Search results for: Nonlinear singular integral equations
1448 Comparison between Pushover Analysis Techniques and Validation of the Simplified Modal Pushover Analysis
Authors: N. F. Hanna, A. M. Haridy
Abstract:
One of the main drawbacks of the Modal Pushover Analysis (MPA) is the need to perform nonlinear time-history analysis, which complicates the analysis method and time. A simplified version of the MPA has been proposed based on the concept of the inelastic deformation ratio. Furthermore, the effect of the higher modes of vibration is considered by assuming linearly-elastic responses, which enables the use of standard elastic response spectrum analysis. In this thesis, the simplified MPA (SMPA) method is applied to determine the target global drift and the inter-story drifts of steel frame building. The effect of the higher vibration modes is considered within the framework of the SMPA. A comprehensive survey about the inelastic deformation ratio is presented. After that, a suitable expression from literature is selected for the inelastic deformation ratio and then implemented in the SMPA. The estimated seismic demands using the SMPA, such as target drift, base shear, and the inter-story drifts, are compared with the seismic responses determined by applying the standard MPA. The accuracy of the estimated seismic demands is validated by comparing with the results obtained by the nonlinear time-history analysis using real earthquake records.
Keywords: Modal analysis, pushover analysis, seismic performance, target displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16241447 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip
Authors: Rama Bhargava, Mania Goyal
Abstract:
The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.
Keywords: Viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32761446 Reflection of Plane Waves at Free Surface of an Initially Stressed Dissipative Medium
Authors: M. M. Selim
Abstract:
The paper discuses the effect of initial stresses on the reflection coefficients of plane waves in a dissipative medium. Basic governing equations are formulated in context of Biot's incremental deformation theory. These governing equations are solved analytically to obtain the dimensional phase velocities of plane waves propagating in plane of symmetry. Closed-form expressions for the reflection coefficients of P and SV waves- incident at the free surface of an initially stressed dissipative medium are obtained. Numerical computations, using these expressions, are carried out for a particular model. Computations made with the results predicted in presence and absence of the initial stresses and the results have been shown graphically. The study shows that the presence of compressive initial stresses increases the velocity of longitudinal wave (P-wave) but diminishes that of transverse wave (SV-wave). Also the numerical results presented indicate that initial stresses and dissipation might affect the reflection coefficients significantly.
Keywords: Dissipation medium, initial stress, longitudinal waves, reflection coefficients, reflection of plane waves, transverse waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10611445 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel
Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali
Abstract:
The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.Keywords: Cold Formed Steel Shear Wall Panel, CFS-SWP, micro modeling, nonlinear analysis, strip method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15261444 Thermodynamic Analysis of a Vapor Absorption System Using Modified Gouy-Stodola Equation
Authors: Gulshan Sachdeva, Ram Bilash
Abstract:
In this paper, the exergy analysis of vapor absorption refrigeration system using LiBr-H2O as working fluid is carried out with the modified Gouy-Stodola approach rather than the classical Gouy-Stodola equation and effect of varying input parameters is also studied on the performance of the system. As the modified approach uses the concept of effective temperature, the mathematical expressions for effective temperature have been formulated and calculated for each component of the system. Various constraints and equations are used to develop program in EES to solve these equations. The main aim of this analysis is to determine the performance of the system and the components having major irreversible loss. Results show that exergy destruction rate is considerable in absorber and generator followed by evaporator and condenser. There is an increase in exergy destruction in generator, absorber and condenser and decrease in the evaporator by the modified approach as compared to the conventional approach. The value of exergy determined by the modified Gouy-Stodola equation deviates maximum i.e. 26% in the generator as compared to the exergy calculated by the classical Gouy-Stodola method.
Keywords: Exergy analysis, Gouy-Stodola, refrigeration, vapor absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36771443 Modeling of Steady State Creep in Thick-Walled Cylinders under Internal Pressure
Authors: Tejeet Singh, Ishavneet Singh
Abstract:
The present study focused on carrying out the creep analysis in an isotropic thick-walled composite cylindrical pressure vessel composed of aluminum matrix reinforced with silicon-carbide in particulate form. The creep behavior of the composite material has been described by the threshold stress based creep law. The values of stress exponent appearing in the creep law were selected as 3, 5 and 8. The constitutive equations were developed using well known von-Mises yield criteria. Models were developed to find out the distributions of creep stress and strain rate in thick-walled composite cylindrical pressure vessels under internal pressure. In order to obtain the stress distributions in the cylinder, the equilibrium equation of the continuum mechanics and the constitutive equations are solved together. It was observed that the radial stress, tangential stress and axial stress increases along with the radial distance. The cross-over was also obtained almost at the middle region of cylindrical vessel for tangential and axial stress for different values of stress exponent. The strain rates were also decreasing in nature along the entire radius.Keywords: Steady state creep, composite, cylinder, pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16151442 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling
Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow
Abstract:
Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.Keywords: Dynamic modeling, missing data, multiple imputation, physiological measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8131441 In-Plane Responses of Axially Moving Plates Subjected to Arbitrary Edge Excitations
Authors: T. H. Young, Y. S. Ciou
Abstract:
The free and forced in-plane vibrations of axially moving plates are investigated in this work. The plate possesses an internal damping of which the constitutive relation obeys the Kelvin-Voigt model, and the excitations are arbitrarily distributed on two opposite edges. First, the equations of motion and the boundary conditions of the axially moving plate are derived. Then, the extended Ritz method is used to obtain discretized system equations. Finally, numerical results for the natural frequencies and the mode shapes of the in-plane vibration and the in-plane response of the moving plate subjected to arbitrary edge excitations are presented. It is observed that the symmetry class of the mode shapes of the in-plane vibration disperses gradually as the moving speed gets higher, and the u- and v-components of the mode shapes belong to different symmetry class. In addition, large response amplitudes having shapes similar to the mode shapes of the plate can be excited by the edge excitations at the resonant frequencies and with the same symmetry class of distribution as the u-components.
Keywords: Arbitrary edge excitations, axially moving plates, in-plane vibration, extended Ritz method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17841440 Analysis of Three-Dimensional Longitudinal Rolls Induced by Double Diffusive Poiseuille-Rayleigh-Benard Flows in Rectangular Channels
Authors: O. Rahli, N. Mimouni, R. Bennacer, K. Bouhadef
Abstract:
This numerical study investigates the travelling wave’s appearance and the behavior of Poiseuille-Rayleigh-Benard (PRB) flow induced in 3D thermosolutale mixed convection (TSMC) in horizontal rectangular channels. The governing equations are discretized by using a control volume method with third order Quick scheme in approximating the advection terms. Simpler algorithm is used to handle coupling between the momentum and continuity equations. To avoid the excessively high computer time, full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For a broad range of dimensionless controlling parameters, the contribution of this work is to analyzing the flow regimes of the steady longitudinal thermoconvective rolls (noted R//) for both thermal and mass transfer (TSMC). The transition from the opposed volume forces to cooperating ones, considerably affects the birth and the development of the longitudinal rolls. The heat and mass transfers distribution are also examined.Keywords: Heat and mass transfer, mixed convection, Poiseuille-Rayleigh-Benard flow, rectangular duct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10871439 Determining the Gender of Korean Names for Pronoun Generation
Authors: Seong-Bae Park, Hee-Geun Yoon
Abstract:
It is an important task in Korean-English machine translation to classify the gender of names correctly. When a sentence is composed of two or more clauses and only one subject is given as a proper noun, it is important to find the gender of the proper noun for correct translation of the sentence. This is because a singular pronoun has a gender in English while it does not in Korean. Thus, in Korean-English machine translation, the gender of a proper noun should be determined. More generally, this task can be expanded into the classification of the general Korean names. This paper proposes a statistical method for this problem. By considering a name as just a sequence of syllables, it is possible to get a statistics for each name from a collection of names. An evaluation of the proposed method yields the improvement in accuracy over the simple looking-up of the collection. While the accuracy of the looking-up method is 64.11%, that of the proposed method is 81.49%. This implies that the proposed method is more plausible for the gender classification of the Korean names.Keywords: machine translation, natural language processing, gender of proper nouns, statistical method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23681438 Numerical Analysis of Wave and Hydrodynamic Models for Energy Balance and Primitive Equations
Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai, Wiriya Lueangaram
Abstract:
A numerical analysis of wave and hydrodynamic models is used to investigate the influence of WAve and Storm Surge (WASS) in the regional and coastal zones. The numerical analyzed system consists of the WAve Model Cycle 4 (WAMC4) and the Princeton Ocean Model (POM) which used to solve the energy balance and primitive equations respectively. The results of both models presented the incorporated surface wave in the regional zone affected the coastal storm surge zone. Specifically, the results indicated that the WASS generally under the approximation is not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment. The wave–induced surface stress affected the storm surge can significantly improve storm surge prediction. Finally, the calibration of wave module according to the minimum error of the significant wave height (Hs) is not necessarily result in the optimum wave module in the WASS analyzed system for the WASS prediction.Keywords: energy balance equation, numerical analysis, primitiveequation, storm surge, wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19411437 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non-Uniform Heat Source/Sink
Authors: Bandaris Shankar, Yohannes Yirga
Abstract:
In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement.
Keywords: Manetohydrodynamics, nanofluid, non-uniform heat source/sink, unsteady.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32231436 Nonlinear Modeling and Analysis of AAC infilled Sandwich Panels for out of Plane Loads
Authors: Al-Kashif M., Abdel-Mooty M., Fahmy E., Abou Zeid M., Haroun M.
Abstract:
Sandwich panels are widely used in the construction industry for their ease of assembly, light weight and efficient thermal performance. They are composed of two RC thin outer layers separated by an insulating inner layer. In this research the inner insulating layer is made of lightweight Autoclaved Aerated Concrete (AAC) blocks which has good thermal insulation properties and yet possess reasonable mechanical strength. The shear strength of the AAC infill is relied upon to replace the traditionally used insulating foam and to provide the shear capacity of the panel. A comprehensive experimental program was conducted on full scale sandwich panels subjected to bending. In this paper, detailed numerical modeling of the tested sandwich panels is reported. Nonlinear 3-D finite element modeling of the composite action of the sandwich panel is developed using ANSYS. Solid elements with different crashing and cracking capabilities and different constitutive laws were selected for the concrete and the AAC. Contact interface elements are used in this research to adequately model the shear transfer at the interface between the different layers. The numerical results showed good correlation with the experimental ones indicating the adequacy of the model in estimating the loading capacity of panels.Keywords: Autoclaved Aerated Concrete, Concrete Sandwich Panels, Finite Element Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30811435 Fundamental Equation of Complete Factor Synergetics of Complex Systems with Normalization of Dimension
Authors: Li Zong-Cheng
Abstract:
It is by reason of the unified measure of varieties of resources and the unified processing of the disposal of varieties of resources, that these closely related three of new basic models called the resources assembled node and the disposition integrated node as well as the intelligent organizing node are put forth in this paper; the three closely related quantities of integrative analytical mechanics including the disposal intensity and disposal- weighted intensity as well as the charge of resource charge are set; and then the resources assembled space and the disposition integrated space as well as the intelligent organizing space are put forth. The system of fundamental equations and model of complete factor synergetics is preliminarily approached for the general situation in this paper, to form the analytical base of complete factor synergetics. By the essential variables constituting this system of equations we should set twenty variables respectively with relation to the essential dynamical effect, external synergetic action and internal synergetic action of the system.
Keywords: complex system, disposal of resources, completefactor synergetics, fundamental equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14191434 Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling
Authors: K. Soldatova, Y. Galerkin
Abstract:
A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.
Keywords: Centrifugal compressor stage, centrifugal compressor, loading factor, gas dynamic performance curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21061433 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures
Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha
Abstract:
5In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.
Keywords: Concrete beam, FRP bars, spacing effect, thermal deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6331432 Some Remarks About Riemann-Liouville and Caputo Impulsive Fractional Calculus
Authors: M. De la Sen
Abstract:
This paper establishes some closed formulas for Riemann- Liouville impulsive fractional integral calculus and also for Riemann- Liouville and Caputo impulsive fractional derivatives.Keywords: Rimann- Liouville fractional calculus, Caputofractional derivative, Dirac delta, Distributional derivatives, Highorderdistributional derivatives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14321431 Parametric Characterization of Load Capacity of Infinitely Wide Parabolic Slider Bearing with Couple Stress Fluids
Authors: Oladeinde Mobolaji Humphrey, Akpobi John
Abstract:
A mathematical model for the hydrodynamic lubrication of parabolic slider bearings with couple stress lubricants is presented. A numerical solution for the mathematical model using finite element scheme is obtained using three nodes isoparametric quadratic elements. Stiffness integrals obtained from the weak form of the governing equations were solved using Gauss Quadrature to obtain a finite number of stiffness matrices. The global system of equations was obtained for the bearing and solved using Gauss Seidel iterative scheme. The converged pressure solution was used to obtain the load capacity of the bearing. Parametric studies were carried out and it was shown that the effect of couple stresses and profile parameter are to increase the load carrying capacity of the parabolic slider bearing. Numerical experiments reveal that the magnitude of the profile parameter at which maximum load is obtained increases with decrease in couple stress parameter. The results are presented in graphical form.Keywords: Finite element, numerical, parabolic slider.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20871430 Adomian Decomposition Method Associated with Boole-s Integration Rule for Goursat Problem
Authors: Mohd Agos Salim Nasir, Ros Fadilah Deraman, Siti Salmah Yasiran
Abstract:
The Goursat partial differential equation arises in linear and non linear partial differential equations with mixed derivatives. This equation is a second order hyperbolic partial differential equation which occurs in various fields of study such as in engineering, physics, and applied mathematics. There are many approaches that have been suggested to approximate the solution of the Goursat partial differential equation. However, all of the suggested methods traditionally focused on numerical differentiation approaches including forward and central differences in deriving the scheme. An innovation has been done in deriving the Goursat partial differential equation scheme which involves numerical integration techniques. In this paper we have developed a new scheme to solve the Goursat partial differential equation based on the Adomian decomposition (ADM) and associated with Boole-s integration rule to approximate the integration terms. The new scheme can easily be applied to many linear and non linear Goursat partial differential equations and is capable to reduce the size of computational work. The accuracy of the results reveals the advantage of this new scheme over existing numerical method.Keywords: Goursat problem, partial differential equation, Adomian decomposition method, Boole's integration rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18691429 An Implementation of MacMahon's Partition Analysis in Ordering the Lower Bound of Processing Elements for the Algorithm of LU Decomposition
Authors: Halil Snopce, Ilir Spahiu, Lavdrim Elmazi
Abstract:
A lot of Scientific and Engineering problems require the solution of large systems of linear equations of the form bAx in an effective manner. LU-Decomposition offers good choices for solving this problem. Our approach is to find the lower bound of processing elements needed for this purpose. Here is used the so called Omega calculus, as a computational method for solving problems via their corresponding Diophantine relation. From the corresponding algorithm is formed a system of linear diophantine equalities using the domain of computation which is given by the set of lattice points inside the polyhedron. Then is run the Mathematica program DiophantineGF.m. This program calculates the generating function from which is possible to find the number of solutions to the system of Diophantine equalities, which in fact gives the lower bound for the number of processors needed for the corresponding algorithm. There is given a mathematical explanation of the problem as well. Keywordsgenerating function, lattice points in polyhedron, lower bound of processor elements, system of Diophantine equationsand : calculus.
Keywords: generating function, lattice points in polyhedron, lower bound of processor elements, system of Diophantine equations and calculus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14761428 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study
Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali
Abstract:
In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.
Keywords: Nanoparticles, Newtonian fluid model, chemical reaction, heat source/sink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9901427 Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns
Authors: Mohamed A. Shanan, Ashraf H. El-Zanaty, Kamal G. Metwally
Abstract:
This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force – axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns.
Keywords: ANSYS, concrete compressive strength effect, ductility, rectangularity ratio, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18941426 Comparison of Alternative Models to Predict Lean Meat Percentage of Lamb Carcasses
Authors: Vasco A. P. Cadavez, Fernando C. Monteiro
Abstract:
The objective of this study was to develop and compare alternative prediction equations of lean meat proportion (LMP) of lamb carcasses. Forty (40) male lambs, 22 of Churra Galega Bragançana Portuguese local breed and 18 of Suffolk breed were used. Lambs were slaughtered, and carcasses weighed approximately 30 min later in order to obtain hot carcass weight (HCW). After cooling at 4º C for 24-h a set of seventeen carcass measurements was recorded. The left side of carcasses was dissected into muscle, subcutaneous fat, inter-muscular fat, bone, and remainder (major blood vessels, ligaments, tendons, and thick connective tissue sheets associated with muscles), and the LMP was evaluated as the dissected muscle percentage. Prediction equations of LMP were developed, and fitting quality was evaluated through the coefficient of determination of estimation (R2 e) and standard error of estimate (SEE). Models validation was performed by k-fold crossvalidation and the coefficient of determination of prediction (R2 p) and standard error of prediction (SEP) were computed. The BT2 measurement was the best single predictor and accounted for 37.8% of the LMP variation with a SEP of 2.30%. The prediction of LMP of lamb carcasses can be based simple models, using as predictors the HCW and one fat thickness measurement.
Keywords: Bootstrap, Carcass, Lambs, Lean meat
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16221425 Magnetohydrodynamic Maxwell Nanofluids Flow over a Stretching Surface through a Porous Medium: Effects of Non-Linear Thermal Radiation, Convective Boundary Conditions and Heat Generation/Absorption
Authors: Sameh E. Ahmed, Ramadan A. Mohamed, Abd Elraheem M. Aly, Mahmoud S. Soliman
Abstract:
In this paper, an enhancement of the heat transfer using non-Newtonian nanofluids by magnetohydrodynamic (MHD) mixed convection along stretching sheets embedded in an isotropic porous medium is investigated. Case of the Maxwell nanofluids is studied using the two phase mathematical model of nanofluids and the Darcy model is applied for the porous medium. Important effects are taken into account, namely, non-linear thermal radiation, convective boundary conditions, electromagnetic force and presence of the heat source/sink. Suitable similarity transformations are used to convert the governing equations to a system of ordinary differential equations then it is solved numerically using a fourth order Runge-Kutta method with shooting technique. The main results of the study revealed that the velocity profiles are decreasing functions of the Darcy number, the Deborah number and the magnetic field parameter. Also, the increase in the non-linear radiation parameters causes an enhancement in the local Nusselt number.
Keywords: MHD, nanofluids, stretching surface, non-linear thermal radiation, convective condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9651424 Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton
Authors: Brahmi Brahim, Mohammad Habibur Rahman, Maarouf Saad, Cristóbal Ochoa Luna
Abstract:
A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances.Keywords: Backstepping control, iterative control, rehabilitation, ETS-MARSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13691423 Numerical Investigation of Flow Patterns and Thermal Comfort in Air-Conditioned Lecture Rooms
Authors: Taher M. Abou-deif, Mahmoud A. Fouad, Essam E. Khalil
Abstract:
The present paper was concerned primarily with the analysis, simulation of the air flow and thermal patterns in a lecture room. The paper is devoted to numerically investigate the influence of location and number of ventilation and air conditioning supply and extracts openings on air flow properties in a lecture room. The work focuses on air flow patterns, thermal behaviour in lecture room where large number of students. The effectiveness of an air flow system is commonly assessed by the successful removal of sensible and latent loads from occupants with additional of attaining air pollutant at a prescribed level to attain the human thermal comfort conditions and to improve the indoor air quality; this is the main target during the present paper. The study is carried out using computational fluid dynamics (CFD) simulation techniques as embedded in the commercially available CFD code (FLUENT 6.2). The CFD modelling techniques solved the continuity, momentum and energy conservation equations in addition to standard k – ε model equations for turbulence closure. Throughout the investigations, numerical validation is carried out by way of comparisons of numerical and experimental results. Good agreement is found among both predictions.Keywords: Air Conditioning, CFD, Lecture Rooms, Thermal Comfort
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22271422 The Effect of Dynamic Eccentricity on Induction Machine Stator Currents (Part A)
Authors: Saleh S. Hamad Elawgali
Abstract:
Current spectrums of a high power induction machine was calculated for the cases of full symmetry, static and dynamic eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents in steady state operation. The paper presents the stator current spectrums in full symmetry, static and dynamic eccentricity cases, and demonstrates the harmonics present in each case. The effect of dynamic eccentricity is demonstrating via comparing the current spectrums related to dynamic eccentricity cases with the full symmetry one. The paper includes one case study, refers to dynamic eccentricity, to present the spectrum of the measured current and demonstrate the existence of the harmonics related to dynamic eccentricity. The zooms of current spectrums around the main slot harmonic zone are included to simplify the comparison and prove the existence of the dynamic eccentricity harmonics in both calculated and measured current spectrums.
Keywords: Current spectrum, diagnostics, harmonics, Induction machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22981421 Neural Network Implementation Using FPGA: Issues and Application
Authors: A. Muthuramalingam, S. Himavathi, E. Srinivasan
Abstract:
.Hardware realization of a Neural Network (NN), to a large extent depends on the efficient implementation of a single neuron. FPGA-based reconfigurable computing architectures are suitable for hardware implementation of neural networks. FPGA realization of ANNs with a large number of neurons is still a challenging task. This paper discusses the issues involved in implementation of a multi-input neuron with linear/nonlinear excitation functions using FPGA. Implementation method with resource/speed tradeoff is proposed to handle signed decimal numbers. The VHDL coding developed is tested using Xilinx XC V50hq240 Chip. To improve the speed of operation a lookup table method is used. The problems involved in using a lookup table (LUT) for a nonlinear function is discussed. The percentage saving in resource and the improvement in speed with an LUT for a neuron is reported. An attempt is also made to derive a generalized formula for a multi-input neuron that facilitates to estimate approximately the total resource requirement and speed achievable for a given multilayer neural network. This facilitates the designer to choose the FPGA capacity for a given application. Using the proposed method of implementation a neural network based application, namely, a Space vector modulator for a vector-controlled drive is presented
Keywords: FPGA implementation, multi-input neuron, neural network, nn based space vector modulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44311420 Dissipation Capacity of Steel Building with Fiction Pendulum Base-Isolation System
Authors: A. Ras, I. Nait Zerrad, N. Benmouna, N. Boumechra
Abstract:
Use of base isolators in the seismic design of structures has attracted considerable attention in recent years. The major concern in the design of these structures is to have enough lateral stability to resist wind and seismic forces. There are different systems providing such isolation, among them there are friction- pendulum base isolation systems (FPS) which are rather widely applied nowadays involving to both affordable cost and high fundamental periods. These devices are characterised by a stiff resistance against wind loads and to be flexible to the seismic tremors, which make them suitable for different situations. In this paper, a 3D numerical investigation is done considering the seismic response of a twelve-storey steel building retrofitted with a FPS. Fast nonlinear time history analysis (FNA) of Boumerdes earthquake (Algeria, May 2003) is considered for analysis and carried out using SAP2000 software. Comparisons between fixed base, bearing base isolated and braced structures are shown in a tabulated and graphical format. The results of the various alternatives studies to compare the structural response without and with this device of dissipation energy thus obtained were discussed and the conclusions showed the interesting potential of the FPS isolator. This system may to improve the dissipative capacities of the structure without increasing its rigidity in a significant way which contributes to optimize the quantity of steel necessary for its general stability.Keywords: Steel structure, energy dissipation, friction-pendulum system, nonlinear analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13671419 Evaluation of Eulerian and Lagrangian Method in Analysis of Concrete Gravity Dam Including Dam Water Foundation Interaction
Authors: L. Khan mohammadi, J. Vaseghi Amiri, B. Navayi neya , M. Davoodi
Abstract:
Because of the reservoir effect, dynamic analysis of concrete dams is more involved than other common structures. This problem is mostly sourced by the differences between reservoir water, dam body and foundation material behaviors. To account for the reservoir effect in dynamic analysis of concrete gravity dams, two methods are generally employed. Eulerian method in reservoir modeling gives rise to a set of coupled equations, whereas in Lagrangian method, the same equations for dam and foundation structure are used. The Purpose of this paper is to evaluate and study possible advantages and disadvantages of both methods. Specifically, application of the above methods in the analysis of dam-foundationreservoir systems is leveraged to calculate the hydrodynamic pressure on dam faces. Within the frame work of dam- foundationreservoir systems, dam displacement under earthquake for various dimensions and characteristics are also studied. The results of both Lagrangian and Eulerian methods in effects of loading frequency, boundary condition and foundation elasticity modulus are quantitatively evaluated and compared. Our analyses show that each method has individual advantages and disadvantages. As such, in any particular case, one of the two methods may prove more suitable as presented in the results section of this study.
Keywords: Lagrangian method, Eulerian method, Earthquake, Concrete gravity dam
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820