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Abstract—Wind direction and uncertainty are crucial in aircraft or
unmanned aerial vehicle trajectories. By computing wind covariance
matrices on each spatial grid point, these spatial grids can be defined
as images with symmetric positive definite matrix elements. A data
pre-processing step, a specific convolution, a specific max-pooling,
and specific flatten layers are implemented to process such images.
Then, the neural network is applied to spatial grids, whose elements
are wind covariance matrices, to solve classification problems related
to the feasibility of unmanned aerial vehicles based on wind direction
and wind uncertainty.
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I. INTRODUCTION

PATH wind forecasting is paramount, especially in aircraft

flight or Unmanned Aerial Vehicle (UAV) planning

contexts. When a UAV flies with a headwind, energy

consumption increases significantly, potentially leading to

unsuccessful crossings. Under adverse conditions, the UAV

risks sustaining damage or, in the worst-case scenario, being

destroyed or lost. The Mermoz project, spearheaded by a

team of researchers from ISAE-SUPAERO’s aerodynamics

laboratory, endeavors to demonstrate the feasibility of a South

Atlantic crossing from Senegal to Brazil using a hydrogen

fuel cell-powered UAV system. However, the South Atlantic’s

unpredictable nature introduces a significant risk of the UAV

running out of energy. This potential challenge is a crucial

consideration in the Mermoz Project, as readers can further

explore it in [10].

The challenge of predicting the feasibility of a UAV

trajectory is the focus of this paper. The prediction task focuses

on three key aspects:

• determining the wind direction relative to the UAV’s path,

• assessing the level of uncertainty in the wind forecast,

• selecting the safest UAV trajectory.

These three problems can be defined as classification

problems. Furthermore, the last two problems are related to the

wind uncertainty. These problems are detailed in Section II.

The spatial grids in the ERA5 database are structured

around regular latitude and longitude grids. By extracting

spatial grids with the ensemble members dataset, each spatial

grid point is a real 10 × 2 matrix. By computing the wind

covariance matrix for each point in the spatial grid, we

generate additional spatial grid information referred to as
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wind covariance spatial grids. Subsequently, we extract spatial

grids from the ensemble spread dataset. These spatial grids

are also regular latitude-longitude grids whose elements are

wind uncertainties. For each spatial grid extracted from the

ERA5 database, we consider a UAV trajectory connecting an

origin to a destination. We then focus on the wind direction

and uncertainty levels relative to this trajectory. We assign

labels to each covariance spatial grid. One label is dedicated

to a classification problem. The creation of a UAV trajectory

between Senegal and Brazil is illustrated in Fig. 1 by extracting

spatial grids from an ensemble member dataset.

We will have to solve three classification problems.

Covariance spatial grids C(i, j) are similar to images except

that each C(i, j) is a covariance matrix. In machine learning

and statistics, the most efficient algorithms for classifying

images are convolutional neural networks (CNN). Since

covariance spatial grids are not traditional images, we

implement a CNN capable of classifying these specific images.

In image processing, CNN is designed for pixel image

classification. Here, our image pixels are covariance matrices.

We must fully redesign our CNN to process such images. More

specifically, we implement new convolution, max-pooling, and

new flatten layers capable of processing covariance spatial

grids. This CNN is detailed in Section III. Then, the results

obtained by our CNN on the wind direction to a UAV

trajectory and uncertainty level problems are presented and

detailed in Section IV.

This document has three main sections: Section II presents

the ERA5 database and describes its resolution models and

the assignment label for the three classification problems.

Section III presents a detailed description of this CNN. In

particular, we implement a pre-processing step and we redefine

the convolution, maximum pooling, and flatten layers to

process covariance spatial grids. Some results on the South

Atlantic area are presented in Section IV.

II. THE ERA5 DATABASE

A. Spatial Grids Definition

ERA5 is the fifth generation of European Centre for

Medium-Range Weather Forecasts (ECMWF) reanalysis for

global climate and weather spanning the past eight decades.

Data are available from 1940 onwards, and ERA5 replaces the

ERA-Interim reanalysis. ERA5 provides hourly estimates for

various atmospheric parameters, ocean-wave, and land-surface

variables. Based on the ensemble members from ERA5 (ten

wind speed vectors), one can estimate the average wind and

the covariance matrix for each spatial point. This uncertainty
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Fig. 1 Example of a created UAV trajectory between Senegal and Brazil on a spatial grid extracted with ensemble members; the first wind speed vector is
represented

is mainly linked to the divergence with time of the evolution

of each member. It represents flow-dependent sensitive areas,

which are areas where the wind conditions are particularly

variable and can significantly impact the trajectory of a UAV.

Monthly mean averages are pre-computed to support various

climate applications, although they are unavailable for the

ensemble mean and spread. ERA5 is updated daily with a

latency of approximately five days. Spatial grids extracted

every three hours with reduced resolution are mapped with

the following structure (1):

G : {1, ..., n} × {1, ...,m} −→ R
10×2. (1)

where n is latitude, m is longitude.

Each G(i, j) comprises ten wind speed vectors, where

each vector encapsulates u and v components, representing

speed values along the x (longitude) and y (latitude) axes,

respectively. Fig.2 illustrates a wind speed vector between

Brazil and Senegal.

We selected the ensemble member dataset because it

contains a representative estimate of the wind and its

associated wind covariance matrix. Considering each G(i, j) as

ten realisations of a random vector, we evaluate the covariance

matrix along x and y directions. Usually, a covariance matrix

is a semi-positive definite matrix. The specific case of the

wind covariance matrix is an SPD matrix. Therefore, we obtain

another set of spatial grids known as covariance spatial grids,

which are mappings (2):

C : {1, ..., n} × {1, ...,m} −→ S
+
2 (2)

where S
+
2 is the 2× 2 real symmetric positive definite matrix

set.

The ERA5 database dataset also contains ensemble spread

and ensemble mean for surface-level analysis parameter data

ensemble means. These values are computed from the ERA5

member ensemble run at a reduced resolution. The ensemble

spread dataset is particularly significant, as it is based on

the standard deviation computation of the ensemble members,

providing a measure of the uncertainty in the data. Spatial

grids are mapped with the following structure (3):
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Fig. 2 Illustration of wind speed vector between Brazil and Senegal; the data are extracted from the ERA5 database

S : {1, ..., n} × {1, ...,m} −→ R (3)

where S(i, j) is the wind uncertainty located at position (i, j)
on the spatial grid. Fig. 3 illustrates a spatial grid extracted

from the spread ensemble dataset.

For more information on ERA5 datasets, readers can refer

to [5]. The input data of a neural network are the covariance

spatial grids defined by (2).

B. The Creation of a UAV Trajectory

We create a UAV trajectory on each spatial grid extracted

from the spread ensemble and ensemble members datasets. A

UAV trajectory is defined by an origin point (xo, yo) and a

destination point (xd, yd). We create straight or ellipsoid UAV

trajectories on all spatial grids. Fig. 1 shows a UAV trajectory

created between Senegal and Brazil.

The straight and the ellipsoid equations define the point

trajectory set P = {(xo, yo), ..., (xd, yd)}. For each point Pi,

we select the nine nearest neighbours that define the set A.

The set A defines, therefore, an area around the UAV trajectory

where each Ai corresponds to the nine nearest neighbours of

the point Pi.

In Fig. 4, a UAV trajectory passes through the origin point

O, the destination point D, and the point U , which are

included in P . We then select the nine nearest spatial grid

points closest to the point U , which are included in the set A.

The ten wind speed vectors extracted from the ensemble

members create the set W:

∀pm = (xm, ym) ∈ P,W = {G(xm, ym), ...,G(xm, ym)}
We assume the set W includes P points.

C. The Overall Wind Direction

Once covariance spatial grids C and UAV trajectory

have been created, we assign labels related to a specific

classification problem. We extract spatial grids with the

ensemble members dataset. We then create a UAV trajectory
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Fig. 3 Spatial grid extracted from ERA5 dataset with spread ensemble between Senegal and Brazil

Fig. 4 The nine closest neighbors of point U included in the set A
represented by the red area

on each extracted spatial grid. A mapping defines this UAV

trajectory:

T : {1, ..., P} −→ R
10×2 × R

2

Ti �−→ (wi, ti)

where wi ∈ W and ti is the trajectory vector on the grid point

Ti respectively.

Each point Ti contains ten wind speed vectors:

wj = (uj , vj)
�.

Then, we compute σ, γ, δ angles.

σi,j = arctan(
vi,j
ui,j

)× 180

π

γi,j = arctan(
bi,j
ai,j

)× 180

π

δi,j = |γi,j − δi,j |
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These angles are illustrated in Fig. 5. For each grid point

wi ∈ W , we compute the angle δi by applying the function

h:

Fig. 5 Illustration of f function

δi = h(wi) =
1

10

10∑
j=1

δi,j

By computing the angle δi on the set W , we obtain the set:

Δ = {δi = h(wi) ∈ R, wi ∈ W}.
We then introduce the function f , as illustrated in Fig.5.

This function categorises the elements in the set Δ into four

distinct groups based on their values. By applying this function

to the set Δ, we can effectively categorise the wind direction

into four specific groups.

f(δ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if δ ∈ [0, 45[∪[315, 360[
2 if δ ∈ [45, 135[
3 if δ ∈ [135, 225[
4 otherwise.

By applying the f function on the δ set, we obtain another

set O = {1, 2, 3, 4}P . Each element in O represents a specific

wind direction category. The overall wind direction is obtained

by applying the search maximum algorithm on the set O. We

associate with covariance spatial grids defined by (2), a label

corresponding to a wind direction.

D. The Wind Uncertainty Problem

The spatial grids are extracted from the spread dataset.

Trajectories created on the spatial grids extracted from the

member dataset are also made on those extracted from the

spread dataset. For each spatial grid i, we compute the average

wind uncertainty based on the A set:

σi =
1

P

∑
p∈A

S(p)

For each spatial grid i, we compare σi with a predefined

threshold value called σ. The average wind uncertainty defines

the average risk and feasibility of the UAV trajectory. For

example, the UAV trajectory presents a critical risk if the

average wind uncertainty exceeds the predefined threshold σ.

For each spatial grid i, we also compute the maximum value

of the uncertainty:

σM = max{S(p), p ∈ A}

We compare this maximum value with a threshold value

called σM . The maximum uncertainty threshold arises from

a simple observation: the average uncertainty of the wind

along the trajectory may be low, but the UAV may cross an

uncertainty area representing a non-negligible risk that could

lead to its loss. The spatial grids are, therefore, divided into

three groups as follows:

• σi,j > σM ,

• σi,j < σM , σi > σ,

• σi,j < σM , σi < σ.

Each spatial covariance grid is assigned a label that

corresponds to one of these groups.

E. The Best Trajectory Problem

This problem is based on the wind uncertainty problem.

However, instead of creating a single UAV trajectory, we create

two different UAV trajectories: a straight and an ellipsoid.

We denote σL, σE , the average wind uncertainties related to

the UAV trajectories defined as a straight and an ellipsoid.

We also note σM,L, σM,E the maximum wind uncertainties

associated with the UAV straight and ellipsoid trajectories.

The spatial covariance grids are divided into three groups.

The three groups define specific situations by comparing wind

uncertainties with each other and their respective threshold

values.

The first group describes the failure of both routes:

• σM,E ≥ σM , σM,L ≥ σM ,

• σM,E < σM , σM,L < σM , σE ≥ σ, σL ≥ σ.

The second group defines the ellipsoid UAV trajectory as

the best UAV trajectory based on the following criteria:

• σM,L < σM , σM,E < σM , σE < σ,

• σM,E < σM,L < σM , σL ≥ σ, σE < σ,

• σM,E < σM,L < σM , σE < σL < σ,

The third group defines the straight-line UAV trajectory as

the best based on the following criteria:

• σM,E ≥ σM , σM,L < σM , σL < σ,

• σM,L < σM,E < σM , σE ≥ σ, σL < σ,

• σM,L < σM,E < σM , σL < σE < σ,

III. CONVOLUTIONAL NEURAL NETWORK

Our neural network will have to solve classification

problems. Covariance spatial grids are similar to 2D images

whose pixels are covariance matrices. In the specific case

of the ERA5 ensemble members dataset, covariance matrices

are symmetric positive definite matrices (SPD). We will

first present a state-of-the-art neural network. Secondly,

we will present our neural network model, inspired by

traditional CNN, by implementing a data pre-processing step

that transforms SPD matrices into symmetric matrices by

computing their natural logarithm. We then implement a new

convolution, max-pooling, and flatten layers adapted to air

covariance spatial grids.
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A. State-of-the-Art

A neural network consists of node layers, typically including

an input layer, one or more hidden layers, and an output

layer. Each node connects to others and has an associated

weight. A non-linear activation function is applied to each

node, and the resulting data are passed to the next layer.

Various types of neural networks are used for different use

cases and data types. Convolutional neural networks (CNN)

are often used for classification and computer vision tasks.

A CNN is divided into a feature extraction network and

a classifier network. A feature extraction network includes

convolution and subsampling layers. The succession of

convolution and sub-sampling layers highlights the main

features defining the images (structure, contour). The output

of each convolution and subsampling layer is called a

feature map. The classifier network is an artificial neural

network (ANN). The ANN consists mainly of a succession of

fully-connected layers to which non-linear activation functions

are applied. The sequence of layers is used to classify feature

maps into different labels. The feature maps are passed to

the classification neural network via the flatten layer. The

CNNs have demonstrated efficiency in tasks such as image

classification [8], object detection [2], facial recognition [10],

[6], video analysis and [7]. However, the input data of the

neural network are covariance spatial grids whose C(i, j) is

a covariance matrix. A significant milestone was recently

achieved by successfully implementing a neural network to

classify images with SPD matrix elements. This specific

neural network includes two operation modules. On the

one hand, a Riemannian batch regularisation layer is first

proposed. On the other hand, a second module realises the

Riemannian pooling operation with geometric computations

on the Riemannian manifolds based on the Riemannian

barycenter, metric learning, and Riemannian optimisation.

The implemented neural network is applied to three visual

classification tasks (video-based emotion recognition, dynamic

scene classification, and hand action recognition). For more

information on this neural network, the readers can refer to

[13].

B. The Data Pre-processing Step

The input data of our neural network are covariance spatial

grids C. Since C(i, j) is a covariance matrix, usually, a

covariance matrix is a semi-symmetric positive definite matrix.

In the specific case of our database, each C(i, j) covariance

matrix is an SPD matrix. Covariance spatial grids are thus

mappings (4):

G : {1, ..., n} × {1, ...,m} −→ S
+
2 . (4)

However, S+2 is a Riemannian manifold; we can not directly

apply the convolution layer. Since S
+
2 is also a Lie group [1],

by computing the natural logarithm of each C(i, j), we obtain

another spatial grids which are mappings:

X : {1, ..., n} × {1, ...,m} −→ S2

X(i, j) �−→ log(C(i, j)).

The spatial grids X are called symmetric spatial grids.

To compute the natural logarithm of each C(i, j), we

use the singular value decomposition (SVD) method. More

specifically, each C(i, j) can be written:

C(i, j) = Ui,j .Di,j .Vi,j

where Di,j is the diagonal matrix whose elements are

eigenvalues associated with C(i, j).
As each C(i, j) is an SPD matrix, its eigenvalues are strictly

positive. Each X(i, j) is therefore computed by applying the

natural logarithm to diagonal matrix Di,j :

X(i, j) = log(C(i, j)) = Ui,j . log(Di,j).Vi,j .

The symmetric spatial grid X defined by Equation (4) is

the input data of our neural network. In the sequel, we denote

as X,Z the input and output of convolution, max-pooling and

flatten layers respectively. We also denote Gdata, Gloss, Gloss

as the gradient data, the gradient loss, and the gradient kernels

of convolution, max-pooling, and flatten layers.

C. The Convolution Layers

The convolution layer is a fundamental component of a

CNN. An input data X is filtered by a real kernel K. The

real kernel K moves through the receptive fields of the image

to detect features. The mathematical operation associated with

the convolution layer is the convolution layer denoted as

∗. Unlike conventional neural networks, each X(i, j) is a

symmetric matrix. Since S2 is an Euclidean vector space, we

adapt discrete convolution to spatial grids. Therefore, the input

spatial grids X filtered by a real r × s kernel K are defined

by (5):

Z = X∗K =
r∑

k1=0

s∑

k2=0

X(n1−k1, n2−k2)×K(k1, k2) ∈ S2. (5)

The backward pass for convolution layers can be divided

into two steps: data gradient and kernel gradient computation.

Firstly, the data gradient results from the discrete convolution

operation between the padded loss gradient and the 180◦

rotated kernels, denoted by K180, associated with the

convolution layer. The data gradient for spatial grids is based

on (6):

Gdata = p(Gloss) ∗K180, (6)

where p corresponds to the zero-padding operation.

Secondly, the kernel gradient results from the input

convolution layer X filtered by the loss gradient Gloss as

defined by (7):

Gkernel = X ∗Gloss. (7)

For more information on convolution layers, readers are

referred to [12].

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:18, No:10, 2024 

312International Scholarly and Scientific Research & Innovation 18(10) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

10
, 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

86
7.

pd
f



D. The Max-Pooling Layer

A max-pooling layer is a subsampling layer. A subsampling

layer reduces the reliance on precise positioning within

feature maps from a convolution layer. In the conventional

subsampling layer, a kernel of dimensions z × t is associated

with the subsampling layer, dividing images into q = [nz ][
m
t ]

cells where [.] is the integer part. A mapping defines these

cells:

c : {1, ..., z} × {1, ..., t} −→ S2.

where z, t are the kernel dimensions associated with the

max-pooling layer.

Each cell in the max-pooling layer retains only one piece

of information via a specific mathematical operation. In this

case, the operation is the maximum operation. Each point grid

X(i, j) is a symmetric matrix, so the maximum function must

be redefined. Since each X(i, j) is a symmetric matrix, each

cell includes a symmetric matrix. We apply the Frobenius

norm, denoted by ||.||F , on each q cell:

d : {1, ..., n} × {1, ...,m} −→ R

I(i, j) �−→ ||q(i, j)||F .
We apply a maximum search algorithm to each d associated

with all q cells. We retain the symmetric matrix related to the

maximum Frobenius norm. The positions of maximum values

are stored in a mask denoted by M . This mask M is then used

to compute the gradient data. The operation associated with

the backward max-pooling layer is defined by Equation (8).

Gdata(i, j) =

{
Gloss(i, j) if (i, j) ∈ M

0 otherwise.
(8)

Since each element of Gloss is a symmetric matrix,

zero values are replaced by a 2 × 2 zero matrix. Deeper

within the network, feature maps become more exclusive and

informative, reducing redundancy primarily due to repeated

convolutions and information compression by subsampling

layers. For more information on subsampling layers, readers

are referred to [12].

E. Flatten Layer

Similar to conventional flatten layers, our flatten layer

vectorizes the output of the feature extraction network. More

specifically, our flatten layer is defined by (9):

Z(t) = X(i, j, a, b), (9)

where t = im+ 4j + 2a+ b.
The backward pass of our flatten layer reshapes the gradient

from the classifier network. More specifically, the operation

associated with our flatten layer is defined by (10):

Gdata(i, j, a, b) = Gloss(t) (10)

where t = im+ 4j + 2a+ b.
The outputs of the flatten layer are real vectors. Then,

our classifier network is a conventional ANN. For more

information on the ANN, the readers can refer to [4].

Therefore, the covariance spatial grids are forwarded into

a traditional ANN. The results are compared to the target

using a loss function. Subsequently, the gradient is backwarded

through our neural network. The hyper-parameters associated

with our neural network, like batch size epochs and learning

rate, play the same role as in conventional neural networks.

IV. RESULTS

The wind database is extracted from the ERA5 database.

This database contains 12000 spatial grids. By computing

covariance matrices, as it is described in Section II, these

spatial grids are mappings:

X : {1, ..., 100} × {1, ..., 140} −→ S
+
2

These spatial grids, corresponding to the area used in the

Mermoz project, are extracted between the city of Dakar in

Senegal and the city of Natal in Brazil. The time frame for

this extraction is between 2018 and 2022. Each covariance

spatial grid is associated with several labels depending on the

classification problem described in Section II. For the wind

uncertainty and the best trajectory choice problems, we define

the predefined average wind uncertainty and maximum wind

uncertainty threshold as:

• σ = 1m.s−1,

• σM = 1.5m.s−1.

The labels for the three classification problems are assigned

using the hard labelling method. For a more detailed

understanding of this labelling method, please refer to [3].

We implement a specific neural network illustrated in Fig. 6

to classify spatial grids. Our neural network begins with a data

pre-processing step (orange). It is divided into two networks:

a feature extraction network and a classifier network. A

flatten layer (purple) separates these two networks. The feature

extraction network contains three blocks. Each block contains

a convolution layer (yellow) and a max-pooling layer (red).

The classifier network includes three fully-connected layers.

The first layer consists of 6279 neurons, the second layer

has 567 neurons, and the last has two or three neurons. The

sigmoı̈d activation function is used on the first and second

layers, whereas the softmax activation function is applied to

the last layer. The hyper-parameters of our neural network are

similar to classical neural networks: the number of epochs, the

training batch size, and the learning rate. We train our CNN

model with 30 epochs, a batch size value equal to 50 and a

learning rate equal to 0.05.

A. The Overall Wind Prediction Problem

In the context of the Mermoz Project, the wind direction

prediction problem holds significant importance. The training

step for this problem is illustrated in Fig. 7. Our neural

network, designed to tackle this problem, begins by correctly

classifying 6.14% of wind direction spatial grids and ends

by classifying 96.75%. During the testing step, it correctly

classifies 93.4% of the covariance spatial grids. The accuracy

of this prediction is crucial for the success of UAV crossings

over the South Atlantic.
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Fig. 6 Architecture of our neural network

Fig. 7 Error percentage evolution concerning epochs number for the overall
wind direction prediction

B. The Wind Uncertainty

For the wind uncertainty classification problem, our neural

network begins by correctly classifying 65.5% of covariance

spatial grids and ends by classifying 97.75%. The training

step is illustrated in Fig. 8. During the testing step, our neural

network correctly classifies 92.5% of the covariance spatial

grids.

The neural network predicts that the spatial grid Fig. 9

belongs to the third group. The UAV crossing the South

Atlantic is thus expected to be safe because the average and

maximum wind uncertainties do not exceed their respective

thresholds.

C. The Best Trajectory Problem

For the wind uncertainty classification problem, our neural

network begins by correctly classifying 6.13% of covariance

spatial grids and ends by classifying 96%. The training step is

illustrated in Fig. 10. Our neural network correctly classifies

91% of the covariance spatial grids during the testing step.

The neural network suggesting the best trajectory choice for

the UAV is illustrated in Fig. 11. The straight UAV trajectory

Fig. 8 Error percentage evolution concerning epochs number for the wind
uncertainty prediction

is the safest because the average wind and the maximum

uncertainty are lower than their respective threshold values.

On the other hand, the ellipsoidal UAV trajectory crosses an

area where the maximum uncertainty exceeds its threshold

value, which calls into question the trajectory.

If we propose several trajectory options for the Mermoz

Project, the neural network will identify the safest trajectory

based on the average wind uncertainty along the trajectory and

the maximum values.

D. Discussions

The data pre-processing step transforms the covariance

spatial grids into symmetric spatial grids. This step is

essential for a neural network to process spatial covariance

grids. By computing the natural logarithm of each pixel, a

neural network can process spatial covariance grids. Then,

the symmetric spatial grids are propagated into a feature

extraction network. The feature extraction network is a

succession of convolution and max-pooling layers explicitly

designed for symmetric spatial grids. The feature extraction

network is crucial to highlight features of symmetric spatial

grids. The implemented flatten layer facilitates the transfer
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Fig. 9 The neural network predicts that the associated covariance spatial grid belongs to the third group

Fig. 10 Error percentage evolution with epochs number for the best
trajectory prediction

of feature maps from the feature extraction network to the

classifier network. The classifier network is a succession of

fully-connected layers with activation layers. The classifier

network uses the feature maps from the feature network to

classify the spatial covariance grid maps.

Scientific studies focus on the planning of multi-UAV

trajectories. Multi-UAV planning problems are solved by

traditional and intelligent algorithms (heuristics and machine

learning). For more information, readers can refer to [14].

Another study focuses on the high feasibility of UAV

trajectories. It has access to UAV signals. It proposes a

trajectory mapping network (TMN) based on deep learning

to approximate the UAV system. Then, a new time series

CNN neural network (TSCNN) is proposed for the TMN to

improve its computation speed and prediction accuracy. The

proposed neural network takes into account certain constraints,

such as wind and possible obstacles. The results obtained by

our neural network are comparable to those obtained in [9].

However, it is complex to compare the results obtained due

to differences based mainly on the input data (real matrices

vs. spatial covariance grids) and the architecture of the neural

network. In fact, these results are complementary.

The neural network that is implemented predicts the overall

wind direction of the UAV trajectory. In the context of the

Mermoz project, the wind direction problem is of significant

importance. The accuracy of this prediction is crucial to the
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Fig. 11 Illustration of the best trajectory choice problem; The neural network indicates that T2 is the best trajectory choice

success of the UAV crossing the South Atlantic. If the wind

direction contradicts the UAV trajectory, this can lead to

excessive fuel consumption and potential loss. In addition, the

implemented neural network can predict whether the average

and maximum wind uncertainty exceeds certain thresholds.

The wind uncertainty problem poses a risk if the UAV crosses

an area, significantly compromising the UAV crossing the

South Atlantic. Based on the wind uncertainty problem, the

neural network can predict the safest UAV trajectory. The

results obtained for the three classification problems show that

the neural network can help in making decision for the safest

UAV trajectory.

V. CONCLUSIONS

In this paper, we focus on the feasibility of a UAV trajectory.

The feasibility of a UAV trajectory is based on the average

wind direction to a UAV trajectory and the wind uncertainty

levels along this trajectory. We were inspired by the Mermoz

project, which involved a UAV crossing the South Atlantic.

We extract from ERA5 two datasets: the ensemble members

and the ensemble spread datasets. We make a UAV trajectory

between Dakar and Natal from the two datasets and send it to

each spatial grid. We assign labels to each covariance spatial

grid corresponding to the three classification problems. The

UAV trajectory, the covariance spatial grid creation, and the

assignment labels are detailed in Section II.

We then implement a specific neural network capable

of classifying covariance spatial grids. To tackle these

classification problems, we use a novel approach. The

specificity of this neural network is based on the

implementation of data pre-processing step, new convolution,

new max-pooling, and new flatten layers able to process

images composed of covariance matrix pixels. The neural

network is detailed in Section III.

During the testing step, the neural network demonstrates its

prowess by correctly classifying between 91% and 96.75% of

covariance spatial grids. For a more detailed analysis of these

impressive results, readers should refer to Section IV. The

implemented neural network can identify the average wind

direction to a UAV trajectory, which can train a critical fuel

consumption and a loss of UAV. It can also identify if the UAV

trajectory represents a risk based on the wind uncertainty area

(average wind uncertainty and maximum wind uncertainty).

Finally, he can identify the best trajectory based on the wind

uncertainty area. The combination of this information could

help engineers and scientists make decisions for the UAV

crossing the South Atlantic.

It would be interesting to create more than two trajectories

to see if the neural network can still identify the best UAV

trajectory. One possible future application is linked to the

research carried out as part of the Mermoz project described in

the introduction. One of these projects led to developing and

implementing a Python module called Dabry, which computes

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:18, No:10, 2024 

316International Scholarly and Scientific Research & Innovation 18(10) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

10
, 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

86
7.

pd
f



the optimised trajectory between two points [11]. For example,

given the departure date, the Python module Dabry computes

the optimised trajectory between Dakar (in Senegal) and Natal

(in Brazil). The module also computes the time necessary to

achieve the optimal trajectory. With knowledge of the spatial

grid and its evolution over time, we can use our neural network

to determine if the optimal path is achievable by associating

it with the wind uncertainty.
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