Search results for: propagation matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1468

Search results for: propagation matrix

418 Investigation on Feature Extraction and Classification of Medical Images

Authors: P. Gnanasekar, A. Nagappan, S. Sharavanan, O. Saravanan, D. Vinodkumar, T. Elayabharathi, G. Karthik

Abstract:

In this paper we present the deep study about the Bio- Medical Images and tag it with some basic extracting features (e.g. color, pixel value etc). The classification is done by using a nearest neighbor classifier with various distance measures as well as the automatic combination of classifier results. This process selects a subset of relevant features from a group of features of the image. It also helps to acquire better understanding about the image by describing which the important features are. The accuracy can be improved by increasing the number of features selected. Various types of classifications were evolved for the medical images like Support Vector Machine (SVM) which is used for classifying the Bacterial types. Ant Colony Optimization method is used for optimal results. It has high approximation capability and much faster convergence, Texture feature extraction method based on Gabor wavelets etc..

Keywords: ACO Ant Colony Optimization, Correlogram, CCM Co-Occurrence Matrix, RTS Rough-Set theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3013
417 A Fuzzy Tumor Volume Estimation Approach Based On Fuzzy Segmentation of MR Images

Authors: Sara A.Yones, Ahmed S. Moussa

Abstract:

Quantitative measurements of tumor in general and tumor volume in particular, become more realistic with the use of Magnetic Resonance imaging, especially when the tumor morphological changes become irregular and difficult to assess by clinical examination. However, tumor volume estimation strongly depends on the image segmentation, which is fuzzy by nature. In this paper a fuzzy approach is presented for tumor volume segmentation based on the fuzzy connectedness algorithm. The fuzzy affinity matrix resulting from segmentation is then used to estimate a fuzzy volume based on a certainty parameter, an Alpha Cut, defined by the user. The proposed method was shown to highly affect treatment decisions. A statistical analysis was performed in this study to validate the results based on a manual method for volume estimation and the importance of using the Alpha Cut is further explained.

Keywords: Alpha Cut, Fuzzy Connectedness, Magnetic Resonance Imaging, Tumor volume estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
416 New Explicit Group Newton's Iterative Methods for the Solutions of Burger's Equation

Authors: Tan K. B., Norhashidah Hj. M. Ali

Abstract:

In this article, we aim to discuss the formulation of two explicit group iterative finite difference methods for time-dependent two dimensional Burger-s problem on a variable mesh. For the non-linear problems, the discretization leads to a non-linear system whose Jacobian is a tridiagonal matrix. We discuss the Newton-s explicit group iterative methods for a general Burger-s equation. The proposed explicit group methods are derived from the standard point and rotated point Crank-Nicolson finite difference schemes. Their computational complexity analysis is discussed. Numerical results are given to justify the feasibility of these two proposed iterative methods.

Keywords: Standard point Crank-Nicolson (CN), Rotated point Crank-Nicolson (RCN), Explicit Group (EG), Explicit Decoupled Group (EDG).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
415 Numerical Investigation of Non Fourier Heat Conduction in a Semi-infinite Body due to a Moving Concentrated Heat Source Composed with Radiational Boundary Condition

Authors: M. Akbari, S. Sadodin

Abstract:

In this paper, the melting of a semi-infinite body as a result of a moving laser beam has been studied. Because the Fourier heat transfer equation at short times and large dimensions does not have sufficient accuracy; a non-Fourier form of heat transfer equation has been used. Due to the fact that the beam is moving in x direction, the temperature distribution and the melting pool shape are not asymmetric. As a result, the problem is a transient threedimensional problem. Therefore, thermophysical properties such as heat conductivity coefficient, density and heat capacity are functions of temperature and material states. The enthalpy technique, used for the solution of phase change problems, has been used in an explicit finite volume form for the hyperbolic heat transfer equation. This technique has been used to calculate the transient temperature distribution in the semi-infinite body and the growth rate of the melt pool. In order to validate the numerical results, comparisons were made with experimental data. Finally, the results of this paper were compared with similar problem that has used the Fourier theory. The comparison shows the influence of infinite speed of heat propagation in Fourier theory on the temperature distribution and the melt pool size.

Keywords: Non-Fourier, Enthalpy technique, Melt pool, Radiational boundary condition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
414 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD, as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches, such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: Autism spectrum disorder, clustering, optimization, unsupervised machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417
413 A Review of the Characteristics and Optimization of Optical Properties of Zirconia Ceramics for Aesthetic Dental Restorations

Authors: R. A. Shahmiri, O. C. Standard, J. N. Hart, C. C. Sorrell

Abstract:

The ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) has been used as a dental biomaterial for several decades. The strength and toughness of this material can be accounted for by its toughening mechanisms, which include transformation toughening, crack deflection, zone shielding, contact shielding, and crack bridging. Prevention of crack propagation is of critical importance in high-fatigue situations, such as those encountered in mastication and para-function. However, the poor translucence of Y-TZP in polycrystalline form is such that it may not meet the aesthetic requirements due to its white/grey appearance. To improve the optical properties of Y-TZP, more detailed study of the optical properties is required; in particular, precise evaluation of the refractive index, absorption coefficient, and scattering coefficient are necessary. The measurement of the optical parameters has been based on the assumption that light scattered from biological media is isotropically distributed over all angles. In fact, the optical behavior of real biological materials depends on the angular scattering of light due to the anisotropic nature of the materials. The purpose of the present work is to evaluate the optical properties (including color, opacity/translucence, scattering, and fluorescence) of zirconia dental ceramics and their control through modification of the chemical composition, phase composition, and surface microstructure.

Keywords: Optical properties, opacity/translucence, scattering, fluorescence, chemical composition, phase composition, surface microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
412 Space Time Processing with Adaptive STBC-OFDM Systems

Authors: F. Sarabchi, M. E. Kalantari

Abstract:

In this paper, Optimum adaptive loading algorithms are applied to multicarrier system with Space-Time Block Coding (STBC) scheme associated with space-time processing based on singular-value decomposition (SVD) of the channel matrix over Rayleigh fading channels. SVD method has been employed in MIMO-OFDM system in order to overcome subchannel interference. Chaw-s and Compello-s algorithms have been implemented to obtain a bit and power allocation for each subcarrier assuming instantaneous channel knowledge. The adaptive loaded SVD-STBC scheme is capable of providing both full-rate and full-diversity for any number of transmit antennas. The effectiveness of these techniques has demonstrated through the simulation of an Adaptive loaded SVDSTBC system, and the comparison shown that the proposed algorithms ensure better performance in the case of MIMO.

Keywords: OFDM, MIMO, SVD, STBC, Adaptive Loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
411 Solution of Two Dimensional Quasi-Harmonic Equations with CA Approach

Authors: F. Rezaie Moghaddam, J. Amani, T. Rezaie Moghaddam

Abstract:

Many computational techniques were applied to solution of heat conduction problem. Those techniques were the finite difference (FD), finite element (FE) and recently meshless methods. FE is commonly used in solution of equation of heat conduction problem based on the summation of stiffness matrix of elements and the solution of the final system of equations. Because of summation process of finite element, convergence rate was decreased. Hence in the present paper Cellular Automata (CA) approach is presented for the solution of heat conduction problem. Each cell considered as a fixed point in a regular grid lead to the solution of a system of equations is substituted by discrete systems of equations with small dimensions. Results show that CA can be used for solution of heat conduction problem.

Keywords: Heat conduction, Cellular automata, convergencerate, discrete system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
410 Influence Maximization in Dynamic Social Networks and Graphs

Authors: Gkolfo I. Smani, Vasileios Megalooikonomou

Abstract:

Influence and influence diffusion have been studied extensively in social networks. However, most existing literature on this task are limited on static networks, ignoring the fact that the interactions between users change over time. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time is studied. The DM algorithm is an extension of Matrix Influence (MATI) algorithm and solves the Influence Maximization (IM) problem in dynamic networks and is proposed under the Linear Threshold (LT) and Independent Cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.

Keywords: Influence maximization, dynamic social networks, diffusion, social influence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
409 Estimation of the Bit Side Force by Using Artificial Neural Network

Authors: Mohammad Heidari

Abstract:

Horizontal wells are proven to be better producers because they can be extended for a long distance in the pay zone. Engineers have the technical means to forecast the well productivity for a given horizontal length. However, experiences have shown that the actual production rate is often significantly less than that of forecasted. It is a difficult task, if not impossible to identify the real reason why a horizontal well is not producing what was forecasted. Often the source of problem lies in the drilling of horizontal section such as permeability reduction in the pay zone due to mud invasion or snaky well patterns created during drilling. Although drillers aim to drill a constant inclination hole in the pay zone, the more frequent outcome is a sinusoidal wellbore trajectory. The two factors, which play an important role in wellbore tortuosity, are the inclination and side force at bit. A constant inclination horizontal well can only be drilled if the bit face is maintained perpendicular to longitudinal axis of bottom hole assembly (BHA) while keeping the side force nil at the bit. This approach assumes that there exists no formation force at bit. Hence, an appropriate BHA can be designed if bit side force and bit tilt are determined accurately. The Artificial Neural Network (ANN) is superior to existing analytical techniques. In this study, the neural networks have been employed as a general approximation tool for estimation of the bit side forces. A number of samples are analyzed with ANN for parameters of bit side force and the results are compared with exact analysis. Back Propagation Neural network (BPN) is used to approximation of bit side forces. Resultant low relative error value of the test indicates the usability of the BPN in this area.

Keywords: Artificial Neural Network, BHA, Horizontal Well, Stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
408 A Comparison of First and Second Order Training Algorithms for Artificial Neural Networks

Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil

Abstract:

Minimization methods for training feed-forward networks with Backpropagation are compared. Feedforward network training is a special case of functional minimization, where no explicit model of the data is assumed. Therefore due to the high dimensionality of the data, linearization of the training problem through use of orthogonal basis functions is not desirable. The focus is functional minimization on any basis. A number of methods based on local gradient and Hessian matrices are discussed. Modifications of many methods of first and second order training methods are considered. Using share rates data, experimentally it is proved that Conjugate gradient and Quasi Newton?s methods outperformed the Gradient Descent methods. In case of the Levenberg-Marquardt algorithm is of special interest in financial forecasting.

Keywords: Backpropagation algorithm, conjugacy condition, line search, matrix perturbation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3643
407 Preparation and Characterization of Polyaniline (PANI)-Platinum Nanocomposite

Authors: Kumar Neeraj, Ranjan Haldar

Abstract:

Polyaniline is an indispensible component in lightemitting devices (LEDs), televisions, cellular telephones, automotive, corrosion-resistant coatings, actuators etc. The electrical conductivity properties was found be increased by introduction of metal nano particles. In the present study, an attempt has been made to utilize platinum nano particles to achieve the improved electrical properties. Polyaniline and Pt-polyaniline composite are synthesized by electrochemical routes. X-ray diffractometer confirms the amorphous nature of polyaniline. The Bragg’s diffraction peaks correspond to platinum nanoparticles in Pt-polyaniline composite and thermogravimetric analyzer indicates its decomposition at certain temperature. The Scanning Electron Micrographs of colloidal platinum nanoparticles were spherical, uniform shape in the composite. The current-voltage (I-V) characteristics of the PANI and composites were also studied which indicate a significant decreasing resistivity than PANI-Platinum after introduction of pt nanoparticles in the matrix of polyaniline (PANI).

Keywords: Polyaniline, XRD and Platinum Nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
406 Earth Station Neural Network Control Methodology and Simulation

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.

Keywords: Satellite, neural network, MATLAB, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
405 A Finite Element Model for Estimating Young-s Modulus of Carbon Nanotube Reinforced Composites Incorporating Elastic Cross-Links

Authors: Kaveh PourAkbar Saffar, Nima JamilPour, Ahmad Raeisi Najafi, Gholamreza Rouhi, Ahmad Reza Arshi, Abdolhossein Fereidoon

Abstract:

The presence of chemical bonding between functionalized carbon nanotubes and matrix in carbon nanotube reinforced composites is modeled by elastic beam elements representing covalent bonding characteristics. Neglecting other reinforcing mechanisms in the composite such as relatively weak interatomic Van der Waals forces, this model shows close results to the Rule of Mixtures model-s prediction for effective Young-s modulus of a Representative Volume Element of composite for small volume fractions (~1%) and high aspect ratios (L/D>200) of CNTs.

Keywords: Beam Element, Carbon Nanotube Reinforced Composite, Cross-link, Young's modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
404 Improved Tropical Wood Species Recognition System based on Multi-feature Extractor and Classifier

Authors: Marzuki Khalid, RubiyahYusof, AnisSalwaMohdKhairuddin

Abstract:

An automated wood recognition system is designed to classify tropical wood species.The wood features are extracted based on two feature extractors: Basic Grey Level Aura Matrix (BGLAM) technique and statistical properties of pores distribution (SPPD) technique. Due to the nonlinearity of the tropical wood species separation boundaries, a pre classification stage is proposed which consists ofKmeans clusteringand kernel discriminant analysis (KDA). Finally, Linear Discriminant Analysis (LDA) classifier and KNearest Neighbour (KNN) are implemented for comparison purposes. The study involves comparison of the system with and without pre classification using KNN classifier and LDA classifier.The results show that the inclusion of the pre classification stage has improved the accuracy of both the LDA and KNN classifiers by more than 12%.

Keywords: Tropical wood species, nonlinear data, featureextractors, classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
403 Polyisoprene-coated Silica/Natural Rubber Composite

Authors: Chatwarin Poochai, Puttichai Pae-on, Thirawudh Pongpayoon

Abstract:

The commercial white tyres are usually used for forklifts in food and medicine industries. Conventionally, silica is used as reinforcement in the tyres. However, the adhesion between silica particles and rubber is remarkably poor. To improve the problem of adhesion and hence enhance wear resistance, modification of silica surface is one of the solutions. In this work, the natural rubber compound blending with polyisoprene-coated silica prepared by admicellar polymerization technique was studied to compare with the natural rubber compound of unmodified silica. The surface characterization of modified silica was also examined by SEM, FTIR, and TGA. The results show that polyisoprene-coated silica/natural rubber compound gave better overall mechanical properties, especially wear resistance with the improvement of the adhesion between silica and natural rubber matrix that can be seen in the SEM micrograph.

Keywords: White tyre, admicellar polymerization, modified silica, wear resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3001
402 Microbial Leaching Process to Recover Valuable Metals from Spent Petroleum Catalyst Using Iron Oxidizing Bacteria

Authors: Debabrata Pradhan, Dong J. Kim, Jong G. Ahn, Seoung W. Lee

Abstract:

Spent petroleum catalyst from Korean petrochemical industry contains trace amount of metals such as Ni, V and Mo. Therefore an attempt was made to recover those trace metal using bioleaching process. Different leaching parameters such as Fe(II) concentration, pulp density, pH, temperature and particle size of spent catalyst particle were studied to evaluate their effects on the leaching efficiency. All the three metal ions like Ni, V and Mo followed dual kinetics, i.e., initial faster followed by slower rate. The percentage of leaching efficiency of Ni and V were higher than Mo. The leaching process followed a diffusion controlled model and the product layer was observed to be impervious due to formation of ammonium jarosite (NH4)Fe3(SO4)2(OH)6. In addition, the lower leaching efficiency of Mo was observed due to a hydrophobic coating of elemental sulfur over Mo matrix in the spent catalyst.

Keywords: Bioleaching, diffusion control, shrinking core, spentpetroleum catalyst.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
401 Modeling and Simulations of Complex Low- Dimensional systems: Testing the Efficiency of Parallelization

Authors: Ryszard Matysiak, Grzegorz Kamieniarz

Abstract:

The deterministic quantum transfer-matrix (QTM) technique and its mathematical background are presented. This important tool in computational physics can be applied to a class of the real physical low-dimensional magnetic systems described by the Heisenberg hamiltonian which includes the macroscopic molecularbased spin chains, small size magnetic clusters embedded in some supramolecules and other interesting compounds. Using QTM, the spin degrees of freedom are accurately taken into account, yielding the thermodynamical functions at finite temperatures. In order to test the application for the susceptibility calculations to run in the parallel environment, the speed-up and efficiency of parallelization are analyzed on our platform SGI Origin 3800 with p = 128 processor units. Using Message Parallel Interface (MPI) system libraries we find the efficiency of the code of 94% for p = 128 that makes our application highly scalable.

Keywords: Deterministic simulations, low-dimensional magnets, modeling of complex systems, parallelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
400 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks

Authors: Marque Adrien, Delahaye Daniel, Marechal Pierre, Berry Isabelle

Abstract:

Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.

Keywords: Wind direction, uncertainty level, Unmanned Aerial Vehicle, convolution neural network, SPD matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28
399 Clustering of Variables Based On a Probabilistic Approach Defined on the Hypersphere

Authors: Paulo Gomes, Adelaide Figueiredo

Abstract:

We consider n individuals described by p standardized variables, represented by points of the surface of the unit hypersphere Sn-1. For a previous choice of n individuals we suppose that the set of observables variables comes from a mixture of bipolar Watson distribution defined on the hypersphere. EM and Dynamic Clusters algorithms are used for identification of such mixture. We obtain estimates of parameters for each Watson component and then a partition of the set of variables into homogeneous groups of variables. Additionally we will present a factor analysis model where unobservable factors are just the maximum likelihood estimators of Watson directional parameters, exactly the first principal component of data matrix associated to each group previously identified. Such alternative model it will yield us to directly interpretable solutions (simple structure), avoiding factors rotations.

Keywords: Dynamic Clusters algorithm, EM algorithm, Factor analysis model, Hierarchical Clustering, Watson distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
398 Application of the Experimental Planning Design to the Notched Precracked Tensile Fracture of Composite

Authors: N. Mahmoudi

Abstract:

Composite materials have important assets compared to traditional materials. They bring many functional advantages: lightness, mechanical resistance and chemical, etc. In the present study we examine the effect of a circular central notch and a precrack on the tensile fracture of two woven composite materials. The tensile tests were applied to a standardized specimen, notched and a precarcked (orientation of the crack 0°, 45° and 90°). These tensile tests were elaborated according to an experimental planning design of the type 23.31 requiring 24 experiments with three repetitions. By the analysis of regression, we obtained a mathematical model describing the maximum load according to the influential parameters (hole diameter, precrack length, angle of a precrack orientation). The specimens precracked at 90° have a better behavior than those having a precrack at 45° and still better than those having of the precracks oriented at 0°. In addition the maximum load is inversely proportional to the notch size.

Keywords: Polymer matrix, Glasses, Fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
397 Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain

Authors: K. Khelil, H. Ammar, K. Saouchi

Abstract:

Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings.

Keywords: Bragg wavelength, coupled mode theory, optical fiber, temperature measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885
396 Computation of the Filtering Properties of Photonic Crystal Waveguide Discontinuities Using the Mode Matching Method

Authors: Athanasios Theoharidis, Thomas Kamalakis, Ioannis Neokosmidis, Thomas Sphicopoulos

Abstract:

In this paper, the application of the Mode Matching (MM) method in the case of photonic crystal waveguide discontinuities is presented. The structure under consideration is divided into a number of cells, which supports a number of guided and evanescent modes. These modes can be calculated numerically by an alternative formulation of the plane wave expansion method for each frequency. A matrix equation is then formed relating the modal amplitudes at the beginning and at the end of the structure. The theory is highly efficient and accurate and can be applied to study the transmission sensitivity of photonic crystal devices due to fabrication tolerances. The accuracy of the MM method is compared to the Finite Difference Frequency Domain (FDFD) and the Adjoint Variable Method (AVM) and good agreement is observed.

Keywords: Optical Communications, Integrated Optics, Photonic Crystals, Optical Waveguide Discontinuities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
395 Investigating Climate Change Trend Based on Data Simulation and IPCC Scenario during 2010-2030 AD: Case Study of Fars Province

Authors: Leila Rashidian, Abbas Ebrahimi

Abstract:

The development of industrial activities, increase in fossil fuel consumption, vehicles, destruction of forests and grasslands, changes in land use, and population growth have caused to increase the amount of greenhouse gases especially CO2 in the atmosphere in recent decades. This has led to global warming and climate change. In the present paper, we have investigated the trend of climate change according to the data simulation during the time interval of 2010-2030 in the Fars province. In this research, the daily climatic parameters such as maximum and minimum temperature, precipitation and number of sunny hours during the 1977-2008 time interval for synoptic stations of Shiraz and Abadeh and during 1995-2008 for Lar stations and also the output of HADCM3 model in 2010-2030 time interval have been used based on the A2 propagation scenario. The results of the model show that the average temperature will increase by about 1 degree centigrade and the amount of precipitation will increase by 23.9% compared to the observational data. In conclusion, according to the temperature increase in this province, the amount of precipitation in the form of snow will be reduced and precipitations often will occur in the form of rain. This 1-degree centigrade increase during the season will reduce production by 6 to 10% because of shortening the growing period of wheat.

Keywords: Climate change, Lars.WG, HADCM3 model, Fars province, climatic parameters, A2 scenario.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170
394 The Survey and the Comparison of Maximum Likelihood, Mahalanobis Distance and Minimum Distance Methods in Preparing Landuse Map in the Western Part of Isfahan Province

Authors: Ali Gholami, M.Esfadiari, M.H.Masihabadi

Abstract:

In this research three methods of Maximum Likelihood, Mahalanobis Distance and Minimum Distance were analyzed in the Western part of Isfahan province in the Iran country. For this purpose, the IRS satellite images and various land preparation uses in region including rangelands, irrigation farming, dry farming, gardens and urban areas were separated and identified. In these methods, matrix error and Kappa index were calculated and accuracy of each method, based on percentages: 53.13, 56.64 and 48.44, were obtained respectively. Considering the low accuracy of these methods to separate land uses due to spread of the land uses, it-s suggested the visual interpretation of the map, to preparing the land use map in this region. The map prepared by visual interpretation is in high accuracy if it will be accompany with the visit of the region.

Keywords: Aghche Region, land use map, MaximumLikelihood, Mahalanobis Distance and Minimum Distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
393 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems

Authors: Tomoaki Hashimoto

Abstract:

Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the effectiveness of the obtained stability condition.

Keywords: Computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
392 Polymerisation Shrinkage of Light−Cured Hydroxyapatite (HA)−Reinforced Dental Composites

Authors: Bilge S. Oduncu, Sevil Yucel, Ismail Aydin, Isil D. Sener, Gokhan Yamaner

Abstract:

The dental composites are preferably used as filling materials due to their esthetic appearances. Nevertheless one of the major problems, during the application of the dental composites, is shape change named as “polymerisation shrinkage" affecting clinical success of the dental restoration while photo-polymerisation. Polymerisation shrinkage of composites arises basically from the formation of a polymer due to the monomer transformation which composes of an organic matrix phase. It was sought, throughout this study, to detect and evaluate the structural polymerisation shrinkage of prepared dental composites in order to optimize the effects of various fillers included in hydroxyapatite (HA)-reinforced dental composites and hence to find a means to modify the properties of these dental composites prepared with defined parameters. As a result, the shrinkage values of the experimental dental composites were decreased by increasing the filler content of composites and the composition of different fillers used had effect on the shrinkage of the prepared composite systems.

Keywords: Dental composites, hydroxyapatite (HA), BisGMA, shrinkage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
391 Evaluation of Methodologies for Measuring Harmonics and Inter-Harmonics in Photovoltaic Facilities

Authors: Anésio de Leles F. Filho, Wesley R. de Oliveira, Jéssica S. G. Pena, Jorge A. C. Angarita

Abstract:

The increase in electric power demand in face of environmental issues has intensified the participation of renewable energy sources such as photovoltaics, in the energy matrix of various countries. Due to their operational characteristics, they can generate time-varying harmonic and inter-harmonic distortions. For this reason, the application of methods of measurement based on traditional Fourier analysis, as proposed by IEC 61000-4-7, can provide inaccurate results. Considering the aspects mentioned herein, came the idea of the development of this work which aims to present the results of a comparative evaluation between a methodology arising from the combination of the Prony method with the Kalman filter and another method based on the IEC 61000-4-30 and IEC 61000-4-7 standards. Employed in this study were synthetic signals and data acquired through measurements in a 50kWp photovoltaic installation.

Keywords: Harmonics, inter-harmonics, IEC61000-4-7, parametric estimators, photovoltaic generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
390 Fracture Control of the Soda-Lime Glass in Laser Thermal Cleavage

Authors: Jehnming Lin

Abstract:

The effects of the contact ball-lens on the soda lime glass in laser thermal cleavage with a cw Nd-YAG laser were investigated in this study. A contact ball-lens was adopted to generate a bending force on the crack formation of the soda-lime glass in the laser cutting process. The Nd-YAG laser beam (wavelength of 1064 nm) was focused through the ball-lens and transmitted to the soda-lime glass, which was coated with a carbon film on the surface with a bending force from a ball-lens to generate a tensile stress state on the surface cracking. The fracture was controlled by the contact ball-lens and a straight cutting was tested to demonstrate the feasibility. Experimental observations on the crack propagation from the leading edge, main section and trailing edge of the glass sheet were compared with various mechanical and thermal loadings. Further analyses on the stress under various laser powers and contact ball loadings were made to characterize the innovative technology. The results show that the distributions of the side crack at the leading and trailing edges are mainly dependent on the boundary condition, contact force, cutting speed and laser power. With the increase of the mechanical and thermal loadings, the region of the side cracks might be dramatically reduced with proper selection of the geometrical constrains. Therefore the application of the contact ball-lens is a possible way to control the fracture in laser cleavage with improved cutting qualities.

Keywords: Laser cleavage, controlled fracture, contact ball lens.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
389 Graft Copolymerization of Cellulose Acetate with Nitro-N-Amino Phenyl Maleimides

Authors: Azza. A. Al-Ghamdi, Abir. A. Abdel-Naby

Abstract:

The construction of Nitro -N-amino phenyl maleimide branches onto Cellulose acetate (CA) substrate by free radical graft copolymerization using benzoyl peroxide as initiator led to formation of highly thermal stable copolymers as shown from the results of gravimetric analysis (TGA). CA-g-2,4-dinitro amino phenyl maleimide exhibited higher thermal stability than the CA-g-4-nitro amino phenyl maleimide as shown from the initial decomposition temperature (To). This is due to the ability of nitro group to form hydrogen bonding with hydroxyl group of the glucopyranose ring which increases the crystallinity of polymeric matrix. The crystalline shapes representing the graft part are clearly distinct in the Emission scanning electron microscope (ESEM) morphology of the copolymer. A suggested reaction mechanism for the grafting process was also discussed.

Keywords: Cellulose acetate, crystallinity, graft copolymerization, thermal properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736