Search results for: psychophysiological methods.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4007

Search results for: psychophysiological methods.

2957 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
2956 Using Emotional Learning in Rescue Simulation Environment

Authors: Maziar Ahmad Sharbafi, Caro Lucas, Abolfazel Toroghi Haghighat, Omid AmirGhiasvand, Omid Aghazade

Abstract:

RoboCup Rescue simulation as a large-scale Multi agent system (MAS) is one of the challenging environments for keeping coordination between agents to achieve the objectives despite sensing and communication limitations. The dynamicity of the environment and intensive dependency between actions of different kinds of agents make the problem more complex. This point encouraged us to use learning-based methods to adapt our decision making to different situations. Our approach is utilizing reinforcement leaning. Using learning in rescue simulation is one of the current ways which has been the subject of several researches in recent years. In this paper we present an innovative learning method implemented for Police Force (PF) Agent. This method can cope with the main difficulties that exist in other learning approaches. Different methods used in the literature have been examined. Their drawbacks and possible improvements have led us to the method proposed in this paper which is fast and accurate. The Brain Emotional Learning Based Intelligent Controller (BELBIC) is our solution for learning in this environment. BELBIC is a physiologically motivated approach based on a computational model of amygdale and limbic system. The paper presents the results obtained by the proposed approach, showing the power of BELBIC as a decision making tool in complex and dynamic situation.

Keywords: Emotional learning, rescue, simulation environment, RoboCup, multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
2955 Effect of Submaximal Eccentric versus Maximal Isometric Contraction on Delayed Onset Muscle Soreness

Authors: Mohamed M. Ragab, Neveen A. Abdel Raoof, Reham H. Diab

Abstract:

Background: Delayed onset muscle soreness (DOMS) is the most common symptom when ordinary individuals and athletes are exposed to unaccustomed physical activity, especially eccentric contraction which impairs athletic performance, ordinary people work ability and physical functioning. Multitudes of methods have been investigated to reduce DOMS. One of the valuable methods to control DOMS is repeated bout effect (RBE) as a prophylactic method. Purpose: To compare the repeated bout effect of submaximal eccentric with maximal isometric contraction on induced DOMS. Methods: Sixty normal male volunteers were assigned randomly into three equal groups: Group A (first study group): 20 subjects received submaximal eccentric contraction on non-dominant elbow flexors as a prophylactic exercise. Group B (second study group): 20 subjects received maximal isometric contraction on nondominant elbow flexors as a prophylactic exercise. Group C (control group): 20 subjects did not receive any prophylactic exercises. Maximal isometric peak torque of elbow flexors and patient related elbow evaluation (PREE) scale were measured for each subject 3 times before, immediately after, and 48 hours after induction of DOMS. Results: Post-hoc test for maximal isometric peak torque and PREE scale immediately and 48 hours after induction of DOMS revealed that group (A) and group (B) resulted in significant decrease in maximal isometric strength loss and elbow pain and disability rather than control group (C), but submaximal eccentric group (A) was more effective than maximal isometric group (B) as it showed more rapid recovery of functional strength and less degrees of elbow pain and disability. Conclusion: Both submaximal eccentric contraction and maximal isometric contraction were effective in prevention of DOMS but submaximal eccentric contraction produced a greater protective effect against muscle damage induced by maximal eccentric exercise performed 2 days later.

Keywords: Delayed onset muscle soreness, maximal isometric peak torque, patient related elbow evaluation scale, repeated bout effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
2954 Enhancing Children’s English Vocabulary Acquisition through Digital Storytelling at Happy Kids Kindergarten, Palembang, Indonesia

Authors: Gaya Tridinanti

Abstract:

Enhanching English vocabulary in early childhood is the main problem often faced by teachers. Thus, the purpose of this study was to determine the enhancement of children’s English vocabulary acquisition by using digital storytelling. This type of research was an action research. It consisted of a series of four activities done in repeated cycles: planning, implementation, observation, and reflection. The subject of the study consisted of 30 students of B group (5-6 years old) attending Happy Kids Kindergarten Palembang, Indonesia. This research was conducted in three cycles. The methods used for data collection were observation and documentation. Descriptive qualitative and quantitative methods were also used to analyse the data. The research showed that the digital storytelling learning activities could enhance the children’s English vocabulary acquisition. It is based on the data in which the enhancement in pre-cycle was 37% and 51% in Cycle I. In Cycle II it was 71% and in Cycle III it was 89.3%. The results showed an enhancement of about 14% from the pre-cycle to Cycle I, 20% from Cycle I to Cycle II, and enhancement of about 18.3% from Cycle II to Cycle III. The conclusion of this study suggests that digital storytelling learning method could enhance the English vocabulary acquisition of B group children at the Happy Kids Kindergarten Palembang. Therefore, digital storytelling can be considered as an alternative to improve English language learning in the classroom.

Keywords: Acquisition, enhancing, digital storytelling, English vocabulary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
2953 Developing Improvements to Multi-Hazard Risk Assessments

Authors: A. Fathianpour, M. B. Jelodar, S. Wilkinson

Abstract:

This paper outlines the approaches taken to assess multi-hazard assessments. There is currently confusion in assessing multi-hazard impacts, and so this study aims to determine which of the available options are the most useful. The paper uses an international literature search, and analysis of current multi-hazard assessments and a case study to illustrate the effectiveness of the chosen method. Findings from this study will help those wanting to assess multi-hazards to undertake a straightforward approach. The paper is significant as it helps to interpret the various approaches and concludes with the preferred method. Many people in the world live in hazardous environments and are susceptible to disasters. Unfortunately, when a disaster strikes it is often compounded by additional cascading hazards, thus people would confront more than one hazard simultaneously. Hazards include natural hazards (earthquakes, floods, etc.) or cascading human-made hazards (for example, Natural Hazard Triggering Technological disasters (Natech) such as fire, explosion, toxic release). Multi-hazards have a more destructive impact on urban areas than one hazard alone. In addition, climate change is creating links between different disasters such as causing landslide dams and debris flows leading to more destructive incidents. Much of the prevailing literature deals with only one hazard at a time. However, recently sophisticated multi-hazard assessments have started to appear. Given that multi-hazards occur, it is essential to take multi-hazard risk assessment under consideration. This paper aims to review the multi-hazard assessment methods through articles published to date and categorize the strengths and disadvantages of using these methods in risk assessment. Napier City is selected as a case study to demonstrate the necessity of using multi-hazard risk assessments. In order to assess multi-hazard risk assessments, first, the current multi-hazard risk assessment methods were described. Next, the drawbacks of these multi-hazard risk assessments were outlined. Finally, the improvements to current multi-hazard risk assessments to date were summarised. Generally, the main problem of multi-hazard risk assessment is to make a valid assumption of risk from the interactions of different hazards. Currently, risk assessment studies have started to assess multi-hazard situations, but drawbacks such as uncertainty and lack of data show the necessity for more precise risk assessment. It should be noted that ignoring or partial considering multi-hazards in risk assessment will lead to an overestimate or overlook in resilient and recovery action managements.

Keywords: Cascading hazards, multi-hazard, risk assessment, risk reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094
2952 An Investigation of Final Tests of Translation as Practiced in Iranian Undergraduate English Translation Program

Authors: Hossein Heidari Tabrizi, Azizeh Chalak

Abstract:

The present study examined how translation teachers develop final tests as measures for checking on the quality of students’ academic translation in Iranian context. To achieve this goal, thirty experienced male and female translation teachers from the four types of the universities offering the program were invited to an in-depth 30-minute one-session semi-structured interview. The responses provided showed how much discrepancy exists among the Iranian translation teachers (as developers of final translation tests), who are least informed with the current translation evaluation methods. It was also revealed that the criteria they use for developing such tests and scoring student translations are not theory-driven but are highly subjective, mainly based on their personal experience and intuition. Hence, the quality and accountability of such tests are under serious question. The results also confirmed that the dominant method commonly and currently practiced is the purely essay-type format. To remedy the situation, some suggestions are in order. As part of the solution, to improve the reliability and validity of such tests, the present summative, product-oriented evaluation should be accompanied with some formative, process-oriented methods of evaluation. Training the teachers and helping them get acquainted with modern principles of translation evaluation as well as the existing models, and rating scales does improve the quality of academic translation evaluation.

Keywords: Iranian universities, students’ academic translations, translation final tests, undergraduate translation programs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
2951 Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement

Authors: Areej Almalkawi, Sameer Hamadna, Parviz Soroushian, Nalin Darsana

Abstract:

The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements.

Keywords: One-part geopolymer cement, aluminosilicate precursors, thermal activation, mechanochemical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702
2950 Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran

Authors: M. Ahmadi, M. Kafil, H. Ebrahimi

Abstract:

Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.

Keywords: Broken bar, condition monitoring, diagnostics, empirical mode decomposition, Fourier transform, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
2949 Two Dimensionnal Model for Extraction Packed Column Simulation using Finite Element Method

Authors: N. Outili, A-H. Meniai

Abstract:

Modeling transfer phenomena in several chemical engineering operations leads to the resolution of partial differential equations systems. According to the complexity of the operations mechanisms, the equations present a nonlinear form and analytical solution became difficult, we have then to use numerical methods which are based on approximations in order to transform a differential system to an algebraic one.Finite element method is one of numerical methods which can be used to obtain an accurate solution in many complex cases of chemical engineering.The packed columns find a large application like contactor for liquid-liquid systems such solvent extraction. In the literature, the modeling of this type of equipment received less attention in comparison with the plate columns.A mathematical bidimensionnal model with radial and axial dispersion, simulating packed tower extraction behavior was developed and a partial differential equation was solved using the finite element method by adopting the Galerkine model. We developed a Mathcad program, which can be used for a similar equations and concentration profiles are obtained along the column. The influence of radial dispersion was prooved and it can-t be neglected, the results were compared with experimental concentration at the top of the column in the extraction system: acetone/toluene/water.

Keywords: finite element method, Galerkine method, liquidliquid extraction modelling, packed column simulation, two dimensional model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
2948 A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand

Authors: A. Nasiri Pour, B. Rostami Tabar, A.Rahimzadeh

Abstract:

Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.

Keywords: Lumpy Demand, Neural Network, Forecasting, Hybrid Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
2947 Bone Mineral Density and Quality, Body Composition of Women in the Postmenopausal Period

Authors: Vladyslav Povoroznyuk, Oksana Ivanyk, Nataliia Dzerovych

Abstract:

In the diagnostics of osteoporosis, the gold standard is considered to be bone mineral density; however, X-ray densitometry is not an accurate indicator of osteoporotic fracture risk under all circumstances. In this regard, the search for new methods that could determine the indicators not only of the mineral density, but of the bone tissue quality, is a logical step for diagnostic optimization. One of these methods is the evaluation of trabecular bone quality. The aim of this study was to examine the quality and mineral density of spine bone tissue, femoral neck, and body composition of women depending on the duration of the postmenopausal period, to determine the correlation of body fat with indicators of bone mineral density and quality. The study examined 179 women in premenopausal and postmenopausal periods. The patients were divided into the following groups: Women in the premenopausal period and women in the postmenopausal period at various stages (early, middle, late postmenopause). A general examination and study of the above parameters were conducted with General Electric X-ray densitometer. The results show that bone quality and mineral density probably deteriorate with advancing of postmenopausal period. Total fat and lean mass ratio is not likely to change with age. In the middle and late postmenopausal periods, the bone tissue mineral density of the spine and femoral neck increases along with total fat mass.

Keywords: Osteoporosis, bone tissue mineral density, bone quality, fat mass, lean mass, postmenopausal osteoporosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
2946 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321
2945 Persian/Arabic Document Segmentation Based On Pyramidal Image Structure

Authors: Seyyed Yasser Hashemi, Khalil Monfaredi

Abstract:

Automatic transformation of paper documents into electronic documents requires document segmentation at the first stage. However, some parameters restrictions such as variations in character font sizes, different text line spacing, and also not uniform document layout structures altogether have made it difficult to design a general-purpose document layout analysis algorithm for many years. Thus in most previously reported methods it is inevitable to include these parameters. This problem becomes excessively acute and severe, especially in Persian/Arabic documents. Since the Persian/Arabic scripts differ considerably from the English scripts, most of the proposed methods for the English scripts do not render good results for the Persian scripts. In this paper, we present a novel parameter-free method for segmenting the Persian/Arabic document images which also works well for English scripts. This method segments the document image into maximal homogeneous regions and identifies them as texts and non-texts based on a pyramidal image structure. In other words the proposed method is capable of document segmentation without considering the character font sizes, text line spacing, and document layout structures. This algorithm is examined for 150 Arabic/Persian and English documents and document segmentation process are done successfully for 96 percent of documents.

Keywords: Persian/Arabic document, document segmentation, Pyramidal Image Structure, skew detection and correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
2944 Continuous Measurement of Spatial Exposure Based on Visual Perception in Three-Dimensional Space

Authors: Nanjiang Chen

Abstract:

In the backdrop of expanding urban landscapes, accurately assessing spatial openness is critical. Traditional visibility analysis methods grapple with discretization errors and inefficiencies, creating a gap in truly capturing the human experience of space. Addressing these gaps, this paper presents a continuous visibility algorithm, providing a potentially valuable approach to measuring urban spaces from a human - centric perspective. This study presents a methodological breakthrough by applying this algorithm to urban visibility analysis. Unlike conventional approaches, this technique allows for a continuous range of visibility assessment, closely mirroring human visual perception. By eliminating the need for predefined subdivisions in ray casting, it offers a more accurate and efficient tool for urban planners and architects. The proposed algorithm not only reduces computational errors but also demonstrates faster processing capabilities, validated through a case study in Beijing's urban setting. Its key distinction lies in its potential to benefit a broad spectrum of stakeholders, ranging from urban developers to public policymakers, aiding in the creation of urban spaces that prioritize visual openness and quality of life. This advancement in urban analysis methods could lead to more inclusive, comfortable, and well-integrated urban environments, enhancing the spatial experience for communities worldwide.

Keywords: Visual openness, spatial continuity, ray-tracing algorithms, urban computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30
2943 Effect of Wood Vinegar for Controlling on Housefly (Musca domestica L.)

Authors: U. Pangnakorn, S. Kanlaya, C. Kuntha

Abstract:

Raw wood vinegar was purified by both standing and filtering methods. Toxicity tests were conducted under laboratory conditions by the topical application method (contact poison) and feeding method (stomach poison). Larvicidal activities of wood vinegar at four different concentrations (10, 15, 20, 25 and 30 %) were studied against second instar larvae of housefly (Musca domestica L.). Four replicates were maintained for all treatments and controls. Larval mortality was recorded up to 96 hours and compared with the larval survivability by two methods of larvicidal bioassay. Percent pupation and percent adult emergence were observed in treated M. domestica. The study revealed that the feeding method gave higher efficiency compared with the topical application method. Larval mortality increased with increasing concentration of wood vinegar and the duration of exposure. No mortality was found in treated M. domestica larvae at minimum 10% concentration of wood vinegar through the experiments. The treated larvae were maintained up to pupa and adult emergence. At 30% maximum concentration larval duration was extended to 11 days in M. domestica for topical application method and 9 days for feeding method. Similarly the pupal durations were also increased with increased concentrations (16 and 24 days for topical application method and feeding method respectively at 30% concentration) of the treatments.

Keywords: Housefly (Musca domestica L.), wood vinegar, mortality, topical application, feeding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3156
2942 Quantifying the Methods of Monitoring Timers in Electric Water Heater for Grid Balancing on Demand Side Management: A Systematic Mapping Review

Authors: Yamamah Abdulrazaq, Lahieb A. Abrahim, Samuel E. Davies, Iain Shewring

Abstract:

Electric water heater (EWH) is a powerful appliance that uses electricity in residential, commercial, and industrial settings, and the ability to control them properly will result in cost savings and the prevention of blackouts on the national grid. This article discusses the usage of timers in EWH control strategies for demand-side management (DSM). To the authors' knowledge, there is no systematic mapping review focusing on the utilization of EWH control strategies in DSM has yet been conducted. Consequently, the purpose of this research is to identify and examine main papers exploring EWH procedures in DSM by quantifying and categorizing information with regard to publication year and source, kind of methods, and source of data for monitoring control techniques. In order to answer the research questions, a total of 31 publications published between 1999 and 2023 were selected depending on specific inclusion and exclusion criteria. The data indicate that direct load control (DLC) has been somewhat more prevalent than indirect load control (ILC). Additionally, the mix method is much lower than the other techniques, and the proportion of real-time data (RTD) to non-real-time data (NRTD) is about equal.

Keywords: Demand side management, direct load control, electric water heater, indirect load control, non-real-time data, real time data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 112
2941 Virtual Conciliation in Colombia: Evaluation of Maturity Level within the Framework of E-Government

Authors: Jenny Paola Forero Pachón, Sonia Cristina Gamboa Sarmiento, Luis Carlos Gómez Flórez

Abstract:

The Colombian government has defined an e-government strategy to take advantage of Information Technologies (IT) in order to contribute to the building of a more efficient, transparent and participative State that provides better services to citizens and businesses. In this regard, the Justice sector is one of the government sectors where IT has generated more expectation considering that the country has a judicial processes backlog. This situation has led to the search for alternative forms of access to justice that speed up the process while providing a low cost for citizens. To this end, the Colombian government has authorized the use of Alternative Dispute Resolution methods (ADR), a remedy where disputes can be resolved more quickly compared to judicial processes while facilitating greater communication between the parties, without recourse to judicial authority. One of these methods is conciliation, which includes a special modality that takes advantage of IT for the development of itself known as virtual conciliation. With this option the conciliation is supported by information systems, applications or platforms and communications are provided through it. This paper evaluates the level of maturity in how the service of virtual conciliation is under the framework of this strategy. This evaluation is carried out considering Shahkooh's 5-phase model for e-government. As a result, it is evident that in the context of conciliation, maturity does not reach the necessary level in the model so that it can be considered as virtual conciliation; therefore, it is necessary to define strategies to maximize the potential of IT in this context.

Keywords: Alternative dispute resolution, e-government, evaluation of maturity, Shahkooh model, virtual conciliation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
2940 Cutting Propagation Studies in Pennisetum divisum and Tamarix aucheriana as Native Plant Species of Kuwait

Authors: L. Almulla

Abstract:

Native plants are better adapted to the local environment providing a more natural effect on landscape projects; their use will both conserve natural resources and produce sustainable greenery. Continuation of evaluation of additional native plants is essential to increase diversity of plant resources for greenery projects. Therefore, in this project an effort was made to study the mass multiplication of further native plants for greenery applications. Standardization of vegetative propagation methods is essential for conservation and sustainable utilization of native plants in restoration projects. Moreover, these simple propagation methods can be readily adapted by the local nursery sector in Kuwait. In the present study, various treatments were used to mass multiply selected plants using vegetative parts to secure maximum rooting and initial growth. Soft or semi-hardwood cuttings of selected native plants were collected from mother plants and subjected to different treatments. Pennisetum divisum can be vegetatively propagated by cuttings/off-shoots. However, Tamarix aucheriana showed maximum number of rooted cuttings and stronger vigor seedlings with the lowest growth hormone concentration. Standardizing the propagation techniques for the native plant species will add to the rehabilitation and landscape revegetation projects in Kuwait.

Keywords: Kuwait desert, landscape, rooting percentage vegetative propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 747
2939 A Modular On-line Profit Sharing Approach in Multiagent Domains

Authors: Pucheng Zhou, Bingrong Hong

Abstract:

How to coordinate the behaviors of the agents through learning is a challenging problem within multi-agent domains. Because of its complexity, recent work has focused on how coordinated strategies can be learned. Here we are interested in using reinforcement learning techniques to learn the coordinated actions of a group of agents, without requiring explicit communication among them. However, traditional reinforcement learning methods are based on the assumption that the environment can be modeled as Markov Decision Process, which usually cannot be satisfied when multiple agents coexist in the same environment. Moreover, to effectively coordinate each agent-s behavior so as to achieve the goal, it-s necessary to augment the state of each agent with the information about other existing agents. Whereas, as the number of agents in a multiagent environment increases, the state space of each agent grows exponentially, which will cause the combinational explosion problem. Profit sharing is one of the reinforcement learning methods that allow agents to learn effective behaviors from their experiences even within non-Markovian environments. In this paper, to remedy the drawback of the original profit sharing approach that needs much memory to store each state-action pair during the learning process, we firstly address a kind of on-line rational profit sharing algorithm. Then, we integrate the advantages of modular learning architecture with on-line rational profit sharing algorithm, and propose a new modular reinforcement learning model. The effectiveness of the technique is demonstrated using the pursuit problem.

Keywords: Multi-agent learning; reinforcement learning; rationalprofit sharing; modular architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
2938 Vibroacoustic Modulation of Wideband Vibrations and Its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy production methods. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the VAM are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: Damage detection, turbine blades, Vibro-Acoustic Structural Health Monitoring, SHM, Detecting of Envelope Modulation on Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 450
2937 A System to Adapt Techniques of Text Summarizing to Polish

Authors: Marcin Ciura, Damian Grund, S

Abstract:

This paper describes a system, in which various methods of text summarizing can be adapted to Polish. A structure of the system is presented. A modular construction of the system and access to the system via the Internet are signaled.

Keywords: Automatic summary generation, linguistic analysis, text generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
2936 Rapid Determination of Biochemical Oxygen Demand

Authors: Mayur Milan Kale, Indu Mehrotra

Abstract:

Biochemical Oxygen Demand (BOD) is a measure of the oxygen used in bacteria mediated oxidation of organic substances in water and wastewater. Theoretically an infinite time is required for complete biochemical oxidation of organic matter, but the measurement is made over 5-days at 20 0C or 3-days at 27 0C test period with or without dilution. Researchers have worked to further reduce the time of measurement. The objective of this paper is to review advancement made in BOD measurement primarily to minimize the time and negate the measurement difficulties. Survey of literature review in four such techniques namely BOD-BARTTM, Biosensors, Ferricyanidemediated approach, luminous bacterial immobilized chip method. Basic principle, method of determination, data validation and their advantage and disadvantages have been incorporated of each of the methods. In the BOD-BARTTM method the time lag is calculated for the system to change from oxidative to reductive state. BIOSENSORS are the biological sensing element with a transducer which produces a signal proportional to the analyte concentration. Microbial species has its metabolic deficiencies. Co-immobilization of bacteria using sol-gel biosensor increases the range of substrate. In ferricyanidemediated approach, ferricyanide has been used as e-acceptor instead of oxygen. In Luminous bacterial cells-immobilized chip method, bacterial bioluminescence which is caused by lux genes was observed. Physiological responses is measured and correlated to BOD due to reduction or emission. There is a scope to further probe into the rapid estimation of BOD.

Keywords: BOD, Four methods, Rapid estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3641
2935 Contamination of Organochlorine Pesticides in Nest Soil, Egg, and Blood of the Snail-eating Turtle (Malayemys macrocephala) from the Chao Phraya River Basin, Thailand

Authors: Sarun Keithmaleesatti, Pakorn Varanusupakul, Wattasit Siriwong, Kumthorn Thirakhupt, Mark Robson, Noppadon Kitana

Abstract:

Organochlorine pesticides (OCPs) are known to be persistent and bioaccumulative toxicants that may cause reproductive impairments in wildlife as well as human. The current study uses the snail-eating turtle Malayemys macrocephala, a long-lived animal commonly distribute in rice field habitat in central part of Thailand, as a sentinel to monitor OCP contamination in environment. The nest soil, complete clutch of eggs, and blood of the turtle were collected from agricultural areas in the Chao Phraya River Basin, Thailand during the nesting season of 2007-2008. The novel methods for tissue extraction by an accelerated solvent extractor (ASE, for egg) and liquid-liquid extraction (for blood) have been developed. The nineteen OCP residues were analyzed by gas chromatography with micro-electron captured detector (GC-μECD). The validated methods have met requirements of the AOAC standard. The results indicated that significant amounts of OCPs are still contaminated in nest soil and eggs of the turtle even though the OCPs had been banned in this area for many years. This suggested the potential risk to health of wildlife as well as human in the area.

Keywords: Gas chromatography, persistent organic pollutants, rice field, sentinel species.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
2934 Thiosulfate Leaching of the Auriferous Ore from Castromil Deposit: A Case Study

Authors: Rui Sousa, Aurora Futuro, António Fiúza

Abstract:

The exploitation of gold ore deposits is highly dependent on efficient mineral processing methods, although actual perspectives based on life-cycle assessment introduce difficulties that were unforeseen in a very recent past. Cyanidation is the most applied gold processing method, but the potential environmental problems derived from the usage of cyanide as leaching reagent led to a demand for alternative methods. Ammoniacal thiosulfate leaching is one of the most important alternatives to cyanidation. In this article, some experimental studies carried out in order to assess the feasibility of thiosulfate as a leaching agent for the ore from the unexploited Portuguese gold mine of Castromil. It became clear that the process depends on the concentrations of ammonia, thiosulfate and copper. Based on this fact, a few leaching tests were performed in order to assess the best reagent prescription, and also the effects of different combination of these concentrations. Higher thiosulfate concentrations cause the decrease of gold dissolution. Lower concentrations of ammonia require higher thiosulfate concentrations, and higher ammonia concentrations require lower thiosulfate concentrations. The addition of copper increases the gold dissolution ratio. Subsequently, some alternative operatory conditions were tested such as variations in temperature and in the solid/liquid ratio as well as the application of a pre-treatment before the leaching stage. Finally, thiosulfate leaching was compared to cyanidation. Thiosulfate leaching showed to be an important alternative, although a pre-treatment is required to increase the yield of the gold dissolution.

Keywords: Gold, leaching, pre-treatment, thiosulfate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
2933 Computing Entropy for Ortholog Detection

Authors: Hsing-Kuo Pao, John Case

Abstract:

Biological sequences from different species are called or-thologs if they evolved from a sequence of a common ancestor species and they have the same biological function. Approximations of Kolmogorov complexity or entropy of biological sequences are already well known to be useful in extracting similarity information between such sequences -in the interest, for example, of ortholog detection. As is well known, the exact Kolmogorov complexity is not algorithmically computable. In prac-tice one can approximate it by computable compression methods. How-ever, such compression methods do not provide a good approximation to Kolmogorov complexity for short sequences. Herein is suggested a new ap-proach to overcome the problem that compression approximations may notwork well on short sequences. This approach is inspired by new, conditional computations of Kolmogorov entropy. A main contribution of the empir-ical work described shows the new set of entropy-based machine learning attributes provides good separation between positive (ortholog) and nega-tive (non-ortholog) data - better than with good, previously known alter-natives (which do not employ some means to handle short sequences well).Also empirically compared are the new entropy based attribute set and a number of other, more standard similarity attributes sets commonly used in genomic analysis. The various similarity attributes are evaluated by cross validation, through boosted decision tree induction C5.0, and by Receiver Operating Characteristic (ROC) analysis. The results point to the conclu-sion: the new, entropy based attribute set by itself is not the one giving the best prediction; however, it is the best attribute set for use in improving the other, standard attribute sets when conjoined with them.

Keywords: compression, decision tree, entropy, ortholog, ROC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
2932 The Impact of Enterprise Resource Planning System (ERP) in a South African Company

Authors: Mushavhanamadi K., Mbohwa C.

Abstract:

This paper presents the findings of the investigation of ERP implementation, challenges experiences by a South African Company in ERP implementation, success factors, failures, and propose recommendations to improve ERP implementation. The data collections methods used are questionnaires. The paper contributes to discussion on ERP implementation in developing economics.

Keywords: CSF, ERP, MRP, MRP II.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4683
2931 Measuring the Structural Similarity of Web-based Documents: A Novel Approach

Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian

Abstract:

Most known methods for measuring the structural similarity of document structures are based on, e.g., tag measures, path metrics and tree measures in terms of their DOM-Trees. Other methods measures the similarity in the framework of the well known vector space model. In contrast to these we present a new approach to measuring the structural similarity of web-based documents represented by so called generalized trees which are more general than DOM-Trees which represent only directed rooted trees.We will design a new similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as strings of linear integers, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments to solve a novel and challenging problem: Measuring the structural similarity of generalized trees. More precisely, we first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based documents.

Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
2930 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients Cohorts: A Case Study in Scotland

Authors: Sotirios Raptis

Abstract:

Health and Social care (HSc) services planning and scheduling are facing unprecedented challenges, due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven approaches can help to improve policies, plan and design services provision schedules using algorithms that assist healthcare managers to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as Classification and Regression Trees (CART), Random Forests (RF), and Logistic Regression (LGR). The significance tests Chi-Squared and Student’s test are used on data over a 39 years span for which data exist for services delivered in Scotland. The demands are associated using probabilities and are parts of statistical hypotheses. These hypotheses, as their NULL part, assume that the target demand is statistically dependent on other services’ demands. This linking is checked using the data. In addition, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus, groups of services. Statistical tests confirmed ML coupling and made the prediction statistically meaningful and proved that a target service can be matched reliably to other services while ML showed that such marked relationships can also be linear ones. Zero padding was used for missing years records and illustrated better such relationships both for limited years and for the entire span offering long-term data visualizations while limited years periods explained how well patients numbers can be related in short periods of time or that they can change over time as opposed to behaviours across more years. The prediction performance of the associations were measured using metrics such as Receiver Operating Characteristic (ROC), Area Under Curve (AUC) and Accuracy (ACC) as well as the statistical tests Chi-Squared and Student. Co-plots and comparison tables for the RF, CART, and LGR methods as well as the p-value from tests and Information Exchange (IE/MIE) measures are provided showing the relative performance of ML methods and of the statistical tests as well as the behaviour using different learning ratios. The impact of k-neighbours classification (k-NN), Cross-Correlation (CC) and C-Means (CM) first groupings was also studied over limited years and for the entire span. It was found that CART was generally behind RF and LGR but in some interesting cases, LGR reached an AUC = 0 falling below CART, while the ACC was as high as 0.912 showing that ML methods can be confused by zero-padding or by data’s irregularities or by the outliers. On average, 3 linear predictors were sufficient, LGR was found competing well RF and CART followed with the same performance at higher learning ratios. Services were packed only when a significance level (p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, low birth weights, alcoholism, drug abuse, and emergency admissions. The work found  that different HSc services can be well packed as plans of limited duration, across various services sectors, learning configurations, as confirmed by using statistical hypotheses.

Keywords: Class, cohorts, data frames, grouping, prediction, probabilities, services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 460
2929 Hospital-Pharmacy Management System: A UAE Case Study

Authors: A. Khelifi, D. Ahmed, R. Salem, N. Ali

Abstract:

Large patients’ queues at pharmacies and hospitals are a problem that faces the supposedly smooth and healthy environment in United Arab Emirates. As this sometimes leads to dissatisfaction from visiting patients, we tried to solve this problem with additional beneficial functions by developing the Hospital-Pharmacy Management System. The primary purpose of this research is to develop a system that joins the databases of a hospital and a pharmacy together for a better integrated system that provides a better coherent working environment. Three methods are used to design the system. These methods are detailed literature review, an extensive feasibility study and surveys for doctors, hospital IT managers and End-users. Interviews and surveys with related stakeholders were done to depict system’s requirements; design and prototype. The prototype illustrates system’s features and its client and server architecture. The system has a mobile application for visiting patients to, mainly, keep track of their prescriptions and access to their personal information. The server side allows doctors to submit the prescriptions online to pharmacists who will process them. This system is expected to reduce the long waiting queues of patients and increase their satisfaction while also reducing doctors and pharmacists’ stress and facilitating their work. It will be deployed to users of Android devices only. This limitation will be resolved, as one of main future enhancements, once the system finds acceptance from hospitals and pharmacies in United Arab Emirates.

Keywords: Hospital, Information System, Integration, Pharmacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11743
2928 Technologies of Isolation and Separation of Anthraquinone Derivatives

Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina

Abstract:

In review the generalized data about different methods of extraction, separation and purification of natural and modify anthraquinones is presented. The basic regularity of an isolation process is analyzed. Action of temperature, pH, and polarity of extragent, catalysts and other factors on an isolation process is revealed.

Keywords: Anthraquinones, chromatography, extraction, phytopreparation, precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705