Search results for: voltage transition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1305

Search results for: voltage transition

285 IMM based Kalman Filter for Channel Estimation in MB OFDM Systems

Authors: C.Ramesh, V.Vaidehi

Abstract:

Ultra-wide band (UWB) communication is one of the most promising technologies for high data rate wireless networks for short range applications. This paper proposes a blind channel estimation method namely IMM (Interactive Multiple Model) Based Kalman algorithm for UWB OFDM systems. IMM based Kalman filter is proposed to estimate frequency selective time varying channel. In the proposed method, two Kalman filters are concurrently estimate the channel parameters. The first Kalman filter namely Static Model Filter (SMF) gives accurate result when the user is static while the second Kalman filter namely the Dynamic Model Filter (DMF) gives accurate result when the receiver is in moving state. The static transition matrix in SMF is assumed as an Identity matrix where as in DMF, it is computed using Yule-Walker equations. The resultant filter estimate is computed as a weighted sum of individual filter estimates. The proposed method is compared with other existing channel estimation methods.

Keywords: Channel estimation, Kalman filter, UWB, Channel model, AR model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
284 Analysis of Current Mirror in 32nm MOSFET and CNTFET Technologies

Authors: Mohini Polimetla, Rajat Mahapatra

Abstract:

There is need to explore emerging technologies based on carbon nanotube electronics as the MOS technology is approaching its limits. As MOS devices scale to the nano ranges, increased short channel effects and process variations considerably effect device and circuit designs. As a promising new transistor, the Carbon Nanotube Field Effect Transistor(CNTFET) avoids most of the fundamental limitations of the Traditional MOSFET devices. In this paper we present the analysis and comparision of a Carbon Nanotube FET(CNTFET) based 10(A current mirror with MOSFET for 32nm technology node. The comparision shows the superiority of the former in terms of 97% increase in output resistance,24% decrease in power dissipation and 40% decrease in minimum voltage required for constant saturation current. Furthermore the effect on performance of current mirror due to change in chirality vector of CNT has also been investigated. The circuit simulations are carried out using HSPICE model.

Keywords: Carbon Nanotube Field Effect Transistor, Chirality Vector, Current Mirror

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2972
283 Influence of Measurement System on Negative Bias Temperature Instability Characterization: Fast BTI vs Conventional BTI vs Fast Wafer Level Reliability

Authors: Vincent King Soon Wong, Hong Seng Ng, Florinna Sim

Abstract:

Negative Bias Temperature Instability (NBTI) is one of the critical degradation mechanisms in semiconductor device reliability that causes shift in the threshold voltage (Vth). However, thorough understanding of this reliability failure mechanism is still unachievable due to a recovery characteristic known as NBTI recovery. This paper will demonstrate the severity of NBTI recovery as well as one of the effective methods used to mitigate, which is the minimization of measurement system delays. Comparison was done in between two measurement systems that have significant differences in measurement delays to show how NBTI recovery causes result deviations and how fast measurement systems can mitigate NBTI recovery. Another method to minimize NBTI recovery without the influence of measurement system known as Fast Wafer Level Reliability (FWLR) NBTI was also done to be used as reference.

Keywords: Fast vs slow BTI, Fast wafer level reliability, Negative bias temperature instability, NBTI measurement system, metal-oxide-semiconductor field-effect transistor, MOSFET, NBTI recovery, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
282 The Linkage of Urban and Energy Planning for Sustainable Cities: The Case of Denmark and Germany

Authors: Jens-Phillip Petersen

Abstract:

The reduction of GHG emissions in buildings is a focus area of national energy policies in Europe, because buildings are responsible for a major share of the final energy consumption. It is at local scale where policies to increase the share of renewable energies and energy efficiency measures get implemented. Municipalities, as local authorities and responsible entity for land-use planning, have a direct influence on urban patterns and energy use, which makes them key actors in the transition towards sustainable cities. Hence, synchronizing urban planning with energy planning offers great potential to increase society’s energy-efficiency; this has a high significance to reach GHG-reduction targets. In this paper, the actual linkage of urban planning and energy planning in Denmark and Germany was assessed; substantive barriers preventing their integration and driving factors that lead to successful transitions towards a holistic urban energy planning procedures were identified.

Keywords: Energy planning, urban planning, renewable energies, sustainable cities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
281 System Security Impact on the Dynamic Characteristics of Measurement Sensors in Smart Grids

Authors: Yiyang Su, Jörg Neumann, Jan Wetzlich, Florian Thiel

Abstract:

Smart grid is a term used to describe the next generation power grid. New challenges such as integration of renewable and decentralized energy sources, the requirement for continuous grid estimation and optimization, as well as the use of two-way flows of energy have been brought to the power gird. In order to achieve efficient, reliable, sustainable, as well as secure delivery of electric power more and more information and communication technologies are used for the monitoring and the control of power grids. Consequently, the need for cybersecurity is dramatically increased and has converged into several standards which will be presented here. These standards for the smart grid must be designed to satisfy both performance and reliability requirements. An in depth investigation of the effect of retrospectively embedded security in existing grids on it’s dynamic behavior is required. Therefore, a retrofitting plan for existing meters is offered, and it’s performance in a test low voltage microgrid is investigated. As a result of this, integration of security measures into measurement architectures of smart grids at the design phase is strongly recommended.

Keywords: Cyber security, performance, protocols, security standards, smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
280 Natural Emergence of a Core Structure in Networks via Clique Percolation

Authors: A. Melka, N. Slater, A. Mualem, Y. Louzoun

Abstract:

Networks are often presented as containing a “core” and a “periphery.” The existence of a core suggests that some vertices are central and form the skeleton of the network, to which all other vertices are connected. An alternative view of graphs is through communities. Multiple measures have been proposed for dense communities in graphs, the most classical being k-cliques, k-cores, and k-plexes, all presenting groups of tightly connected vertices. We here show that the edge number thresholds for such communities to emerge and for their percolation into a single dense connectivity component are very close, in all networks studied. These percolating cliques produce a natural core and periphery structure. This result is generic and is tested in configuration models and in real-world networks. This is also true for k-cores and k-plexes. Thus, the emergence of this connectedness among communities leading to a core is not dependent on some specific mechanism but a direct result of the natural percolation of dense communities.

Keywords: Networks, cliques, percolation, core structure, phase transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716
279 Design of Ultra Fast Polymer Electro-Optic waveguide Switch for Intelligent Optical Networks

Authors: S.Ponmalar, S.Sundaravadivelu

Abstract:

Traditional optical networks are gradually evolving towards intelligent optical networks due to the need for faster bandwidth provisioning, protection and restoration of the network that can be accomplished with devices like optical switch, add drop multiplexer and cross connects. Since dense wavelength multiplexing forms the physical layer for intelligent optical networking, the roll of high speed all optical switch is important. This paper analyzes such an ultra-high speed polymer electro-optic switch. The performances of the 2x2 optical waveguide switch with rectangular, triangular and trapezoidal grating profiles on various device parameters are analyzed. The simulation result shows that trapezoidal grating is the optimized structure which has the coupling length of 81μm and switching voltage of 11V for the operating wavelength of 1550nm. The switching time for this proposed switch is 0.47 picosecond. This makes the proposed switch to be an important element in the intelligent optical network.

Keywords: Intelligent optical network, optical switch, electrooptic effect, coupled mode theory, waveguide grating structures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
278 Fuzzy Logic Controller Based Shunt Active Filter with Different MFs for Current Harmonics Elimination

Authors: Shreyash Sinai Kunde, Siddhang Tendulkar, Shiv Prakash Gupta, Gaurav Kumar, Suresh Mikkili

Abstract:

One of the major power quality concerns in modern times is the problem of current harmonics. The current harmonics is caused due to the increase in non-linear loads which is largely dominated by power electronics devices. The Shunt active filtering is one of the best solutions for mitigating current harmonics. This paper describes a fuzzy logic controller based (FLC) based three Phase Shunt active Filter to achieve low current harmonic distortion (THD) and Reactive power compensation. The performance of fuzzy logic controller is analysed under both balanced sinusoidal and unbalanced sinusoidal source condition. The above controller serves the purpose of maintaining DC Capacitor Voltage constant. The proposed shunt active filter uses hysteresis current controller for current control of IGBT based PWM inverter. The simulation results of model in Simulink MATLAB reveals satisfying results.

Keywords: Shunt active filter, Current harmonics, Fuzzy logic controller, Hysteresis current controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2688
277 Envelope Echo Signal of Metal Sphere in the Fresh Water

Authors: A. Mahfurdz, Sunardi, H. Ahmad

Abstract:

An envelope echo signal measurement is proposed in this paper using echo signal observation from the 200 kHz echo sounder receiver. The envelope signal without any object is compared with the envelope signal of the sphere. Two diameter size steel ball (3.1 cm & 2.2 cm) and two diameter size air filled stainless steel ball (4.8 cm & 7.4 cm) used in this experiment. The target was positioned about 0.5 m and 1.0 meter from the transducer face using nylon rope. From the echo observation in time domain, it is obviously shown that echo signal structure is different between the size, distance and type of metal sphere. The amplitude envelope voltage for the bigger sphere is higher compare to the small sphere and it confirm that the bigger sphere have higher target strength compare to the small sphere. Although the structure signal without any object are different compare to the signal from the sphere, the reflected signal from the tank floor increase linearly with the sphere size. We considered this event happened because of the object position approximately to the tank floor.

Keywords: echo sounder, target strength, sphere, echo signal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
276 Artificial Generation of Visual Evoked Potential to Enhance Visual Ability

Authors: A. Vani, M. N. Mamatha

Abstract:

Visual signal processing in human beings occurs in the occipital lobe of the brain. The signals that are generated in the brain are universal for all the human beings and they are called Visual Evoked Potential (VEP). Generally, the visually impaired people lose sight because of severe damage to only the eyes natural photo sensors, but the occipital lobe will still be functioning. In this paper, a technique of artificially generating VEP is proposed to enhance the visual ability of the subject. The system uses the electrical photoreceptors to capture image, process the image, to detect and recognize the subject or object. This voltage is further processed and can transmit wirelessly to a BIOMEMS implanted into occipital lobe of the patient’s brain. The proposed BIOMEMS consists of array of electrodes that generate the neuron potential which is similar to VEP of normal people. Thus, the neurons get the visual data from the BioMEMS which helps in generating partial vision or sight for the visually challenged patient. 

Keywords: Visual evoked potential, OpenViBe, BioMEMS, Neuro prosthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
275 Cooling-Rate Induced Fiber Birefringence Variation in Regenerated High Birefringent Fiber

Authors: M. H. Lai, D. S. Gunawardena, K. S. Lim, H. Ahmad

Abstract:

In this paper, we have reported birefringence manipulation in regenerated high birefringent fiber Bragg grating (RPMG) by using CO2 laser annealing method. The results indicate that the birefringence of RPMG remains unchanged after CO2 laser annealing followed by slow cooling process, but reduced after fast cooling process (~5.6×10-5). After a series of annealing procedures with different cooling rates, the obtained results show that slower the cooling rate, higher the birefringence of RPMG. The volume, thermal expansion coefficient (TEC) and glass transition temperature (Tg) change of stress applying part in RPMG during cooling process are responsible for the birefringence change. Therefore, these findings are important to the RPMG sensor in high and dynamic temperature environment. The measuring accuracy, range and sensitivity of RPMG sensor is greatly affected by its birefringence value. This work also opens up a new application of CO2 laser for fiber annealing and birefringence modification.

Keywords: Birefringence, CO2 laser annealing, regenerated gratings, thermal stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
274 Reliability Modeling and Data Analysis of Vacuum Circuit Breaker Subject to Random Shocks

Authors: Rafik Medjoudj, Rabah Medjoudj, D. Aissani

Abstract:

The electrical substation components are often subject to degradation due to over-voltage or over-current, caused by a short circuit or a lightning. A particular interest is given to the circuit breaker, regarding the importance of its function and its dangerous failure. This component degrades gradually due to the use, and it is also subject to the shock process resulted from the stress of isolating the fault when a short circuit occurs in the system. In this paper, based on failure mechanisms developments, the wear out of the circuit breaker contacts is modeled. The aim of this work is to evaluate its reliability and consequently its residual lifetime. The shock process is based on two random variables such as: the arrival of shocks and their magnitudes. The arrival of shocks was modeled using homogeneous Poisson process (HPP). By simulation, the dates of short-circuit arrivals were generated accompanied with their magnitudes. The same principle of simulation is applied to the amount of cumulative wear out contacts. The objective reached is to find the formulation of the wear function depending on the number of solicitations of the circuit breaker.

Keywords: reliability, short-circuit, models of shocks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
273 Generating Class-Based Test Cases for Interface Classes of Object-Oriented Black Box Frameworks

Authors: Jehad Al Dallal, Paul Sorenson

Abstract:

An application framework provides a reusable design and implementation for a family of software systems. Application developers extend the framework to build their particular applications using hooks. Hooks are the places identified to show how to use and customize the framework. Hooks define the Framework Interface Classes (FICs) and their possible specifications, which helps in building reusable test cases for the implementations of these classes. This paper introduces a novel technique called all paths-state to generate state-based test cases to test the FICs at class level. The technique is experimentally evaluated. The empirical evaluation shows that all paths-state technique produces test cases with a high degree of coverage for the specifications of the implemented FICs comparing to test cases generated using round-trip path and all-transition techniques.

Keywords: Hooks, object-oriented framework, frameworkinterface classes (FICs), specification-based testing, test casegeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
272 Two-Photon Ionization of Silver Clusters

Authors: V. Paployan, K. Madoyan, A. Melikyan, H. Minassian

Abstract:

In this paper, we calculate the two-photon ionization (TPI) cross-section for pump-probe scheme in Ag neutral cluster. The pump photon energy is assumed to be close to the surface plasmon (SP) energy of cluster in dielectric media. Due to this choice, the pump wave excites collective oscillations of electrons-SP and the probe wave causes ionization of the cluster. Since the interband transition energy in Ag exceeds the SP resonance energy, the main contribution into the TPI comes from the latter. The advantage of Ag clusters as compared to the other noble metals is that the SP resonance in silver cluster is much sharper because of peculiarities of its dielectric function. The calculations are performed by separating the coordinates of electrons corresponding to the collective oscillations and the individual motion that allows taking into account the resonance contribution of excited SP oscillations. It is shown that the ionization cross section increases by two orders of magnitude if the energy of the pump photon matches the surface plasmon energy in the cluster.

Keywords: Resonance enhancement, silver clusters, surface plasmon, two-photon ionization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
271 Processing, Morphological, Thermal and Absorption Behavior of PLA/Thermoplastic Starch/Montmorillonite Nanocomposites

Authors: Esmat Jalalvandi, Rohah Abd. Majid, Taravat Ghanbari

Abstract:

Thermoplastic starch, polylactic acid glycerol and maleic anhydride (MA) were compounded with natural montmorillonite (MMT) through a twin screw extruder to investigate the effects of different loading of MMT on structure, thermal and absorption behavior of the nanocomposites. X-ray diffraction analysis (XRD) showed that sample with MMT loading 4phr exhibited exfoliated structure while sample that contained MMT 8 phr exhibited intercalated structure. FESEM images showed big lump when MMT loading was at 8 phr. The thermal properties were characterized by using differential scanning calorimeter (DSC). The results showed that MMT increased melting temperature and crystallization temperature of matrix but reduction in glass transition temperature was observed Meanwhile the addition of MMT has improved the water barrier property. The nanosize MMT particle is also able to block a tortuous pathway for water to enter the starch chain, thus reducing the water uptake and improved the physical barrier of nanocomposite.

Keywords: Montmorillonite, Nanocomposite, Polylactic acid, Starch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
270 Current Controlled Current Conveyor (CCCII)and Application using 65nm CMOS Technology

Authors: Zia Abbas, Giuseppe Scotti, Mauro Olivieri

Abstract:

Current mode circuits like current conveyors are getting significant attention in current analog ICs design due to their higher band-width, greater linearity, larger dynamic range, simpler circuitry, lower power consumption and less chip area. The second generation current controlled conveyor (CCCII) has the advantage of electronic adjustability over the CCII i.e. in CCCII; adjustment of the X-terminal intrinsic resistance via a bias current is possible. The presented approach is based on the CMOS implementation of second generation positive (CCCII+), negative (CCCII-) and dual Output Current Controlled Conveyor (DOCCCII) and its application as Universal filter. All the circuits have been designed and simulated using 65nm CMOS technology model parameters on Cadence Virtuoso / Spectre using 1V supply voltage. Various simulations have been carried out to verify the linearity between output and input ports, range of operation frequency, etc. The outcomes show good agreement between expected and experimental results.

Keywords: CCCII+, CCCII-, DOCCCII, Electronic tunability, Universal filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4668
269 Mechanical and Thermal Properties of Hybrid Blends of LLDPE/Starch/PVA

Authors: Rahmah, M., Farhan, M., Akidah, N.M.Y

Abstract:

Polybag and mulch film in agricultural field are used plastics which caused environmental problems after transplantation and planting processes due to the discarded wastes. Thus a degradable polybag was designed in this study to replace non degradable polybag with natural biodegradable resin that is widely available, namely sago starch (SS) and polyvinyl alcohol (PVA). Hybrid blend consists of SS, PVA and linear low density polyethylene (LLDPE) was compounded at different ratios. The thermal and mechanical properties of the blends were investigated. Hybrid films underwent landfill degradation tests for up to 2 months. The films showed gelation and melting transition existed for all three systems with significant melting peaks by LLDPE and PVA. All hybrid blends loses its LLDPE semi crystalline characteristics as PVA and SS systems had disrupted crystallinity and enhanced the amorphosity of the hybrid system. Generally, blending SS with PVA improves the mechanical properties of the SS based materials. Tensile strength of each film was also decreased with the increase of SS contents while its modulus had increased with SS content.

Keywords: Appearance peak, LLDPE, PVA, sago starch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995
268 Harmonic Elimination of Hybrid Multilevel Inverters Using Particle Swarm Optimization

Authors: N. Janjamraj, A. Oonsivilai

Abstract:

This paper present the harmonic elimination of hybrid multilevel inverters (HMI) which could be increase the number of output voltage level. Total Harmonic Distortion (THD) is one of the most important requirements concerning performance indices. Because of many numbers output levels of HMI, it had numerous unknown variables of eliminate undesired individual harmonic and THD nonlinear equations set. Optimized harmonic stepped waveform (OHSW) is solving switching angles conventional method, but most complicated for solving as added level. The artificial intelligent techniques are deliberation to solve this problem. This paper presents the Particle Swarm Optimization (PSO) technique for solving switching angles to get minimum THD and eliminate undesired individual harmonics of 15-levels hybrid multilevel inverters. Consequently it had many variables and could eliminate numerous harmonics. Both advantages including high level of inverter and Particle Swarm Optimization (PSO) are used as powerful tools for harmonics elimination.

Keywords: Multilevel Inverters, Particle Swarms Optimization, Harmonic Elimination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489
267 Conceptualizing of Priorities in the Dynamics of Public Administration Contemporary Reforms

Authors: Larysa Novak-Kalyayeva, Aleksander Kuczabski, Orystlava Sydorchuk, Nataliia Fersman, Tatyana Zemlinskaia

Abstract:

The article presents the results of the creative analysis and comparison of trends in the development of the theory of public administration during the period from the second half of the 20th to the beginning of the 21st century. The process of conceptualization of the priorities of public administration in the dynamics of reforming was held under the influence of such factors as globalization, integration, information and technological changes and human rights is examined. The priorities of the social state in the concepts of the second half of the 20th century are studied. Peculiar approaches to determining the priorities of public administration in the countries of "Soviet dictatorship" in Central and Eastern Europe in the same period are outlined. Particular attention is paid to the priorities of public administration regarding the interaction between public power and society and the development of conceptual foundations for the modern managerial process. There is a thought that the dynamics of the formation of concepts of the European governance is characterized by the sequence of priorities: from socio-economic and moral-ethical to organizational-procedural and non-hierarchical ones. The priorities of the "welfare state" were focused on the decent level of material wellbeing of population. At the same time, the conception of "minimal state" emphasized priorities of human responsibility for their own fate under the conditions of minimal state protection. Later on, the emphasis was placed on horizontal ties and redistribution of powers and competences of "effective state" with its developed procedures and limits of responsibility at all levels of government and in close cooperation with the civil society. The priorities of the contemporary period are concentrated on human rights in the concepts of "good governance" and all the following ones, which recognize the absolute priority of public administration with compliance, provision and protection of human rights. There is a proved point of view that civilizational changes taking place under the influence of information and technological imperatives also stipulate changes in priorities, redistribution of emphases and update principles of managerial concepts on the basis of publicity, transparency, departure from traditional forms of hierarchy and control in favor of interactivity and inter-sectoral interaction, decentralization and humanization of managerial processes. The necessity to permanently carry out the reorganization, by establishing the interaction between different participants of public power and social relations, to establish a balance between political forces and social interests on the basis of mutual trust and mutual understanding determines changes of social, political, economic and humanitarian paradigms of public administration and their theoretical comprehension. The further studies of theoretical foundations of modern public administration in interdisciplinary discourse in the context of ambiguous consequences of the globalizational and integrational processes of modern European state-building would be advisable. This is especially true during the period of political transformations and economic crises which are the characteristic of the contemporary Europe, especially for democratic transition countries.

Keywords: Concepts of public administration, democratic transition countries, human rights, the priorities of public administration, theory of public administration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
266 An Effective Islanding Detection and Classification Method Using Neuro-Phase Space Technique

Authors: Aziah Khamis, H. Shareef

Abstract:

The purpose of planned islanding is to construct a power island during system disturbances which are commonly formed for maintenance purpose. However, in most of the cases island mode operation is not allowed. Therefore distributed generators (DGs) must sense the unplanned disconnection from the main grid. Passive technique is the most commonly used method for this purpose. However, it needs improvement in order to identify the islanding condition. In this paper an effective method for identification of islanding condition based on phase space and neural network techniques has been developed. The captured voltage waveforms at the coupling points of DGs are processed to extract the required features. For this purposed a method known as the phase space techniques is used. Based on extracted features, two neural network configuration namely radial basis function and probabilistic neural networks are trained to recognize the waveform class. According to the test result, the investigated technique can provide satisfactory identification of the islanding condition in the distribution system.

Keywords: Classification, Islanding detection, Neural network, Phase space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
265 Circuit Breaker and Transformer Monitoring

Authors: M.Nafar, A.H.Gheisari, A.Alesaadi

Abstract:

Since large power transformers are the most expensive and strategically important components of any power generator and transmission system, their reliability is crucially important for the energy system operation. Also, Circuit breakers are very important elements in the power transmission line so monitoring the events gives a knowledgebase to determine time to the next maintenance. This paper deals with the introduction of the comparative method of the state estimation of transformers and Circuit breakers using continuous monitoring of voltage, current. This paper gives details a new method based on wavelet to apparatus insulation monitoring. In this paper to insulation monitoring of transformer, a new method based on wavelet transformation and neutral point analysis is proposed. Using the EMTP tools, fault in transformer winding and the detailed transformer winding model were simulated. The current of neutral point of winding was analyzed by wavelet transformation. It is shown that the neutral current of the transformer winding has useful information about fault in insulation of the transformer.

Keywords: Wavelet, Power Transformer, EMTP, CircuitBreaker, Monitoring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
264 Low Cost Microcontroller Based ECG Machine

Authors: Muhibul H. Bhuyan, Md. T. Hasan, Hasan Iskander

Abstract:

Electrocardiographic (ECG) machine is an important equipment to diagnose heart problems. Besides, the ECG signals are used to detect many other features of human body and behavior. But it is not so cheap and simple in operation to be used in the countries like Bangladesh, where most of the people are very low income earners. Therefore, in this paper, we have tried to implement a simple and portable ECG machine. Since Arduino Uno microcontroller is very cheap, we have used it in our system to minimize the cost. Our designed system is powered by a 2-voltage level DC power supply. It provides wireless connectivity to have ECG data either in smartphone having android operating system or a PC/laptop having Windows operating system. To get the data, a graphic user interface has been designed. Android application has also been made using IDE for Android 2.3 and API 10. Since it requires no USB host API, almost 98% Android smartphones, available in the country, will be able to use it. We have calculated the heart rate from the measured ECG by our designed machine and by an ECG machine of a reputed diagnostic center in Dhaka city for the same people at the same time on same day. Then we calculated the percentage of errors between the readings of two machines and computed its average. From this computation, we have found out that the average percentage of error is within an acceptable limit.

Keywords: Low cost ECG machine, heart diseases, remote monitoring, Arduino microcontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
263 Availability Analysis of Milling System in a Rice Milling Plant

Authors: P. C. Tewari, Parveen Kumar

Abstract:

The paper describes the availability analysis of milling system of a rice milling plant using probabilistic approach. The subsystems under study are special purpose machines. The availability analysis of the system is carried out to determine the effect of failure and repair rates of each subsystem on overall performance (i.e. steady state availability) of system concerned. Further, on the basis of effect of repair rates on the system availability, maintenance repair priorities have been suggested. The problem is formulated using Markov Birth-Death process taking exponential distribution for probable failures and repair rates. The first order differential equations associated with transition diagram are developed by using mnemonic rule. These equations are solved using normalizing conditions and recursive method to drive out the steady state availability expression of the system. The findings of the paper are presented and discussed with the plant personnel to adopt a suitable maintenance policy to increase the productivity of the rice milling plant.

Keywords: Markov process, milling system, availability modeling, rice milling plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
262 Radiation Heat Transfer in Planar SOFC Components: Application of the Lattice Boltzmann Method

Authors: Imen Mejri, Ahmed Mahmoudi, Mohamed A. Abbassi, Ahmed Omri

Abstract:

Thermal radiation plays a very important role in the heat transfer combination through the various components of the SOFC fuel cell operating at high temperatures. Lattice Boltzmann method is used for treating conduction-radiation heat transfer in the electrolyte. The thermal radiation heat transfer is coupled to the overall energy conservation equations through the divergence of the local radiative flux. The equation of energy in one dimension is numerically resolved by using the Lattice Boltzmann method. A computing program (FORTRAN) is developed locally for this purpose in order to obtain fields of temperature in every element of the cell. The parameters investigated are: functioning temperature, cell voltages and electrolyte thickness. The results show that the radiation effect increases with increasing the electrolyte thickness, also increases with increasing the functioning temperature and decreases with the increase of the voltage of the cell.

Keywords: SOFC, lattice Boltzmann method, conduction, radiation, planar medium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2464
261 Piezoelectric Power Output Predictions Using Single-Phase Flow to Power Flow Meters

Authors: Umar Alhaji Mukhtar, Abubakar Mohammed El-jummah

Abstract:

This research involved the utilization of fluid flow energy to predict power output using Lead Zirconate Titanate (PZT) piezoelectric stacks. The aim of this work is to extract energy from a controlled level of pressure fluctuation in single-phase flow which forms a part of the energy harvesting technology that powers flow meters. A device- Perspex box was developed and fixed to 50.8 mm rig to induce pressure fluctuation in the flow. An experimental test was carried out using the single-phase water flow in the developed rig in order to measure the power output generation from the piezoelectric stacks. 16 sets of experimental tests were conducted to ensure the maximum output result. The acquired signal of the pressure fluctuation was used to simulate the expected electrical output from the piezoelectric material. The results showed a maximum output voltage of 12 V with an instantaneous output power of 1 µW generated, when the pressure amplitude is 2.6 kPa at a frequency of 2.4 Hz.

Keywords: Energy harvesting, experimental test, perspex rig, pressure fluctuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
260 Numerical Analysis of Roughness Effect on Mini and Microchannels: Hydrodynamics and Heat Transfer

Authors: El-Ghalia Filali, Cherif Gadouche, Mohamed Tahar

Abstract:

A three-dimensional numerical simulation of flow through mini and microchannels with designed roughness is conducted here. The effect of the roughness height (surface roughness), geometry, Reynolds number on the friction factor, and Nusselt number is investigated. The study is carried out by employing CFD software, CFX. Our work focuses on a water flow inside a circular mini-channel of 1 mm and microchannels of 500 and 100 m in diameter. The speed entry varies from 0.1 m/s to 20 m/s. The general trend can be observed that bigger sizes of roughness element lead to higher flow resistance. It is found that the friction factor increases in a nonlinear fashion with the increase in obstruction height. Particularly, the effect of roughness can no longer be ignored at relative roughness height higher than 3%. A significant increase in Poiseuille number is detected for all configurations considered. The same observation can be done for Nusselt number. The transition zone between laminar and turbulent flow depends on the channel diameter.

Keywords: Heat transfer, hydrodynamics, micro-channel, roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
259 Influence of Initial Surface Roughness on Severe Wear Volume for SUS304 Austenitic Stainless Steels

Authors: A. Kawamura, K. Ishida, K. Okada, T. Sato

Abstract:

Simultaneous measurements of the curves for wear versus distance, wear rate versus distance, and coefficient of friction versus distance were performed in situ to distinguish the transition from severe running-in wear to mild wear. The effects of the initial surface roughness on the severe running-in wear volume were investigated. Disk-on-plate friction and wear tests were carried out with SUS304 austenitic stainless steel in contact with itself under repeated dry sliding conditions at room temperature. The wear volume was dependent on the initial surface roughness. The wear volume when the initial surfaces on the plate and disk had dissimilar roughness was lower than that when these surfaces had similar roughness. For the dissimilar roughness, the wear volume decreased with decreasing initial surface roughness and reached a minimum; it stayed nearly constant as the roughness was less than the mean size of the oxide particles.

Keywords: Austenitic stainless steel, initial surface roughness, running-in, severe wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176
258 Adopting Procedural Animation Technology to Generate Locomotion of Quadruped Characters in Dynamic Environments

Authors: Zongyou He, Bashu Tsai, Chinhung Ko, Tainchi Lu

Abstract:

A procedural-animation-based approach which rapidly synthesize the adaptive locomotion for quadruped characters that they can walk or run in any directions on an uneven terrain within a dynamic environment was proposed. We devise practical motion models of the quadruped animals for adapting to a varied terrain in a real-time manner. While synthesizing locomotion, we choose the corresponding motion models by means of the footstep prediction of the current state in the dynamic environment, adjust the key-frames of the motion models relying on the terrain-s attributes, calculate the collision-free legs- trajectories, and interpolate the key-frames according to the legs- trajectories. Finally, we apply dynamic time warping to each part of motion for seamlessly concatenating all desired transition motions to complete the whole locomotion. We reduce the time cost of producing the locomotion and takes virtual characters to fit in with dynamic environments no matter when the environments are changed by users.

Keywords: Dynamic environment, motion synthesis, procedural animation, quadruped locomotion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
257 Formation of Chemical Compound Layer at the Interface of Initial Substances A and B with Dominance of Diffusion of the A Atoms

Authors: Pavlo Selyshchev, Samuel Akintunde

Abstract:

A theoretical approach to consider formation of chemical compound layer at the interface between initial substances A and B due to the interfacial interaction and diffusion is developed. It is considered situation when speed of interfacial interaction is large enough and diffusion of A-atoms through AB-layer is much more then diffusion of B-atoms. Atoms from A-layer diffuse toward B-atoms and form AB-atoms on the surface of B-layer. B-atoms are assumed to be immobile. The growth kinetics of the AB-layer is described by two differential equations with non-linear coupling, producing a good fit to the experimental data. It is shown that growth of the thickness of the AB-layer determines by dependence of chemical reaction rate on reactants concentration. In special case the thickness of the AB-layer can grow linearly or parabolically depending on that which of processes (interaction or the diffusion) controls the growth. The thickness of AB-layer as function of time is obtained. The moment of time (transition point) at which the linear growth are changed by parabolic is found.

Keywords: Phase formation, Binary systems, Interfacial Reaction, Diffusion, Compound layers, Growth kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
256 Human Action Recognition Based on Ridgelet Transform and SVM

Authors: A. Ouanane, A. Serir

Abstract:

In this paper, a novel algorithm based on Ridgelet Transform and support vector machine is proposed for human action recognition. The Ridgelet transform is a directional multi-resolution transform and it is more suitable for describing the human action by performing its directional information to form spatial features vectors. The dynamic transition between the spatial features is carried out using both the Principal Component Analysis and clustering algorithm K-means. First, the Principal Component Analysis is used to reduce the dimensionality of the obtained vectors. Then, the kmeans algorithm is then used to perform the obtained vectors to form the spatio-temporal pattern, called set-of-labels, according to given periodicity of human action. Finally, a Support Machine classifier is used to discriminate between the different human actions. Different tests are conducted on popular Datasets, such as Weizmann and KTH. The obtained results show that the proposed method provides more significant accuracy rate and it drives more robustness in very challenging situations such as lighting changes, scaling and dynamic environment

Keywords: Human action, Ridgelet Transform, PCA, K-means, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039