Search results for: thermal vibration.
694 Neural Network Tuned Fuzzy Controller for MIMO System
Authors: Seema Chopra, R. Mitra, Vijay Kumar
Abstract:
In this paper, a neural network tuned fuzzy controller is proposed for controlling Multi-Input Multi-Output (MIMO) systems. For the convenience of analysis, the structure of MIMO fuzzy controller is divided into single input single-output (SISO) controllers for controlling each degree of freedom. Secondly, according to the characteristics of the system-s dynamics coupling, an appropriate coupling fuzzy controller is incorporated to improve the performance. The simulation analysis on a two-level mass–spring MIMO vibration system is carried out and results show the effectiveness of the proposed fuzzy controller. The performance though improved, the computational time and memory used is comparatively higher, because it has four fuzzy reasoning blocks and number may increase in case of other MIMO system. Then a fuzzy neural network is designed from a set of input-output training data to reduce the computing burden during implementation. This control strategy can not only simplify the implementation problem of fuzzy control, but also reduce computational time and consume less memory.Keywords: Fuzzy Control, Neural Network, MIMO System, Optimization of Membership functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3218693 Development of Scratching Monitoring System Based On Mathematical Model of Unconstrained Bed Sensing Method
Authors: Takuya Sumi, Syoko Nukaya, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
We propose an unconstrained measurement system for scratching motion based on mathematical model of unconstrained bed sensing method which could measure the bed vibrations due to the motion of the person on the bed. In this paper, we construct mathematical model of the unconstrained bed monitoring system; and we apply the unconstrained bed sensing method to the system for detecting scratching motion. The proposed sensors are placed under the three bed feet. When the person is lying on the bed, the output signals from the sensors are proportional to the magnitude of the vibration due to the scratching motion. Hence, we could detect the subject’s scratching motion from the output signals from ceramic sensors. We evaluated two scratching motions using the proposed system in the validity experiment as follows: 1st experiment is the subject’s scratching the right side cheek with his right hand, and; 2nd experiment is the subject’s scratching the shin with another foot. As the results of the experiment, we recognized the scratching signals that enable the determination when the scratching occurred. Furthermore, the difference among the amplitudes of the output signals enabled us to estimate where the subject scratched.
Keywords: Unconstrained bed sensing method, scratching, body movement, itchy, piezoceramics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746692 Dynamic Modeling of Underplateform Damper used in Turbomachinery
Authors: Vikas Rastogi, Vipan Kumar, Loveleen Kumar Bhagi
Abstract:
The present work deals with the structural analysis of turbine blades and modeling of turbine blades. A common failure mode for turbine machines is high cycle of fatigue of compressor and turbine blades due to high dynamic stresses caused by blade vibration and resonance within the operation range of the machinery. In this work, proper damping system will be analyzed to reduce the vibrating blade. The main focus of the work is the modeling of under platform damper to evaluate the dynamic analysis of turbine-blade vibrations. The system is analyzed using Bond graph technique. Bond graph is one of the most convenient ways to represent a system from the physical aspect in foreground. It has advantage of putting together multi-energy domains of a system in a single representation in a unified manner. The bond graph model of dry friction damper is simulated on SYMBOLS-shakti® software. In this work, the blades are modeled as Timoshenko beam. Blade Vibrations under different working conditions are being analyzed numerically.Keywords: Turbine blade vibrations, Friction dampers, Timoshenko Beam, Bond graph modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336691 Numerical Analysis and Experimental Validation of a Downhole Stress/Strain Measurement Tool
Authors: Abhay Bodake, Ping Sui, Hafeez Syed, Ratish Kadam
Abstract:
Real-time measurement of applied forces, like tension, compression, torsion, and bending moment, identifies the transferred energies being applied to the bottomhole assembly (BHA). These forces are highly detrimental to measurement/logging-while-drilling tools and downhole equipment. Real-time measurement of the dynamic downhole behavior, including weight, torque, bending on bit, and vibration, establishes a real-time feedback loop between the downhole drilling system and drilling team at the surface. This paper describes the numerical analysis of the strain data acquired by the measurement tool at different locations on the strain pockets. The strain values obtained by FEA for various loading conditions (tension, compression, torque, and bending moment) are compared against experimental results obtained from an identical experimental setup. Numerical analyses results agree with experimental data within 8% and, therefore, substantiate and validate the FEA model. This FEA model can be used to analyze the combined loading conditions that reflect the actual drilling environment.
Keywords: FEA, M/LWD, Oil & Gas, Strain Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593690 Experimental Modal Analysis of Reinforced Concrete Square Slabs
Authors: M. S. Ahmed, F. A. Mohammad
Abstract:
The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although, experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all types of members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square slab specimens of dimensions 600mm x 600mmx 40mm. Experimental analysis was based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to investigate the dynamic behavior of RC slabs.
Keywords: Natural frequencies, Mode shapes, Modal analysis, RC slabs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2624689 Effect of Damping on Performance of Magnetostrictive Vibration Energy Harvester
Authors: Mojtaba Ghodsi, Hamidreza Ziaifar, Morteza Mohammadzaheri, Payam Soltani
Abstract:
This article presents an analytical model to estimate the harvested power from a Magnetostrictive cantilevered beam with tip excitation. Furthermore, the effects of internal and external damping on harvested power are investigated. The magnetostrictive material in this harvester is Galfenol. In comparison to other popular smart materials like Terfenol-D, Galfenol has higher strength and machinability. In this article, first, a mechanical model of the Euler-Bernoulli beam is employed to calculate the deflection of the harvester. Then, the magneto-mechanical equation of Galfenol is combined with Faraday's law to calculate the generated voltage of the Magnetostrictive cantilevered beam harvester. Finally, the beam model is incorporated in the aforementioned combination. The results show that a 30×8.5×1 mm Galfenol cantilever beam harvester with 80 turn pickup coil can generate up to 3.7 mV and 9 mW. Furthermore, sensitivity analysis made by Response Surface Method (RSM) shows that the harvested power is only sensitive to the internal damping coefficient.
Keywords: Internal damping coefficient, external damping coefficient, Euler-Bernoulli, energy harvester, Galfenol, magnetostrictive, response surface method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771688 Assessment of the Adaptive Pushover Analysis Using Displacement-based Loading in Prediction the Seismic Behaviour of the Unsymmetric-Plan Buildings
Authors: M.O. Makhmalbaf, F. Mohajeri Nav, M. Zabihi Samani
Abstract:
The recent drive for use of performance-based methodologies in design and assessment of structures in seismic areas has significantly increased the demand for the development of reliable nonlinear inelastic static pushover analysis tools. As a result, the adaptive pushover methods have been developed during the last decade, which unlike their conventional pushover counterparts, feature the ability to account for the effect that higher modes of vibration and progressive stiffness degradation might have on the distribution of seismic storey forces. Even in advanced pushover methods, little attention has been paid to the Unsymmetric structures. This study evaluates the seismic demands for three dimensional Unsymmetric-Plan buildings determined by the Displacement-based Adaptive Pushover (DAP) analysis, which has been introduced by Antoniou and Pinho [2004]. The capability of DAP procedure in capturing the torsional effects due to the irregularities of the structures, is investigated by comparing its estimates to the exact results, obtained from Incremental Dynamic Analysis (IDA). Also the capability of the procedure in prediction the seismic behaviour of the structure is discussed.
Keywords: Nonlinear static procedures, Unsymmetric-PlanBuildings, Torsional effects, IDA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2775687 Effect of a Magnetic Field on the Onset of Marangoni Convection in a Micropolar Fluid
Authors: Mohd Nasir Mahmud, Ruwaidiah Idris, Ishak Hashim
Abstract:
With the presence of a uniform vertical magnetic field and suspended particles, thermocapillary instability in a horizontal liquid layer is investigated. The resulting eigenvalue is solved by the Galerkin technique for various basic temperature gradients. It is found that the presence of magnetic field always has a stability effect of increasing the critical Marangoni number.
Keywords: Marangoni convection, Magnetic field, Micropolar fluid, Non-uniform thermal gradient, Thermocapillary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647686 Shaking Force Balancing of Mechanisms: An Overview
Authors: Vigen Arakelian
Abstract:
The balancing of mechanisms is a well-known problem in the field of mechanical engineering because the variable dynamic loads cause vibrations, as well as noise, wear and fatigue of the machines. A mechanical system with unbalance shaking force and shaking moment transmits substantial vibration to the frame. Therefore, the objective of the balancing is to cancel or reduce the variable dynamic reactions transmitted to the frame. The resolution of this problem consists in the balancing of the shaking force and shaking moment. It can be fully or partially, by internal mass redistribution via adding counterweights or by modification of the mechanism's architecture via adding auxiliary structures. The balancing problems are of continue interest to researchers. Several laboratories around the world are very active in this area and new results are published regularly. However, despite its ancient history, mechanism balancing theory continues to be developed and new approaches and solutions are constantly being reported. Various surveys have been published that disclose particularities of balancing methods. The author believes that this is an appropriate moment to present a state of the art of the shaking force balancing studies completed by new research results. This paper presents an overview of methods devoted to the shaking force balancing of mechanisms, as well as the historical aspects of the origins and the evolution of the balancing theory of mechanisms.
Keywords: Inertia forces, shaking forces, balancing, dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 559685 Residual Stress in Ground WC-Co Coatings
Authors: M. Jalali Azizpour, H. Mohammadi Majd
Abstract:
High velocity oxygen fuel (HVOF) spray technique is one of the leading technologies that have been proposed as an alternative to the replacement of electrolytic hard chromium plating in a number of engineering applications. In this study, WC-Co powder was coated on AISI1045 steel using high velocity oxy fuel (HVOF) method. The sin2ψ method was used to evaluate the through thickness residual stress by means of XRD after mechanical layer removal process (only grinding). The average of through thickness residual stress using X-Ray diffraction was -400 MPa.
Keywords: Grinding, HVOF, Thermal spray, WC-Co.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731684 Loop Heat Pipe: Simple Thermodynamic
Authors: Mohammad Hamdan, Emad Elnajjar
Abstract:
The LHP is a two-phase device with extremely high effective thermal conductivity that utilizes the thermodynamic pressure difference to circulate a cooling fluid. A thermodynamics analytical model is developed to explore different parameters effects on a Loop Heat Pipe (LHP).. The effects of pipe length, pipe diameter, condenser temperature, and heat load are reported. As pipe length increases and/or pipe diameter decreases, a higher temperature is expected in the evaporator.Keywords: Loop Heat Pipe, LHP, Passive Cooling, CapillaryForce.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2819683 Influence of Silica Fume on the Properties of Self Compacting Concrete
Authors: Salem Alsanusi
Abstract:
A self-compacting concrete (SCC) is the one that can be placed in the form and can go through obstructions by its own weight and without the need of vibration. Since its first development in Japan in 1988, SCC has gained wider acceptance in Japan, Europe and USA due to its inherent distinct advantages. Although there are visible signs of its gradual acceptance in the North Africa through its limited use in construction, Libya has yet to explore the feasibility and applicability of SCC in new construction. The contributing factors to this reluctance appear to be lack of any supportive evidence of its suitability with local aggregates and the harsh environmental conditions. The primary aim of this study is to explore the feasibility of using SCC made with local aggregates of Eastern Province of Libya by examining its basic properties characteristics. This research consists of: (i) Development of a suitable mix for SCC such as the effect of water to cement ratio, limestone and silica fume that would satisfy the requirements of the plastic state; (ii) Casting of concrete samples and testing them for compressive strength and unit weight. Local aggregates, cement, admixtures and industrial waste materials were used in this research. The significance of this research lies in its attempt to provide some performance data of SCC made in the Eastern Province of Libya so as to draw attention to the possible use of SCC.Keywords: Silica fume, self compacting concrete, workability, coarse and fine aggregate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3123682 Simulation of Solar Assisted Absorption Cooling and Electricity Generation along with Thermal Storage
Authors: Faezeh Mosallat, Eric L. Bibeau, Tarek El Mekkawy
Abstract:
Parabolic solar trough systems have seen limited deployments in cold northern climates as they are more suitable for electricity production in southern latitudes. A numerical dynamic model is developed to simulate troughs installed in cold climates and validated using a parabolic solar trough facility in Winnipeg. The model is developed in Simulink and will be utilized to simulate a trigeneration system for heating, cooling and electricity generation in remote northern communities. The main objective of this simulation is to obtain operational data of solar troughs in cold climates and use the model to determine ways to improve the economics and address cold weather issues. In this paper the validated Simulink model is applied to simulate a solar assisted absorption cooling system along with electricity generation using Organic Rankine Cycle (ORC) and thermal storage. A control strategy is employed to distribute the heated oil from solar collectors among the above three systems considering the temperature requirements. This modelling provides dynamic performance results using measured meteorological data recorded every minute at the solar facility location. The purpose of this modeling approach is to accurately predict system performance at each time step considering the solar radiation fluctuations due to passing clouds. Optimization of the controller in cold temperatures is another goal of the simulation to for example minimize heat losses in winter when energy demand is high and solar resources are low. The solar absorption cooling is modeled to use the generated heat from the solar trough system and provide cooling in summer for a greenhouse which is located next to the solar field. The results of the simulation are presented for a summer day in Winnipeg which includes comparison of performance parameters of the absorption cooling and ORC systems at different heat transfer fluid (HTF) temperatures.
Keywords: Absorption cooling, parabolic solar trough, remote community, organic Rankine cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3119681 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles
Authors: Gopi Kandaswamy, P. Balamuralidhar
Abstract:
Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.Keywords: Fault detection, health monitoring, unmanned aerial vehicles, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508680 Theoretical, Numerical and Experimental Assessment of Elastomeric Bearing Stability
Authors: Manuel A. Guzman, Davide Forcellini, Ricardo Moreno, Diego H. Giraldo
Abstract:
Elastomeric bearings (EB) are used in many applications, such as base isolation of bridges, seismic protection and vibration control of other structures and machinery. Their versatility is due to their particular behavior since they have different stiffness in the vertical and horizontal directions, allowing to sustain vertical loads and at the same time horizontal displacements. Therefore, vertical, horizontal and bending stiffnesses are important parameters to take into account in the design of EB. In order to acquire a proper design methodology of EB all three, theoretical, finite element analysis and experimental, approaches should be taken into account to assess stability due to different loading states, predict their behavior and consequently their effects on the dynamic response of structures, and understand complex behavior and properties of rubber-like materials respectively. In particular, the recent large-displacement theory on the stability of EB formulated by Forcellini and Kelly is validated with both numerical simulations using the finite element method, and experimental results set at the University of Antioquia in Medellin, Colombia. In this regard, this study reproduces the behavior of EB under compression loads and investigates the stability behavior with the three mentioned points of view.
Keywords: Elastomeric bearings, experimental tests, numerical simulations, stability, large-displacement theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834679 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA
Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita
Abstract:
This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.Keywords: Dynamic response, Nonlinear impact response, Finite Element analysis, Numerical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729678 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model
Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl
Abstract:
Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the workpiece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.Keywords: Dexel, process stability, material removal, milling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268677 Shock Response Analysis of Soil–Structure Systems Induced by Near–Fault Pulses
Authors: H. Masaeli, R. Ziaei, F. Khoshnoudian
Abstract:
Shock response analysis of the soil–structure systems induced by near–fault pulses is investigated. Vibration transmissibility of the soil–structure systems is evaluated by shock response spectra (SRS). Medium–to–high rise buildings with different aspect ratios located on different soil types as well as different foundations with respect to vertical load bearing safety factors are studied. Two types of mathematical near–fault pulses, i.e. forward directivity and fling step, with different pulse periods as well as pulse amplitudes are selected as incident ground shock. Linear versus nonlinear soil–structure interaction (SSI) condition are considered alternatively and the corresponding results are compared. The results show that nonlinear SSI is likely to amplify the acceleration responses when subjected to long–period incident pulses with normalized period exceeding a threshold. It is also shown that this threshold correlates with soil type, so that increased shear–wave velocity of the underlying soil makes the threshold period decrease.
Keywords: Nonlinear soil–structure interaction, shock response spectrum, near–fault ground shock, rocking isolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384676 Pd(II) Complex with 4-Bromo-Bis-Hydroxymethyl Phenol and Nicotinamide: Synthesis and Spectral Analysis
Authors: Özlen Altun, Zeliha Yoruç
Abstract:
In the present study, the reactions involving 4-bromo-2,6-bis-hydroxymethyl-phenol (BBHMP) and nicotinamide (NA) in the presence of Pd(II) ions were investigated. Optimum conditions for the reactions were established as pH = 7 and λ = 450 nm. According to absorbance measurements, the molar ratio of BBHMP: NA: Pd2+ was found to be 1: 2: 2. As a result of physicochemical, spectrophotometric and thermal analyses, the reactions of BBHMP and NA with Pd(II) are complexation reactions and one molecule of BBHMP and two molecules of NA react with two molecules of the Pd(II) ion.
Keywords: Nicotinamide, 4-bromo-2, 6-bis-hydroxymethyl-phenol, Pd(II), spectral analysis, synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736675 The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating
Authors: Siming Wang, Qing Ni, Yu Wu, Ruihai Xu, Hong Ye
Abstract:
Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500 °C but degrades beyond 600 °C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high-volume power density, demonstrating great potential in the fluid heating field.
Keywords: Conductive coating, honeycomb ceramic electric heater, high specific surface area, high volume power density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 466674 An Experimental Investigation of Petrodiesel and Cotton Seed Biodiesel (CSOME) in Diesel Engine
Authors: P. V. Rao, Jaedaa Abdulhamid
Abstract:
Biodiesel is widely investigated to solve the twin problem of depletion of fossil fuel and environmental degradation. The main objective of the present work is to compare performance, emissions, and combustion characteristics of biodiesel derived from cotton seed oil in a diesel engine with the baseline results of petrodiesel fuel. Tests have been conducted on a single cylinder, four stroke CIDI diesel engine with a speed of 1500 rpm and a fixed compression ratio of 17.5 at different load conditions. The performance parameters evaluated include brake thermal efficiency, brake specific fuel consumption, brake power, indicated mean effective pressure, mechanical efficiency, and exhaust gas temperature. Regarding combustion study, cylinder pressure, rate of pressure rise, net heat release rate, cumulative heat release, mean gas temperature, mass fraction burned, and fuel line pressure were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen, and smoke opacity were also measured by a smoke meter and an exhaust gas analyzer and compared with baseline results. The brake thermal efficiency of cotton seed oil methyl ester (CSOME) was lower than that of petrodiesel and brake specific fuel consumption was found to be higher. However, biodiesel resulted in the reduction of carbon dioxide, un-burnt hydrocarbon, and smoke opacity at the expense of nitrogen oxides. Carbon monoxide emissions for biodiesel was higher at maximum output power. It has been found that the combustion characteristics of cotton seed oil methyl ester closely followed those of standard petrodiesel. The experimental results suggested that biodiesel derived from cotton seed oil could be used as a good substitute to petrodiesel fuel in a conventional diesel without any modification.Keywords: Diesel engine, Cotton seed, Biodiesel, performance, combustion, emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342673 Dynamic Stability of Axially Moving Viscoelastic Plates under Non-Uniform In-Plane Edge Excitations
Authors: T. H. Young, S. J. Huang, Y. S. Chiu
Abstract:
This paper investigates the parametric stability of an axially moving web subjected to non-uniform in-plane edge excitations on two opposite, simply-supported edges. The web is modeled as a viscoelastic plate whose constitutive relation obeys the Kelvin-Voigt model, and the in-plane edge excitations are expressed as the sum of a static tension and a periodical perturbation. Due to the in-plane edge excitations, the moving plate may bring about parametric instability under certain situations. First, the in-plane stresses of the plate due to the non-uniform edge excitations are determined by solving the in-plane forced vibration problem. Then, the dependence on the spatial coordinates in the equation of transverse motion is eliminated by the generalized Galerkin method, which results in a set of discretized system equations in time. Finally, the method of multiple scales is utilized to solve the set of system equations analytically if the periodical perturbation of the in-plane edge excitations is much smaller as compared with the static tension of the plate, from which the stability boundaries of the moving plate are obtained. Numerical results reveal that only combination resonances of the summed-type appear under the in-plane edge excitations considered in this work.Keywords: Axially moving viscoelastic plate, in-plane periodic excitation, non-uniformly distributed edge tension, dynamic stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954672 Expansion of A Finit Size Partially Ionized Laser-Plasma
Authors: Mohamed Fawzi Mahboub, Mourad Djebli
Abstract:
The expansion mechanism of a partially ionized plasma produced by laser interaction with solid target (copper) is studied. For this purpose we use a hydrodynamical model which includes a source term combined with Saha's equation. The obtained self-similar solution in the limit of quasi-neutrality shows that the expansion, at the earlier stage, is driven by the combination of thermal pressure and electrostatic potential. They are of the same magnitude. The initial ionized fraction and the temperature are the leading parameters of the expanding profiles,
Keywords: expansion, quasi-neutral, laser-ablated plasma, self- similar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314671 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique
Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram
Abstract:
Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020670 Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment
Authors: Mário Silva, Filipa Gomes, Filipa Oliveira, Simone Morais, Cristina Delerue-Matos
Abstract:
Brown seaweeds are abundant in Portuguese coastline and represent an almost unexploited marine economic resource. One of the most common species, easily available for harvesting in the northwest coast, is Saccorhiza polyschides grows in the lowest shore and costal rocky reefs. It is almost exclusively used by local farmers as natural fertilizer, but contains a substantial amount of valuable compounds, particularly alginates, natural biopolymers of high interest for many industrial applications. Alginates are natural polysaccharides present in cell walls of brown seaweed, highly biocompatible, with particular properties that make them of high interest for the food, biotechnology, cosmetics and pharmaceutical industries. Conventional extraction processes are based on thermal treatment. They are lengthy and consume high amounts of energy and solvents. In recent years, microwave-assisted extraction (MAE) has shown enormous potential to overcome major drawbacks that outcome from conventional plant material extraction (thermal and/or solvent based) techniques, being also successfully applied to the extraction of agar, fucoidans and alginates. In the present study, acid pretreatment of brown seaweed Saccorhiza polyschides for subsequent microwave-assisted extraction (MAE) of alginate was optimized. Seaweeds were collected in Northwest Portuguese coastal waters of the Atlantic Ocean between May and August, 2014. Experimental design was used to assess the effect of temperature and acid pretreatment time in alginate extraction. Response surface methodology allowed the determination of the optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried seaweed with constant stirring at 20ºC during 14h. Optimal acid pretreatment conditions have enhanced significantly MAE of alginates from Saccorhiza polyschides, thus contributing for the development of a viable, more environmental friendly alternative to conventional processes.
Keywords: Acid pretreatment, Alginate, Brown seaweed, Microwave-assisted extraction, Response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3358669 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation
Authors: M. A. Talha, M. Osman Gani, M. Ferdows
Abstract:
This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.
Keywords: Convection flow, internal heat generation, similarity, spectral method, numerical analysis, Williamson nanofluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 983668 Development and Validation of Cylindrical Linear Oscillating Generator
Authors: Sungin Jeong
Abstract:
This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.
Keywords: Equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, free piston engine, cylindrical linear oscillating generator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377667 Unit Commitment Solution Methods
Authors: Sayeed Salam
Abstract:
An effort to develop a unit commitment approach capable of handling large power systems consisting of both thermal and hydro generating units offers a large profitable return. In order to be feasible, the method to be developed must be flexible, efficient and reliable. In this paper, various proposed methods have been described along with their strengths and weaknesses. As all of these methods have some sort of weaknesses, a comprehensive algorithm that combines the strengths of different methods and overcomes each other-s weaknesses would be a suitable approach for solving industry-grade unit commitment problem.Keywords: Unit commitment, Solution methods, and Comprehensive algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6184666 Fabrication and Study of Nickel Phthalocyanine based Surface Type Capacitive Sensors
Authors: Mutabar Shah, Muhammad Hassan Sayyad, Khasan S. Karimov
Abstract:
Thin films of Nickel phthalocynine (NiPc) of different thicknesses (100, 150 and 200 nm) were deposited by thermal evaporator on glass substrates with preliminary deposited aluminum electrodes to form Al/NiPc/Al surface-type capacitive humidity sensors. The capacitance-humidity relationships of the sensors were investigated at humidity levels from 35 to 90% RH. It was observed that the capacitance value increases nonlinearly with increasing humidity level. All measurements were taken at room temperature.Keywords: Capacitive sensor, Humidity, Nickel phthalocyanine, Organic semiconductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801665 Powerful Laser Diode Matrixes for Active Vision Systems
Authors: Dzmitry M. Kabanau, Vladimir V. Kabanov, Yahor V. Lebiadok, Denis V. Shabrov, Pavel V. Shpak, Gevork T. Mikaelyan, Alexandr P. Bunichev
Abstract:
This article is deal with the experimental investigations of the laser diode matrixes (LDM) based on the AlGaAs/GaAs heterostructures (lasing wavelength 790-880 nm) to find optimal LDM parameters for active vision systems. In particular, the dependence of LDM radiation pulse power on the pulse duration and LDA active layer heating as well as the LDM radiation divergence are discussed.
Keywords: Active vision systems, laser diode matrixes, thermal properties, radiation divergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125