most important factor affects the bead geometry and aspect ratio is the travel speed and pulse frequency.
Keywords: Microstructure, mechanical properties, pulse frequency, high pulse frequency, austenitic stainless steel, TIG welding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573269 Development and Characterization of Wheat Bread with Lupin Flour
Authors: Paula M. R. Correia, Marta Gonzaga, Luis M. Batista, Luísa Beirão-Costa, Raquel F. P. Guiné
Abstract:
The purpose of the present work was to develop an innovative food product with good textural and sensorial characteristics. The product, a new type of bread, was prepared with wheat (90%) and lupin (10%) flours, without the addition of any conservatives. Several experiences were also done to find the most appropriate proportion of lupin flour. The optimized product was characterized considering the rheological, physical-chemical and sensorial properties. The water absorption of wheat flour with 10% of lupin was higher than that of the normal wheat flours, and Wheat Ceres flour presented the lower value, with lower dough development time and high stability time. The breads presented low moisture but a considerable water activity. The density of bread decreased with the introduction of lupin flour. The breads were quite white, and during storage the colour parameters decreased. The lupin flour clearly increased the number of alveolus, but the total area increased significantly just for the Wheat Cerealis bread. The addition of lupin flour increased the hardness and chewiness of breads, but the elasticity did not vary significantly. Lupin bread was sensorially similar to wheat bread produced with WCerealis flour, and the main differences are the crust rugosity, colour and alveolus characteristics.
Keywords: Lupin flour, physical-chemical properties, sensorial analysis, wheat flour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545268 Fabrication of Microfluidic Device for Quantitative Monitoring of Algal Cell Behavior Using X-ray LIGA Technology
Authors: J. Ruenin, S. Sukprasong, R. Phatthanakun, N. Chomnawang, P. Kuntanawat
Abstract:
In this paper, a simple microfluidic device for monitoring algal cell behavior is proposed. An array of algal microwells is fabricated by PDMS soft-lithography using X-ray LIGA mold, placed on a glass substrate. Two layers of replicated PDMS and substrate are attached by oxygen plasma bonding, creating a microchannel for the microfluidic system. Algal cell are loaded into the microfluidic device, which provides positive charge on the bottom surface of wells. Algal cells, which are negative charged, can be attracted to the bottom of the wells via electrostatic interaction. By varying the concentration of algal cells in the loading suspension, it is possible to obtain wells with a single cell. Liquid medium for cells monitoring are flown continuously over the wells, providing nutrient and waste exchange between the well and the main flow. This device could lead to the uncovering of the quantitative biology of the algae, which is a key to effective and extensive algal utilizations in the field of biotechnology, food industry and bioenergy research and developments.
Keywords: Algal cells, microfluidic device, X-ray LIGA, X-ray lithography, metallic mold, synchrotron light, PDMS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428267 Evaluations of 3D Concrete Printing Produced in the Environment of United Arab Emirates
Authors: Adil K. Tamimi, Tarig Ali, Rawan Anoohi, Ahmed Rajput, Kaltham Alkamali
Abstract:
3D concrete printing is one of the most innovative and modern techniques in the field of construction that achieved several milestones in that field for the following advantages: saving project’s time, ability to execute complicated shapes, reduce waste and low cost. However, the concept of 3D printing in UAE is relatively new where construction teams, including clients, consultants, and contractors, do not have the required knowledge and experience in the field. This is the most significant obstacle for the construction parties, which make them refrained from using 3D concrete printing compared to conventional concreting methods. This study shows the historical development of the 3D concrete printing, its advantages, and the challenges facing this innovation. Concrete mixes and materials have been proposed and evaluated to select the best combination for successful 3D concrete printing. The main characteristics of the 3D concrete printing in the fresh and hardened states are considered, such as slump test, flow table, compressive strength, tensile, and flexural strengths. There is need to assess the structural stability of the 3D concrete by testing the bond between interlayers of the concrete.
Keywords: 3D printing, concrete mixes, workability, compressive strength, slump test, tensile strength, flexural strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 673266 Analysis and Study of Parboiling Method, and the Following Impact on Waste Reduction and Yield Increase of Iranian Rice in Paddy Conversion Phase
Authors: F. E. Cherati, R. Babatabar, F. Nikzad
Abstract:
An important goal of parboiling is a decrease of rice broken percentage and at the beginning Selected paddy of variety of rice Tarom and soaked at three different temperatures 45 Cº, 65 Cº and 80 Cº orderly for 5 hours, 4 hours and 1.5 hours to moisture of 40 % and then in steaming stage to operate these action two steaming methods are selected steaming under pressure condition and steaming in atmosphere pressure and In the first method after exerting air, the steam pressure is increase to 1 Kg/Cm2 which is done in two different duration times of 2.5 and 5 minutes and in second method used of three times of 5,10 and 15 minutes and dry to 8% moisture and decreases of rice broken percentage at best condition in variety of Tarom of 37.2 % to 7.3 % and increases yield percentage at best condition in variety of Tarom of 69.4 % to 75.93 % and bran percentage decreased in variety of Tarom of 9.53 % to 2.2-3.2 % and this issue cause increases yield percentage in rice and use of This method is very significant for our country because broken percentage of rice in our country is 23-33 %.
Keywords: parboiling, Soaking temperature, broken rice, yield percent of rice, bran
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276265 Oat Grain Functional Ingredient Characterization
Authors: Vita Sterna, Sanita Zute, Inga Jansone, Linda Brunava, Inara Kantane
Abstract:
Grains, including oats (Avena sativa L.), have been recognized functional foods, because provide beneficial effect on the health of the consumer and decrease the risk of various diseases. Oats are good source of soluble fibre, essential amino acids, unsaturated fatty acids, vitamins and minerals. Oat breeders have developed oat varieties and improved yielding ability potential of oat varieties. Therefore, the aim of investigation was to analyze the composition of perspective oat varieties and breeding lines grains grown in different conditions and evaluate functional properties. In the studied samples content of protein, starch, β-glucans, total dietetic fibre, composition of amino acids and vitamin E were determined. The results of analysis showed that protein content depending of varieties ranged 9.70% to 17.30% total dietary fibre 13.66 g100g-1 to 30.17 g100g-1, content of β-glucans 2.7 g100g-1 to 3.5 g100g-1, amount of vitamin E (α-tocopherol) determined from 4 mgkg-1 to 9.9 mgkg-1. The sums of essential amino acids in oat grain samples were determined from 31.63 gkg-1 to 54.90 gkg-1. It is concluded that amino acids composition of husked and naked oats grown in organic or conventional conditions is close to optimal for human health.Keywords: Amino acids, β-glucans, dietetic fibre, nutrition value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077264 Sustainable and Ecological Designs of the Built Environment
Authors: Charles Mbohwa, Alexander Mudiwakure
Abstract:
This paper reviews designs of the built environment from a sustainability perspective, emphasizing their importance in achieving ecological and sustainable economic objectives. The built environment has traditionally resulted in loss of biodiversity, extinction of some species, climate change, excessive water use, land degradation, space depletion, waste accumulation, energy consumption and environmental pollution. Materials used like plastics, metals, bricks, concrete, cement, natural aggregates, glass and plaster have wreaked havoc on the earth´s resources, since they have high levels of embodied energy hence not sustainable. Additional resources are consumed during use and disposal phases. Proposed designs for sustainability solutions include: ecological sanitation and eco-efficiency systems that ensure social, economic, environmental and technical sustainability. Renewable materials and energy systems, passive cooling and heating systems and material and energy reduction, reuse and recycling can improve the sector. These ideas are intended to inform the field of ecological design of the built environment.Keywords: Ecological and sustainability designs, environmental degradation, ecological sanitation, energy use efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401263 Resistance to Chloride Penetration of High Strength Self-Compacting Concretes: Pumice and Zeolite Effect
Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi
Abstract:
This paper aims to contribute to the characterization and the understanding of fresh state, compressive strength and chloride penetration tendency of high strength self-compacting concretes (HSSCCs) where Portland cement type II is partially substituted by 10% and 15% of natural pumice and zeolite. First, five concrete mixtures with a control mixture without any pozzolan are prepared and tested in both fresh and hardened states. Then, resistance to chloride penetration for all formulation is investigated in non-steady state and steady state by measurement of chloride penetration and diffusion coefficient. In non-steady state, the correlation between initial current and chloride penetration with diffusion coefficient is studied. Moreover, the relationship between diffusion coefficient in non-steady state and electrical resistivity is determined. The concentration of free chloride ions is also measured in steady state. Finally, chloride penetration for all formulation is studied in immersion and tidal condition. The result shows that, the resistance to chloride penetration for HSSCC in immersion and tidal condition increases by incorporating pumice and zeolite. However, concrete with zeolite displays a better resistance. This paper shows that the HSSCC with 15% pumice and 10% zeolite is suitable in fresh, hardened, and durability characteristics.Keywords: Chloride penetration, immersion, pumice, HSSCC, tidal, zeolite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801262 Characterization of Two Hybrid Welding Techniques on SA 516 Grade 70 Weldments
Authors: M. T. Z. Butt, T. Ahmad, N. A. Siddiqui
Abstract:
Commercially SA 516 Grade 70 is frequently used for the manufacturing of pressure vessels, boilers and storage tanks etc. in fabrication industry. Heat input is the major parameter during welding that may bring significant changes in the microstructure as well as the mechanical properties. Different welding technique has different heat input rate per unit surface area. Materials with large thickness are dealt with different combination of welding techniques to achieve required mechanical properties. In the present research two schemes: Scheme 1: SMAW (Shielded Metal Arc Welding) & GTAW (Gas Tungsten Arc Welding) and Scheme 2: SMAW & SAW (Submerged Arc Welding) of hybrid welding techniques have been studied. The purpose of these schemes was to study hybrid welding effect on the microstructure and mechanical properties of the weldment, heat affected zone and base metal area. It is significant to note that the thickness of base plate was 12 mm, also welding conditions and parameters were set according to ASME Section IX. It was observed that two different hybrid welding techniques performed on two different plates demonstrated that the mechanical properties of both schemes are more or less similar. It means that the heat input, welding techniques and varying welding operating conditions & temperatures did not make any detrimental effect on the mechanical properties. Hence, the hybrid welding techniques mentioned in the present study are favorable to implicate for the industry using the plate thickness around 12 mm thick.
Keywords: Grade 70, GTAW, hybrid welding, SAW, SMAW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316261 Rapid Method for Low Level 90Sr Determination in Seawater by Liquid Extraction Technique
Authors: S. Visetpotjanakit, N. Nakkaew
Abstract:
Determination of low level 90Sr in seawater has been widely developed for the purpose of environmental monitoring and radiological research because 90Sr is one of the most hazardous radionuclides released from atmospheric during the testing of nuclear weapons, waste discharge from the generation nuclear energy and nuclear accident occurring at power plants. A liquid extraction technique using bis-2-etylhexyl-phosphoric acid to separate and purify yttrium followed by Cherenkov counting using a liquid scintillation counter to determine 90Y in secular equilibrium to 90Sr was developed to monitor 90Sr in the Asia Pacific Ocean. The analytical performance was validated for the accuracy, precision, and trueness criteria. Sr-90 determination in seawater using various low concentrations in a range of 0.01 – 1 Bq/L of 30 liters spiked seawater samples and 0.5 liters of IAEA-RML-2015-01 proficiency test sample was performed for statistical evaluation. The results had a relative bias in the range from 3.41% to 12.28%, which is below accepted relative bias of ± 25% and passed the criteria confirming that our analytical approach for determination of low levels of 90Sr in seawater was acceptable. Moreover, the approach is economical, non-laborious and fast.
Keywords: Proficiency test, radiation monitoring, seawater, strontium determination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866260 The Contribution of Sulfate and Oxidized Organics in Climatically Important Ultrafine Particles at a Coral Reef Environment
Authors: P. Vaattovaara, H. B. Swan, G. B. Jones, E. Deschaseaux, B. Miljevic, A. Laaksonen, Z. D. Ristovski
Abstract:
In order to investigate the properties of coral reef origin secondary aerosol and especially the contribution of secondary organic aerosol, ethanol affinity to atmospheric nucleation mode particles (diameter<15nm) was measured at the Heron reef marine environment in the South Pacific Ocean during the first coral reef aerosol characterization experiment in May-June 2011 using an ultrafine organic tandem differential mobility analyzer.
Our campaign study at Heron reef showed that the nucleation mode size particles (diameter =10nm) composition contain internally mixed sulfate and oxidized organic components in approximately equal proportion in sunny and still conditions around low tide time, indicating local biogenic sources. The produced secondary compounds and aerosols have potential to contribute to cloud condensation nuclei formation and properties that may affect local low-level cloud formation over the GBR. Additionally, primary marine sea-salt and organic material during windy conditions and anthropogenic/biogenic sources during continental air masses can affect the properties of these particles.
Keywords: Coral reef, DMS, particle composition, secondary organics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908259 Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes
Authors: T. D. Gunneswara Rao, Mudimby Andal
Abstract:
Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, as partial replacement to fine aggregates and as admixture. Addition of fly ash to the concrete in any one of the form mentioned above, makes the concrete more workable and durable than the conventional concrete. Studies on fly ash as partial replacement to cement gained momentum as such replacement makes the concrete economical. In the present study, an attempt has been made to understand the effects of fly ash on the workability characteristics and strength aspects of fly ash concretes. In India major number of thermal power plants is producing low calcium fly ash. Hence in the present investigation low calcium fly ash has been used. Fly ash in concrete was considered for the partial replacement of cement. The percentage replacement of cement by fly ash varied from 0% to 40% at regular intervals of 10%. More over the fine aggregate to coarse aggregate ratio also has been varied as 1:1, 1:2 and 1:3. The workability tests revealed that up to 30% replacement of cement by fly ash in concrete mixes water demand for reduces, beyond 30% replacement of cement by fly ash demanded more water content for constant workability.
Keywords: Cementing Efficiency, Compressive Strength, Low Calcium Fly Ash, Workability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524258 Experimental and Numerical Analysis of Built-In Thermoelectric Generator Modules with an Elliptical Pin-Fin Heat Sink
Authors: J. Y. Jang, C. Y. Tseng
Abstract:
A three-dimensional numerical model of thermoelectric generator (TEG) modules attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The TEG module consists of a thermoelectric generator, an elliptical pin-fin heat sink, and a cold plate for water cooling. In the chimney, the temperature of flue gases is 450-650K. Although the TEG hot-side temperature and thus the electric power output can be increased by inserting an elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. The main purpose of this study is to analyze the effects of geometrical parameters on the electric power output and chimney pressure drop characteristics. The effects of different operating conditions, including various inlet velocities (Vin= 1, 3, 5 m/s), inlet temperatures (Tgas = 450, 550, 650K) and different fin height (0 to 150 mm) are discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.
Keywords: Thermoelectric generator, Waste heat recovery, Elliptical pin-fin heat sink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449257 Characterization and Predictors of Community Integration of People with Psychiatric Problems: Comparisons with the General Population
Authors: J. Cabral, C. Barreto Carvalho, C. da Motta, M. Sousa
Abstract:
Community integration is a construct that an increasing body of research has shown to have a significant impact on the wellbeing and recovery of people with psychiatric problems. However, there are few studies that explore which factors can be associated and predict community integration. Moreover, community integration has been mostly studied in minority groups, and current literature on the definition and manifestation of community integration in the general population is scarcer. Thus, the current study aims to characterize community integration and explore possible predictor variables in a sample of participants with psychiatric problems (PP, N=183) and a sample of participants from the general population (GP, N=211). Results show that people with psychiatric problems present above average values of community integration, but are significantly lower than their healthy counterparts. It was also possible to observe that community integration does not vary in terms of the sociodemographic characteristics of both groups in this study. Correlation and multiple regression showed that, among several variables that literature present as relevant in the community integration process, only three variables emerged as having the most explanatory value in community integration of both groups: sense of community, basic needs satisfaction and submission. These results also shown that those variables have increased explanatory power in the PP sample, which leads us to emphasize the need to address this issue in future studies and increase the understanding of the factors that can be involved in the promotion of community integration, in order to devise more effective interventions in this field.Keywords: Community integration, mental illness, predictors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836256 Environmental Responsibility and Firm Performance: Evidence from Nigeria
Authors: Collins C. Ngwakwe
Abstract:
The objective of this paper is to establish a possible relationship between sustainable business practice and firm performance. Using a field survey methodology, a sample of sixty manufacturing companies in Nigeria was studied. The firms were categorised into two groups, environmentally 'responsible' and 'irresponsible' firms. An investigation was undertaken into the possible relationship between firm performance and three selected indicators of sustainable business practice: employee health and safety (EHS), waste management (WM), and community development (CD), common within the 30 'responsible' firms. Findings from empirical results reveal that the sustainable practices of the 'responsible' firms are significantly related with firm performance. In addition, sustainable practices are inversely related with fines and penalties. The paper concludes that, within the Nigerian setting at least, sustainability affects corporate performance and sustainability may be a possible tool for corporate conflict resolution as evidenced in the reduction of fines, penalties and compensations. The paper therefore recommends research into the relationship between sustainability and conflict management.
Keywords: Environmental responsibility, environmental investment, social responsibility, sustainable business, social ethics, environmental ethics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4005255 Automated Separation of Organic Liquids through Their Boiling Points
Authors: Muhammad Tahir Qadri, Syed Shafi-Uddin Qadri, Faizan Farid, Nabeel Abid
Abstract:
This paper discuss the separation of the miscible liquids by means of fractional distillation. For complete separation of liquids, the process of heating, condensation, separation and storage is done automatically to achieve the objective. PIC micro-controller has been used to control each and every process of the work. The controller also controls the storage process by activating and deactivating the conveyors. The liquids are heated which on reaching their respective boiling points evaporate and enter the condensation chamber where they convert into liquid. The liquids are then directed to their respective tanks by means of stepper motor which moves in three directions, each movement into different tank. The tank on filling sends the signal to controller which then opens the solenoid valves. The tank is emptied into the beakers below the nozzle. As the beaker filled, the nozzle closes and the conveyors come into operation. The filled beaker is replaced by an empty beaker from behind. The work can be used in oil industries, chemical industries and paint industries.Keywords: Miscible Liquid Separation Unit, Distillation, Waste Water Treatment, Organic Liquids Collection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743254 Development and in vitro Characterization of Self-nanoemulsifying Drug Delivery Systems of Valsartan
Authors: P. S. Rajinikanth, Yeoh Suyu, Sanjay Garg
Abstract:
The present study is aim to prepare and evaluate the selfnanoemulsifying drug delivery (SNEDDS) system of a poorly water soluble drug valsartan in order to achieve a better dissolution rate which would further help in enhancing oral bioavailability. The present research work describes a SNEDDS of valsartan using labrafil M 1944 CS, Tween 80 and Transcutol HP. The pseudoternary phase diagrams with presence and absence of drug were plotted to check for the emulsification range and also to evaluate the effect of valsartan on the emulsification behavior of the phases. The mixtures consisting of oil (labrafil M 1944 CS) with surfactant (tween 80), co-surfactant (Transcutol HP) were found to be optimum formulations. Prepared formulations were evaluated for its particle size distribution, nanoemulsifying properties, robustness to dilution, self emulsication time, turbidity measurement, drug content and invitro dissolution. The optimized formulations are further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential were carried out to confirm the stability of the formed SNEDDS formulations. The prepared formulation revealed t a significant improvement in terms of the drug solubility as compared with marketed tablet and pure drug.
Keywords: Self Emulsifying Drug Delivery System, Valsartan, Bioavailability, poorly soluble drug.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680253 Development of a Water-Jet Assisted Underwater Laser Cutting Process
Authors: Suvradip Mullick, Yuvraj K. Madhukar, Subhranshu Roy, Ashish K. Nath
Abstract:
We present the development of a new underwater laser cutting process in which a water-jet has been used along with the laser beam to remove the molten material through kerf. The conventional underwater laser cutting usually utilizes a high pressure gas jet along with laser beam to create a dry condition in the cutting zone and also to eject out the molten material. This causes a lot of gas bubbles and turbulence in water, and produces aerosols and waste gas. This may cause contamination in the surrounding atmosphere while cutting radioactive components like burnt nuclear fuel. The water-jet assisted underwater laser cutting process produces much less turbulence and aerosols in the atmosphere. Some amount of water vapor bubbles is formed at the laser-metal-water interface; however, they tend to condense as they rise up through the surrounding water. We present the design and development of a water-jet assisted underwater laser cutting head and the parametric study of the cutting of AISI 304 stainless steel sheets with a 2 kW CW fiber laser. The cutting performance is similar to that of the gas assist laser cutting; however, the process efficiency is reduced due to heat convection by water-jet and laser beam scattering by vapor. This process may be attractive for underwater cutting of nuclear reactor components.Keywords: Laser, underwater cutting, water-jet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4660252 Holistic Face Recognition using Multivariate Approximation, Genetic Algorithms and AdaBoost Classifier: Preliminary Results
Authors: C. Villegas-Quezada, J. Climent
Abstract:
Several works regarding facial recognition have dealt with methods which identify isolated characteristics of the face or with templates which encompass several regions of it. In this paper a new technique which approaches the problem holistically dispensing with the need to identify geometrical characteristics or regions of the face is introduced. The characterization of a face is achieved by randomly sampling selected attributes of the pixels of its image. From this information we construct a set of data, which correspond to the values of low frequencies, gradient, entropy and another several characteristics of pixel of the image. Generating a set of “p" variables. The multivariate data set with different polynomials minimizing the data fitness error in the minimax sense (L∞ - Norm) is approximated. With the use of a Genetic Algorithm (GA) it is able to circumvent the problem of dimensionality inherent to higher degree polynomial approximations. The GA yields the degree and values of a set of coefficients of the polynomials approximating of the image of a face. By finding a family of characteristic polynomials from several variables (pixel characteristics) for each face (say Fi ) in the data base through a resampling process the system in use, is trained. A face (say F ) is recognized by finding its characteristic polynomials and using an AdaBoost Classifier from F -s polynomials to each of the Fi -s polynomials. The winner is the polynomial family closer to F -s corresponding to target face in data base.
Keywords: AdaBoost Classifier, Holistic Face Recognition, Minimax Multivariate Approximation, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497251 Effect of Moisture Content Compaction in the Geometry Definition of Earth Dams
Authors: Julian B. García, Virginie Q. R. Pinto, André P. Assis
Abstract:
This paper presents numerical flow and slope stability simulations in three typical sections of earth dams built in tropical regions, two homogeneous with different slope inclinations, and the other one heterogeneous with impermeable core. The geotechnical material parameters used in this work were obtained from a lab testing of physical characterization, compaction, consolidation, variable load permeability and saturated triaxial type CD for compacted soil samples with standard proctor energy at optimum moisture content (23%), optimum moisture content + 2% and optimum moisture content +5%. The objective is to analyze the general behavior of earth dams built in rainy regions where optimum moisture is exceeded. The factor of safety is satisfactory for the three sections compacted in all moisture content during the stages of operation and end of construction. On The other hand, the rapid drawdown condition is the critical phase for homogeneus dams configuration, the factor of safety obtained were unsatisfactory. In general, the heterogeneous dam behavior is more efficient due to the fact that the slopes are made up of gravel, which favors the dissipation of pore pressures during the rapid drawdown. For the critical phase, the slopes should have lower inclinations of the upstream and downstream slopes to guarantee stability, although it increases the costs.
Keywords: Earth dams, flow, moisture content, slope stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 926250 Preliminary Evaluation of Different Water Qualities on Leucaena Leucocephala Seed Germination and Seedling Growth
Authors: Maher J. Tadros, Naji K. Al-Mefleh
Abstract:
The evaluation of non-conventional water resources on seed germination and seedling growth performance at early growth stages is still in progress especially in forage crops. This study was designed to test the effect of four types of water qualities (treated wastewater (TWW), industrial water (IW), grey water (GW), and Distilled water (DW)) on germination and early seedling vigor of Leucaena leucocephala. The results showed that the germination was not significantly affected by the different water qualities. Seed germination reached maximum after 17, 14, 14, and 21 days under GW, IW, TWW, and DW treatments, respectively. The highest mean of shoot length was scored under the GW treatment. And, the highest mean of root length was scored under DW which was not significant from GW treatment. The means of shoot fresh was the highest under the TWW. The means of root fresh weight was not significantly different from each other's under different treatments. The growth performance was in progress with no mortality during 21 days of growth. Thus, the best non-conventional water qualities alternatives based on the cleanness, nutrients, and toxicity are the GW, TWW and IW, respectively.Keywords: Seed germination, Growth performance, Leucaena, Multipurpose forest trees, Waste water, Grey water
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864249 Sulphur-Mediated Precipitation of Pt/Fe/Co/CrIons in Liquid-Liquid and Gas-Liquid Chloride Systems
Authors: J. Siame, H. Kasaini
Abstract:
The proof of concept experiments were conducted to determine the feasibility of using small amounts of Dissolved Sulphur (DS) from the gaseous phase to precipitate platinum ions in chloride media. Two sets of precipitation experiments were performed in which the source of sulphur atoms was either a thiosulphate solution (Na2S2O3) or a sulphur dioxide gas (SO2). In liquid-liquid (L-L) system, complete precipitation of Pt was achieved at small dosages of Na2S2O3 (0.01 – 1.0 M) in a time interval of 3-5 minutes. On the basis of this result, gas absorption tests were carried out mainly to achieve sulphur solubility equivalent to 0.018 M. The idea that huge amounts of precious metals could be recovered selectively from their dilute solutions by utilizing the waste SO2 streams at low pressure seemed attractive from the economic and environmental point of views. Therefore, mass transfer characteristics of SO2 gas associated with reactive absorption across the gas-liquid (G-L) interface were evaluated under different conditions of pressure (0.5 – 2 bar), solution temperature ranges from 20 – 50 oC and acid strength (1 – 4 M, HCl). This paper concludes with information about selective precipitation of Pt in the presence of cations (Fe2+, Co2+, and Cr3+) in a CSTR and recommendation to scale up laboratory data to industrial pilot scale operations.Keywords: CSTR, diffusivity, platinum, selective precipitation, sulphur dioxide, thiosulphate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157248 Experimental Study on the Variation of Young's Modulus of Hollow Clay Brick Obtained from Static and Dynamic Tests
Authors: M. Aboudalle, Le Btth, M. Sari, F. Meftah
Abstract:
In parallel with the appearance of new materials, brick masonry had and still has an essential part of the construction market today, with new technical challenges in designing bricks to meet additional requirements. Being used in structural applications, predicting the performance of clay brick masonry allows a significant cost reduction, in terms of practical experimentation. The behavior of masonry walls depends on the behavior of their elementary components, such as bricks, joints, and coatings. Therefore, it is necessary to consider it at different scales (from the scale of the intrinsic material to the real scale of the wall) and then to develop appropriate models, using numerical simulations. The work presented in this paper focuses on the mechanical characterization of the terracotta material at ambient temperature. As a result, the static Young’s modulus obtained from the flexural test shows different values in comparison with the compression test, as well as with the dynamic Young’s modulus obtained from the Impulse excitation of vibration test. Moreover, the Young's modulus varies according to the direction in which samples are extracted, where the values in the extrusion direction diverge from the ones in the orthogonal directions. Based on these results, hollow bricks can be considered as transversely isotropic bimodulus material.
Keywords: Bimodulus material, hollow clay brick, impulse excitation of vibration, transversely isotropic material, Young’s modulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 455247 Physico-Mechanical Properties of Jute-Coir Fiber Reinforced Hybrid Polypropylene Composites
Authors: Salma Siddika, Fayeka Mansura, Mahbub Hasan
Abstract:
The term hybrid composite refers to the composite containing more than one type of fiber material as reinforcing fillers. It has become attractive structural material due to the ability of providing better combination of properties with respect to single fiber containing composite. The eco-friendly nature as well as processing advantage, light weight and low cost have enhanced the attraction and interest of natural fiber reinforced composite. The objective of present research is to study the mechanical properties of jute-coir fiber reinforced hybrid polypropylene (PP) composite according to filler loading variation. In the present work composites were manufactured by using hot press machine at four levels of fiber loading (5, 10, 15 and 20 wt %). Jute and coir fibers were utilized at a ratio of (1:1) during composite manufacturing. Tensile, flexural, impact and hardness tests were conducted for mechanical characterization. Tensile test of composite showed a decreasing trend of tensile strength and increasing trend of the Young-s modulus with increasing fiber content. During flexural, impact and hardness tests, the flexural strength, flexural modulus, impact strength and hardness were found to be increased with increasing fiber loading. Based on the fiber loading used in this study, 20% fiber reinforced composite resulted the best set of mechanical properties.Keywords: Mechanical Properties; Coir, Jute, Polypropylene, Hybrid Composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3700246 Extraction and Characterisation of Protein Fraction from Date Palm Fruit Seeds
Authors: Ibrahim A. Akasha, Lydia Campbell, Stephen R. Euston
Abstract:
Date palm (Phoenix dactylifera L.) seeds are waste streams which are considered a major problem to the food industry. They contain potentially useful protein (10-15% of the whole date-s weight). Global production, industrialisation and utilisation of dates are increasing steadily. The worldwide production of date palm fruit has increased from 1.8 million tons in 1961 to 6.9 million tons in 2005, thus from the global production of dates are almost 800.000 tonnes of date palm seeds are not currently used [1]. The current study was carried out to convert the date palm seeds into useful protein powder. Compositional analysis showed that the seeds were rich in protein and fat 5.64 and 8.14% respectively. We used several laboratory scale methods to extract proteins from seed to produce a high protein powder. These methods included simple acid or alkali extraction, with or without ultrafiltration and phenol trichloroacetic acid with acetone precipitation (Ph/TCA method). The highest protein content powder (68%) was obtained by Ph/TCA method with yield of material (44%) whereas; the use of just alkali extraction gave the lowest protein content of 8%, and a yield of 32%.
Keywords: Date palm seed, Phoenix dactylifera L., extraction of date palm seed protein
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4615245 Development of Environment Friendly Mimosa Tannin-Cornstarch Based Wood Adhesive
Authors: Salise Oktay, Nilgün Kızılcan, Başak Bengü
Abstract:
At present, formaldehyde-based adhesives such as urea formaldehyde (UF), melamine formaldehyde (MF), melamine-urea formaldehyde (MUF) etc. are mostly used in wood-based panel industry because of their high reactivity, chemical versatility and economic competitiveness. However, formaldehyde-based wood adhesives are produced from non-renewable resources. Hence, there has been a growing interest in the development of environment friendly, economically competitive, bio-based wood adhesives in order to meet wood-based panel industry requirements. In this study, as formaldehyde free adhesive, tannin and starch-based wood adhesive was synthesized. Citric acid and tartaric acid were used as hardener for the resin system. Solid content, viscosity and gel time analyzes of the prepared adhesive were performed in order to evaluate the adhesive processability. FTIR characterization technique was used to elucidate chemical structures of the cured adhesive samples. In order to evaluate the performance of the prepared bio-based resin formulation, particleboards were produced in laboratory scale and mechanical, physical properties of the boards were investigated. Besides, formaldehyde contents of the boards were determined by using perforator method. The obtained results revealed that the developed bio-based wood adhesive formulation can be a good potential candidate to use in wood-based panel industry with some developments.
Keywords: Wood adhesive, cornstarch, mimosa tannin, particleboard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 414