
  

  

Abstract—Quantitative measurements of tumor in general and 
tumor volume in particular, become more realistic with the use of 
Magnetic Resonance imaging, especially when the tumor 
morphological changes become irregular and difficult to assess by 
clinical examination. However, tumor volume estimation strongly 
depends on the image segmentation, which is fuzzy by nature. In this 
paper a fuzzy approach is presented for tumor volume segmentation 
based on the fuzzy connectedness algorithm. The fuzzy affinity 
matrix resulting from segmentation is then used to estimate a fuzzy 
volume based on a certainty parameter, an Alpha Cut, defined by the 
user. The proposed method was shown to highly affect treatment 
decisions. A statistical analysis was performed in this study to 
validate the results based on a manual method for volume estimation 
and the importance of using the Alpha Cut is further explained. 
 

Keywords—Alpha Cut, Fuzzy Connectedness, Magnetic 
Resonance Imaging, Tumor volume estimation.  
 

I. INTRODUCTION AND RELATED WORK 

AGNETIC Resonance Imaging (MRI) radiologic 
evaluation of treatment response during clinical testing 

of novel therapeutic drugs has become increasingly important 
[1]. The paradigm of radiologic assessment of drug efficacy is 
especially attractive in cancer patients. This is because tumor 
size can be monitored serially from before treatment is started 
through the treatment period to any follow-up interval. 
Currently, tumor size measurement is based on uni- 
dimensional tumor measurement technique, which measures 
the longest lesion diameter in the axial plane. This approach is 
obviously accurate for perfectly spherical lesions and can be 
used for measuring tumor size for response classification. 
However, prior studies have shown that when tumors develop 
into shapes in which the width is more than twice the length, 
which often occurs after treatment because of scarring, bi-
dimensional measurements such as volume provide a more 
accurate classification of treatment response than diameter 
alone [1]. The latter problem has led the research to be 
directed towards tumor volume estimation.  Jianguo Liu et al. 
[2] presented a method for precise, accurate, and efficient 
quantification of brain tumor (glioblstomas) and emphasized 
the importance of estimation of tumor volume for evaluating 
disease progression, response to therapy, and in assessing the 
need for changes in treatment plans. Yasser M. Salman 
emphasized that quantitative measurements of tumor response 
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rate in three dimensions (3D) become more realistic with the 
use of advanced technology imaging during therapy, 
especially when the tumor morphological changes remain 
subtle, irregular, and difficult to assess by clinical examination 
[3]. Gul Moonis et al. highlighted this fact in [4] by indicating 
that reproducible measurements of brain tumor volume are 
helpful in evaluating the response to therapy and the need for 
changing treatment plans. 

Segmentation of tumors in MR images is an essential step 
for the computation of their volume [2]. Several approaches 
have been reported in the literature for tumor segmentation in 
MR images. Fletcher-heath et al. [5] developed an automatic 
segmentation method which separates non-enhancing brain 
tumor using an unsupervised fuzzy clustering method. Zhu, Y. 
and Yan, H. [6] presented an approach to detect brain tumor 
boundary in MR images using a Hopfield Neural Network. 
Rai, A. and Juluru, K. proposed a semi-supervised technique 
using k-means clustering in a hybrid intensity-spatial feature 
space to segment Hepatocellular carcinoma (liver tumor) from 
MR images [7]. Rodrigues, P.  et al. developed an interactive 
algorithm for liver tumor segmentation in MR and CT images. 
The technique was based on an image partitioning into 
homogeneous primitives regions and the outcome of the latter 
initial segmentation was the input of a region merging process 
to find the best image partitioning, based on the minimum 
description length principle [8]. Zheng, Y. et al. devised new 
graph cut based segmentation algorithm for refining coarse 
manual segmentation, which allows identification of breast 
tumor regions [9]. 

In spite of the above cited activities in research none of 
them used the notion of fuzzy volume. None of the 
segmentation algorithms can guarantee perfect segmentation 
of tumors from medical images when the lesions have 
complicated topological structures and heterogeneous 
intensity distribution. In this study we make use of the fuzzy 
affinity matrix produced by the Fuzzy Connectedness 
segmentation algorithm to estimate the volume based on an 
Alpha Cut parameter provided by the user. The user can then 
compare the output volume and segmentation for each Alpha 
Cut provided to the system. Subsequently, the user can decide 
which Alpha Cut is more adequate to use for volume 
estimation. This should result in more realistic decisions in 
tumor response to therapeutic drugs and in surgical resection. 
It would be very important for brain tumor surgeries because 
each millimeter removed could highly affect the function of 
other organs. 

In this work the experiments were based on axial STIR and 
Vdyn_ethrive_Sense MR slices for breast tumor patients. 
Delineation of breast lesions is known to be challenging, since 
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the lesions may have diverse intensity distributions and 
unfamiliar structures. The rest of the paper is divided into five 
sections. Section II explains required background information. 
The methodology is described in Section III. Our evaluative 
studies conducted to validate the output of the system are 
described in Section IV. Concluding remarks are stated in 
Section V.  

II.  BACKGROUND 
Image segmentation divides an image into multiple parts 

and is typically used to identify objects or other relevant 
information in digital images. Most of the image segmentation 
algorithms only consider pixels which are close in intensity 
values form an object. The output is another binary image 
where the identified objects have white pixels and the rest of 
the pixels are black. This should not be the case when dealing 
with medical images since the intensity characteristics of 
pixels are similar to each other. Additionally, the tumor 
contour is fuzzy by nature because the intensity distinction 
between tissue classes (tumor and non tumor) is usually 
blurry. The Fuzzy Connectedness segmentation algorithm 
attempts to handle this limitation [4]. The main idea behind 
the Fuzzy Connectedness theory is that the strength of 
connectedness is considered to exist between any two pixels 
p1 and p2 on the image. This strength is determined by 
considering all possible connecting paths between p1 and p2. 
Each path has strength of connectedness associated with it that 
is determined by examining successive pairs of pixels along 
the path. Each pair of nearby pixels has an affinity associated 
with it that is determined not only on the similarity in their 
intensity characteristics, but also on the basis of how close the 
pixels are spatially. Affinity describes how strongly the pixels 
hang together locally in the same object. The strength assigned 
to a path is the smallest affinity of pair wise elements along 
the path. The strength of connectedness between any two 
elements p1 and p2 is the strength of the strongest of all paths 
between p1 and p2. To compute a fuzzy-connected object, the 
strength of connectedness between all possible pairs of pixels 
in the image must be determined. The output of the algorithm 
is not a binary image that strictly defines the contours of 
identified objects but an affinity matrix where the object of 
interest is characterized by pixels with values indicating as 
closely as possible their degree of membership in that object 
not binary values. Seeding the segmentation with 
representative pixels within the object of interest is an 
essential input step for the algorithm. This enables the 
algorithm to designate the neighboring pixels and segment the 
object accordingly. 

In order to segment the tumor and estimate the volume from 
MR images, MR series have to be collected for each patient a 
priori. Each MR series contains sequential slices or images for 
the organ under investigation, scanned with a certain MRI 
protocol (such as T1, T2, STIR, etc.), and from a certain 
position (Axial, Coronal or Sagital). The MR slices where the 
lesion appears are chosen for segmentation and volume 
estimation. The MR slices chosen should be from the same 
series and sequential. The appearance of the lesion in each 

slice constitutes a portion of the tumor. The area of the region 
where the tumor appears is computed independently in each 
MR slice and used afterwards for volume computation. Fig. 1 
shows three sequential slices from an axial STIR series and 
the lesion appears in each one of them. 
 

 
Fig. 1 Images show three sequential slices and the lesion appears in 

each one of them 

III. METHODOLOGY 
In order to compute the volume of the tumor for each 

patient six steps were executed: 
1- MR data acquisition. 
2- MR slices pre-processing. 
3- Segmentation of MR slices. 
4- Post-processing of the output MR slices. 
5- Computing the area of the tumor in each MR slice 
6- Computing the volume.  

The rest of this section describes the details of each of the 
six steps. 
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1- MR data acquisition 
MR data of six female patients with malignant breast 

lesions aging from 48-60 were included in this study. All 
studies were performed with 3-T Philips imaging system. An 
experienced radiologist conducted the analysis on 
Vdyn_ethrive_Sense and STIR images for each patient to 
filter the malignant cases and locate the slices where the tumor 
appears. 

 
2- MR slices pre-processing 
Three pre-processing steps were done on each MR slice 

prior to segmentation. 
 
A.  Defining a Region of Interest 
For each chosen MR slice two coordinates were chosen to 

define a rectangular Region of Interest (ROI) confining the 
lesion. This was not an attempt to trace the borders of the 
lesion; it served to limit the region in which subsequent 
analyses were performed. This is to simplify the segmentation 
process to detect only one object which is the tumor. 
Additionally, processing time was considerably reduced. 
Without choosing a ROI segmentation process took up to 20 
seconds or more whereas with specifying a region of interest 
segmentation time was less than 2 seconds.  All subsequent 
operations used the cropped slices after the ROI was defined. 
Fig. 2 shows the cropped MR slices after defining the ROI. 

 

 
Fig. 2 The cropped MR slices after defining the ROI for Fig. 

1(a), Fig. 1(b), and Fig. 1(c) respectively 
 

B. Applying Edge Preserving Smoothing Filter 
Noise present in the image can reduce the capacity of the 

Fuzzy Connectedness algorithm to grow large regions. When 
faced with noisy images, it is usually convenient to pre-
process the image by using an edge-preserving smoothing 
filter. In this study we used Curvature Flow Image Filter.  The 
idea behind the Curvature Flow Image Filter is that the regions 
of high curvature diffuse very quickly. This removes noise 
artifacts. The regions of less curvature (such as image edges) 
diffuse much slower, thereby preserving the features.  

 
C. Rough Segmentation for Computing Required 

Parameters 
Since the Fuzzy Connectedness algorithm requires an 

estimation of the grey level mean and variance for the region 
to be segmented, another segmentation filter was used prior to 
it in order to compute these parameters. In this study we used 

the Confidence Connected Image Filter as a pre-processor to 
estimate these values [10]. 

3- Segmentation of MR slices  
The seed point was specified within the tissue of interest for 

each cropped MR STIR slice after specifying the ROI. The 
rest of the pre-processing steps were done after choosing the 
seed point. Each seed point, the parameters required (The 
mean and variance of the grey level for the region to be 
segmented), and each MR slice were fed as an input to the 
system implementing the Fuzzy Connectedness algorithm. The 
system then displayed the delineated tumor region by writing 
the output fuzzy affinity matrix to a DICOM file. The DICOM 
headers of the original MR slices were preserved for area 
calculation. In some cases, new ROI can be defined on 
selected output images if there are irrelevant segmented 
tissues. ITK 3.2[11] and Visual studio 2010 programming 
development environments were used to implement the pre-
processing steps and the segmentation. ITK was chosen for its 
wide range of medical image processing functions. Fig. 3 
shows three output MR slices after defining the ROI and after 
segmentation. 

 

 

 

 
Fig. 3 Output MR slices after defining the ROI and after 

segmentation for Fig. 2(a), Fig 2(b), and Fig. 2(c) respectively 
 

4- Post-processing of the output MR slices 
The output MR slices from segmentation were scaled to 

enhance their contrast. There were cases in which the 
segmented object (foreground) was darker than the 
background. In order to solve this, the scaling was done on the 
inverse of the image. Fig. 4 shows the output MR slices after 
segmentation and contrast enhancement. 

(b) 

(c) 

(a) 
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Fig. 4.The output MR slices after segmentation and contrast 

enhancement for Fig 3(a), Fig. 3(b) and Fig. 3(c) respectively 
 

5- Computing the area of the tumor in each MR slice 
The user first specifies the certainty or the Alpha Cut upon 

which the area will be computed. For each output MR slice a 
threshold operation is done. The pixels which have values 
greater than the Alpha Cut are given a binary value equal to 
one. The rest of the pixels are assigned a zero value. 

 The area is computed by counting the white pixels. In 
order to compute the area of the irregular tumor shape in cm 
after the thresholding operation, the area of each pixel should 
be computed in cm  first. This is done by reading the pixel 
spacing tag from the DICOM header of any of the output MR 
slices. The pixel spacing tag represents the spacing between 
the centers of any two adjacent pixels in mm. Half the length 
of the pixel spacing represents half the length of a pixel and 
the other half represents half the length of the adjacent pixel. 
Since all the pixels in the image have the same length, then the 
pixel spacing is equal to the pixel length. The area of any pixel 
in cm   is computed using (1). 

 

                        (1) 
 

Fig. 5 shows that the pixel spacing is equal to the pixel 
length. The area of the irregular tumor shape is computed 
using (2).  represents the area of the tumor in the  
output MR slice. 

 
          (2) 

 

 
Fig 5 The spacing between two adjacent pixel centers (Pixel Spacing) 

is equal to the pixel length 
 

6- Computing the volume 
Volume is generally computed by multiplying the area and 

the height together. The height in this case is represented by 
the MR slice thickness and the gap between any two MR 
slices. The slice thickness and the inter slice gap values can be 
obtained by reading the two DICOM tags; slice thickness and 
spacing between MR slices from any output MR slice. The 
values should be converted to cm because they are represented 
in mm. Volume is computed using (3). N represents the 
number of output slices and  represents the area of the 
tumor in the  output MR slice. 

 
      ∑  

                             (3)  

IV. RESULTS AND DISCUSSION 
It was difficult to validate the results of our method due to 

the absence of pathology that would establish the true 
delineation of the object of interest in a scene. Consequently, 
an appropriate surrogate of truth was used in place of true 
delineation. The segmentation resulting from manual tracing 
of object boundaries by knowledge operator (radiologist) is 
commonly used as this surrogate. We used this approach to 
validate the computed volume.  

The volume of the tumor for each patient was computed 
two times once with our approach and the second by manual 
tracing of the tumor borders in each MR slice using Onis 2.4 
tool. The tool computes the area of the highlighted portion in 
each MR slice and the volume was computed manually using 
step 6 in section 5. 

Let  be the volume computed by our system and  be the 
volume computed manually by the radiologist. The Mean 
Square Error (MSE) between  and  for each Alpha Cut per 
each patient is shown in Table I. Equation (4) was used to 
compute the MSE between  and  for each Alpha Cut. N 
refers to the number of patients. 

 

MSE  ∑                                        (4)     
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TABLE I 
THE MEAN SQUARE ERROR BETWEEN  AND  

 Patient1 Patient2 Patient3 Patient4 Patient5 Patient6 
0.1 7.4 202.8 16.6 

 
1.0 18.7 

 
88.4 

 
0.2 8.3 

 
229.8 

 
29.7 

 
1.1 

 
49.6 

 
57.3 

 
0.3 9.0 

 
249.4 39.6 

 
1.1 

 
78.3 

 
28.0 

0.4 9.4 
 

280.8 
 

50.8 
 

1.2 
 

108.3 
 

13.5 
 

0.5 9.7 311.8 
 

57.2 
 

1.3 
 

134.6 
 

4.0 

0.6 10.2 
 

346.2 65.2 1.4 211.8 0.1 

0.7 10.6 389.2 
 

77.1 
 

1.5 
 

247.4 
 

5.6 
 

0.8 10.8 
 

457.8 
 

86.3 
 

1.6 
 

285.5 
 

27.1 
 

0.9 11.0 
 

561.8 
 

95.6 
 

1.7 
 

360.3 
 

55.1 

 
It is obvious from the results that some patients such as 

Patient1 and Patient4 have low MSE for all Alpha Cuts 
compared to Patient2 and Patient5 this is because of error 
aggregation due to the number of MR slices used. For 
example, the tumor appeared in only 3 MR slices for Patient4 
while for Patient2 the tumor appeared in 20 MR slices. 
Additionally, the numbers show that in most cases there is a 
decreasing function between the Alpha Cut and the MSE. 

Fig. 6 highlights the latter observation. This observation 
makes sense since as the degrees of certainty (the Alfa Cut) 
increase the delineated area of the tumor per each output MR 
slice decreases and accordingly, the volume decreases. This is 
shown in Fig. 7. 

 

 
 
Fig. 6 There is a decreasing function between the Alpha Cut and the 

Mean Square Error in most cases 
 
 
 
 
  

 
Fig. 7  Three output MR slices for Patitent4. The red filling in Fig. 

7(a), Fig. 7(b), and Fig. 7(c) represents the tumor coverage for Alpha 
Cut 0.5 .The red filling in Fig. 7(d), Fig. 7(e), and Fig. 7(f) represents 

the tumor coverage for Alpha Cut 0.9 
 

The Alpha Cut concept is extremely important for the 
purpose of accurate evaluation of treatment response of 
therapeutic drugs in specific cases. Consider a case such as 
Patient4 (Fig. 4). Assume that the shape of the tumor did not 
change before and after treatment. Using any system for 
volume computation that uses any non fuzzy segmentation 
technique the shape and the computed volume of the 
segmented tumor will be the same before and after treatment. 
Even if a slight change occurred in the grey level distribution 
of the tumor none of the segmentation methods would 
consider this change. Assume that Fig. 7(a), Fig. 7(b),             
and Fig. 7(c) is the shape of the tumor after segmentation in 
each output MR slice using our approach with Alpha Cut 0.9 
before treatment and Fig. 7(d), Fig. 7(e),  and Fig. 7(f) is the 
shape of the tumor after segmentation with the same Alpha 
Cut. This shows that the tumor volume has diminished. This 
wouldn't have been noticed if another image segmentation 
method was used. Accordingly, a wrong decision would have 
been taken. 

V.  CONCLUSION 
Fully making use of the Fuzzy Connectedness technology 

and MRI, we have developed a complete methodology for 
tumor volume estimation based on an Alpha Cut provided by 
the user. The methodology runs automatically except for 
choices of a region of interest and seed points. Our method 
was validated with respect to manual volume estimation and 
the results were close at small Alpha Cut Values. The results 
showed the importance of Alpha Cut in volume estimation in 
cases when the shape of the tumor before and after treatment 
remains the same but the grey level distribution changes. 
Further work can be done on Sagital and Coronal MR 
sequences beside the axial sequences.  
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