Preparation and Characterization of Polyaniline (PANI)-Platinum Nanocomposite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Preparation and Characterization of Polyaniline (PANI)-Platinum Nanocomposite

Authors: Kumar Neeraj, Ranjan Haldar

Abstract:

Polyaniline is an indispensible component in lightemitting devices (LEDs), televisions, cellular telephones, automotive, corrosion-resistant coatings, actuators etc. The electrical conductivity properties was found be increased by introduction of metal nano particles. In the present study, an attempt has been made to utilize platinum nano particles to achieve the improved electrical properties. Polyaniline and Pt-polyaniline composite are synthesized by electrochemical routes. X-ray diffractometer confirms the amorphous nature of polyaniline. The Bragg’s diffraction peaks correspond to platinum nanoparticles in Pt-polyaniline composite and thermogravimetric analyzer indicates its decomposition at certain temperature. The Scanning Electron Micrographs of colloidal platinum nanoparticles were spherical, uniform shape in the composite. The current-voltage (I-V) characteristics of the PANI and composites were also studied which indicate a significant decreasing resistivity than PANI-Platinum after introduction of pt nanoparticles in the matrix of polyaniline (PANI).

Keywords: Polyaniline, XRD and Platinum Nanoparticles.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1108026

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418

References:


[1] Yuvraj Singh Negi and P. V. Adhyapak, Polymer Research and Development Division, Centre for Materials for Electronics Technology, 42, 35-53.
[2] H. Letheby, Journal of the Chemical Society 15(1862)
[3] Di Wei and Ari Ivaska “Electrochemical Biosensors Based on Polyaniline” Chem. Anal: (Warsaw), 51, (2006), 839.
[4] Rosa Vera, Hugo Romero, Eduardo Ahumada, J. Chil. Chem. Soc.v.48 (2003).
[5] Shi, G. Q., Jin, S. Xue, G. Li, C. A conducting polymer film stronger than Aluminum Science 1995, 267, 994-996.
[6] A. F. Diaz, K. K. Kanazawa, G. P. Gardini Chemical Communications 14 (1979) 635.
[7] A. G. Mac Diarmid, Angewandte Chemie –International Edition 40 (2001) 2581.
[8] E. Menefee, Y. H. Pao, Journal of Chemical Physics 36 (1962) 3472.
[9] V. V. J. Walatka, M. M. Labes, J. H. Perlstein, Physical Review Letters 31.
[10] W. D. Gill, W. Bludau, R. H. Geiss, P. M. Grant, R. L. Greene, J. J. Mayerle, G. B. Street, Physical Review Letters 38 (1977) 1305.
[11] G. Natta, G. Mazzanti, P. Corradini, Stereospecific polymerization of acetylene,’ Attiaccad. Nazi Lincei Rend. 25 (1958) 3.
[12] C. K. Chiang, S. C. Gau, C. R. J. Fincher Y. W. Park, A. G. MacDiarmid, A. J. Heeger, Applied Physics Letters 33 (1978) 18.
[13] R. B. Seymour, Conductive Polymers; Polymer Science and Technology, 1st Plenum Press, New York, 1981.
[14] Self doped conducting polymers by Michael. S. Fruend and Bhavana Deore (2007) 20-25.
[15] Z. Kurmaev et al 2001 J. Phys: Cond1. R. Gangopadhaya, A. De, Chem. Mater. 12, 608 (2000).
[16] Z. Peng, L. Guo, Z, Zhang, B. Tesche, T. Wike, D. Ogermann, S. Hu, K. Kleinermanns, Langmuir 22,10915 (2006).
[17] R McNeill, DE Weiss and D. Willis Australian Journal of Chemistry 47718 (1965).
[18] J. Stejskal, R. G. Gilbert Pure Appl. Chem., Vol.74, No.5, pp.857–867, (2002).
[19] K. Gupta, P. C. Jana, A. K. Meikap Synthetic Metals Vol. 160, pp 1566– 1573(2010).