Thermal radiation plays a very important role in the heat transfer combination through the various components of the SOFC fuel cell operating at high temperatures. Lattice Boltzmann method is used for treating conduction-radiation heat transfer in the electrolyte. The thermal radiation heat transfer is coupled to the overall energy conservation equations through the divergence of the local radiative flux. The equation of energy in one dimension is numerically resolved by using the Lattice Boltzmann method. A computing program (FORTRAN) is developed locally for this purpose in order to obtain fields of temperature in every element of the cell. The parameters investigated are: functioning temperature, cell voltages and electrolyte thickness. The results show that the radiation effect increases with increasing the electrolyte thickness, also increases with increasing the functioning temperature and decreases with the increase of the voltage of the cell.<\/p>\r\n","references":"[1]\tH. Karoliussen, K. Nisancioglu and A. Solheim, \"Use of effective conductivities and unit cell-based supraelements in the numerical simulation of solid oxide fuel cell stacks\u201d J. Appl. Electrochem, vol.28, pp.283\u2013288, 1998.\r\n[2]\tS. Murthy and A.G. Fedorov, \"Radiation heat transfer analysis of the monolith type solid oxide fuel cell\u201d, J. Power Sources, vol.124, pp.453\u2013458, 2003.\r\n[3]\tG. Brus and J.S. Szmyd, \"Numerical modelling of radiative heat transfer in an internal indirect reforming-type SOFC\u201d, J. Power Sources, vol.181, pp.8\u201316, 2008.\r\n[4]\tD.L. Damm and A.G. Fedorov, \"Spectral radiative heat transfer analysis of the planar SOFC\u201d J. Fuel Cell Sci. Technol, vol.2, no.4, pp.258\u2013262, 2005.\r\n[5]\tD.L. Damm and A.G. Fedorov, \"Radiation heat transfer in SOFC materials and components\u201d J. Power Sources, vol.143, no.1, pp.158\u2013165, 2005.\r\n[6]\tK.J. Daun, S.B. Beale and F. Liu, \"Radiation heat transfer in planar SOFC electrolytes\u201d J. Power Sources, vol.157, pp.302\u2013310, 2006.\r\n[7]\tJ.D.J. VanderSteen and J.G. Pharoah \"Modeling radiation heat transfer with participating media in solid oxide fuel cells\u201d J. Fuel Cell Sci. Technol, vol.3, pp.62\u201367. 2006.\r\n[8]\tD. Sanchez, R.Chacartegui and A. Munoz \"Thermal and electrochemical model of internal reforming solid oxide fuel cells with tubular geometry\u201d J. Power Sources, vol.160, pp.1074\u20131087, 2006.\r\n[9]\tH. Yakabe, T. Ogiwara, M. Hishinuma and I.Yasuda \"3-D model calculation for planar SOFC\u201d J. Power Sources, vol.102, pp.144\u2013154. 2001.\r\n[10]\tB. Rousseau, H. Gomart, D.S.M. Domingos, E. Patrick, R. Mathilde, D. Romain and L. Pascal \"Modelling of the radiative properties of an opaque porous ceramic layer\u201d, J. Electroceram, vol.27, pp.89\u201392, 2011.\r\n[11]\tR.J. Kee, B.L. Kee and J.L. Martin \"Radiative and convective heat transport within tubular solid-oxide fuel-cell stacks\u201d J. Power Sources, vol.195, pp.6688\u20136698, 2010.\r\n[12]\tM. Garc\u00eda-Camprub\u00ed, H. Jasak and N. Fueyo, \"CFD analysis of cooling effects in H2-fed solid oxide fuel cells\u201d J. Power Sources, vol.196, pp.7290\u20137301. 2011.\r\n[13]\tC. Bao, N. Cai and E.Croiset, \"An analytical model of view factors for radiation heat transfer in planar and tubular solid oxide fuel cells\u201d J. Power Sources, vol.196, pp.3223\u20133232, 2011.\r\n[14]\tT.X. Ho, P. Kosinski and A.C. Hoffmann, \"Effects of heat sources on the performance of a planar solid oxide fuel cell\u201d Int. J. Hydrogen Energy, vol.35, pp.4276\u20134284, 2010.\r\n[15]\tS. Succi, \"The Lattice Boltzmann Equation for Fluid Dynamics and Beyond\u201d, Oxford University Press, New York. 2001.\r\n[16]\tSC, Mishra and A.Lankadasu, \"Analysis of Transient Conduction and Radiation Heat Transfer Using the Lattice Boltzmann Method and the Discrete Transfer Method\u201d, Numer. Heat Transfer A, vol.47, pp.935\u201354, 2005.\r\n[17]\tD.L. Damm and A.G. Fedorov, Proc. ASME Int. Mech. Eng. Congress Expo. Anaheim, CA. 2004.\r\n[18]\tSC. Mishra, P. Talukdar, D. Trimis and F. Durst, \"Computational efficiency improvements of the radiative transfer problems with or without conduction-a comparison of the collapsed dimension method and the discrete transfer method\u201d, Int J of Heat and Mass Transfer, vol.46, pp.3083\u201395, 2003.\r\n[19]\tB. Zitouni, H. Ben Moussa and K. Oulmi, \"Studying on the increasing temperature in IT-SOFC: Effect of heat sources\u201d, Journal of Zhejiang university science A, vol.8, pp.1500-1504. 2007.\r\n","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 87, 2014"}