Search results for: species classification
614 Rule Insertion Technique for Dynamic Cell Structure Neural Network
Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin
Abstract:
This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.
Keywords: Neural network, rule extraction, rule insertion, self-organizing map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 530613 The Building Thermal Performance and Carbon Sequestration Evaluation for Psophocarpus tetrogonobulus on Biofaçade Wall in the Tropical Environment
Authors: Abdul M. A. Rahman , Foong S. Yeok, Atikah F. Amir
Abstract:
Plants are commonly known for its positive correlation in reducing temperature. Since it can benefit buildings by modifying the microclimate, it-s also believed capable of reducing the internal temperature. Various experiments have been done in Universiti Sains Malaysia, Penang to investigate the comparison in thermal benefits between two rooms, one being a typical control room (exposed wall) and the other a biofacade room (plant shaded wall). The investigations were conducted during non-rainy season for approximately a month. Climbing plant Psophocarpus tetrogonobulus from legume species was selected as insulation for the biofacade wall. Conclusions were made on whether the biofacade can be used to tackle the energy efficiency, based on the parameters taken into consideration.Keywords: biofacade, thermal benefits, carbon sequestration, Psophocarpus tetrogonobulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5163612 Intelligent System for Breast Cancer Prognosis using Multiwavelet Packets and Neural Network
Authors: Sepehr M.H.Jamarani, M.H.Moradi, H.Behnam, G.A.Rezai Rad
Abstract:
This paper presents an approach for early breast cancer diagnostic by employing combination of artificial neural networks (ANN) and multiwaveletpacket based subband image decomposition. The microcalcifications correspond to high-frequency components of the image spectrum, detection of microcalcifications is achieved by decomposing the mammograms into different frequency subbands,, reconstructing the mammograms from the subbands containing only high frequencies. For this approach we employed different types of multiwaveletpacket. We used the result as an input of neural network for classification. The proposed methodology is tested using the Nijmegen and the Mammographic Image Analysis Society (MIAS) mammographic databases and images collected from local hospitals. Results are presented as the receiver operating characteristic (ROC) performance and are quantified by the area under the ROC curve.Keywords: Breast cancer, neural networks, diagnosis, multiwavelet packet, microcalcification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400611 The Impact of Fish Cages on Water Quality in One Fish Farm in Croatia
Authors: G. Jelic Mrcelic, M. Sliskovic
Abstract:
In Croatia, the majority of cultured marine fish species are reared in net cages. The intensive production of the fish in net cages may generate the considerable amount of bio waste and change water quality especially in enclosed and semi-enclosed coastal areas. The aim of this paper is to assess the potential impact of sea bass (Dicentrarchus labrax L.) cage farm on water quality. The weak relationship between food supply and water quality parameters (nutrient content and phytoplankton biomass) was found, but significant changes in oxygen saturation was observed in the cages during the warmer period of a year especially in the morning (occasionally it dropped below 70 %). Despite of, satisfactory results of water quality parameters, it is necessary to establish comprehensive monitoring process, especially to include quality assessment of fouling communities.
Keywords: Mariculture, monitoring, fish cages, water quality parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2659610 Development of a Pipeline Monitoring System by Bio-mimetic Robots
Authors: Seung You Na, Daejung Shin, Jin Young Kim, Joo Hyun Jung, Yong-Gwan Won
Abstract:
To explore pipelines is one of various bio-mimetic robot applications. The robot may work in common buildings such as between ceilings and ducts, in addition to complicated and massive pipeline systems of large industrial plants. The bio-mimetic robot finds any troubled area or malfunction and then reports its data. Importantly, it can not only prepare for but also react to any abnormal routes in the pipeline. The pipeline monitoring tasks require special types of mobile robots. For an effective movement along a pipeline, the movement of the robot will be similar to that of insects or crawling animals. During its movement along the pipelines, a pipeline monitoring robot has an important task of finding the shapes of the approaching path on the pipes. In this paper we propose an effective solution to the pipeline pattern recognition, based on the fuzzy classification rules for the measured IR distance data.Keywords: Bio-mimetic robots, Plant pipes monitoring, Pipepattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649609 A Family of Distributions on Learnable Problems without Uniform Convergence
Authors: César Garza
Abstract:
In supervised binary classification and regression problems, it is well-known that learnability is equivalent to uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.
Keywords: Statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 354608 Alertness States Classification By SOM and LVQ Neural Networks
Authors: K. Ben Khalifa, M.H. Bédoui, M. Dogui, F. Alexandre
Abstract:
Several studies have been carried out, using various techniques, including neural networks, to discriminate vigilance states in humans from electroencephalographic (EEG) signals, but we are still far from results satisfactorily useable results. The work presented in this paper aims at improving this status with regards to 2 aspects. Firstly, we introduce an original procedure made of the association of two neural networks, a self organizing map (SOM) and a learning vector quantization (LVQ), that allows to automatically detect artefacted states and to separate the different levels of vigilance which is a major breakthrough in the field of vigilance. Lastly and more importantly, our study has been oriented toward real-worked situation and the resulting model can be easily implemented as a wearable device. It benefits from restricted computational and memory requirements and data access is very limited in time. Furthermore, some ongoing works demonstrate that this work should shortly results in the design and conception of a non invasive electronic wearable device.Keywords: Electroencephalogram interpretation, artificialneural networks, vigilance states, hardware implementation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476607 Scattering Operator and Spectral Clustering for Ultrasound Images: Application on Deep Venous Thrombi
Authors: Thibaud Berthomier, Ali Mansour, Luc Bressollette, Frédéric Le Roy, Dominique Mottier, Léo Fréchier, Barthélémy Hermenault
Abstract:
Deep Venous Thrombosis (DVT) occurs when a thrombus is formed within a deep vein (most often in the legs). This disease can be deadly if a part or the whole thrombus reaches the lung and causes a Pulmonary Embolism (PE). This disorder, often asymptomatic, has multifactorial causes: immobilization, surgery, pregnancy, age, cancers, and genetic variations. Our project aims to relate the thrombus epidemiology (origins, patient predispositions, PE) to its structure using ultrasound images. Ultrasonography and elastography were collected using Toshiba Aplio 500 at Brest Hospital. This manuscript compares two classification approaches: spectral clustering and scattering operator. The former is based on the graph and matrix theories while the latter cascades wavelet convolutions with nonlinear modulus and averaging operators.Keywords: Deep venous thrombosis, ultrasonography, elastography, scattering operator, wavelet, spectral clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178606 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387605 Diversification of the Monogeneans (Platyhelminthes) in Indian Freshwater Fish Families
Authors: A. Chaudhary, H.S. Singh
Abstract:
Present communication deals with general distribution and diversification of Monogenean families parasitizing different freshwater fish families of India. Levels of monogenean parasitism and their diversity are significantly greater in Indian fishes. The most monogeneans parasitized family of fish is Cyprinidae and most dactylogyrids parasitise cyprinids. The family dactylogyridae has more species than any other monogenean family and frequently associated with cyprinid, silurids and bagrids families. Of the various 52 families of freshwater fishes from India, only the Anguillidae, Balitoridae, Chacidae, Chanidae, Channidae, Cobitidae, Coiidae, Erethistidae, Megalopidae, Pristidae, Psilorhynchidae, Salmonidae, Schileidae, Sparidae, Synodontidae and Terapontidae were found to be free of infection with monogeneans. The present study takes a broad look at monogenean diversity in the freshwater fishes of India.Keywords: Diversification, fish, India, Monogenea
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913604 Adhesion Properties of Bifidobacterium Pseudocatenulatum G4 and Bifidobacterium Longum BB536 on HT-29 Human Epithelium Cell Line at Different Times and pH
Authors: Ali Q. S., Farid A. J., Kabeir B. M., Zamberi S., Shuhaimi M., Ghazali H. M., Yazid A. M.
Abstract:
Adhesion to the human intestinal cell is considered as one of the main selection criteria of lactic acid bacteria for probiotic use. The adhesion ability of two Bifidobacteriums strains Bifidobacterium longum BB536 and Bifidobacterium psudocatenulatum G4 was done using HT-29 human epithelium cell line as in vitro study. Four different level of pH were used 5.6, 5.7, 6.6, and 6.8 with four different times 15, 30, 60, and 120 min. Adhesion was quantified by counting the adhering bacteria after Gram staining. The adhesion of B. longum BB536 was higher than B. psudocatenulatum G4. Both species showed significant different in the adhesion properties at the factors tested. The highest adhesion for both Bifidobacterium was observed at 120 min and the low adhesion was in 15 min. The findings of this study will contribute to the introduction of new effective probiotic strain for future utilization.Keywords: Bifidobacterium, Adhesion, HT-29 human epithelium cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850603 A K-Means Based Clustering Approach for Finding Faulty Modules in Open Source Software Systems
Authors: Parvinder S. Sandhu, Jagdeep Singh, Vikas Gupta, Mandeep Kaur, Sonia Manhas, Ramandeep Sidhu
Abstract:
Prediction of fault-prone modules provides one way to support software quality engineering. Clustering is used to determine the intrinsic grouping in a set of unlabeled data. Among various clustering techniques available in literature K-Means clustering approach is most widely being used. This paper introduces K-Means based Clustering approach for software finding the fault proneness of the Object-Oriented systems. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the categorization of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results are measured in terms of accuracy of prediction, probability of Detection and Probability of False Alarms.Keywords: K-Means, Software Fault, Classification, ObjectOriented Metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304602 Extraction and Analysis of Hypericum perforatum L. from Turkey
Authors: E. Moroydor Derun, Z. Eslek, S. Piskin
Abstract:
Hypericum perforatum L. is a member of the Hypericaceae (Guttiferae) family and commonly known as St. John’s wort. There is a growing interest in this medicinal plant because of the constituents of this genus. A number of species have been shown to possess various biological activities such as antiviral, wound healing, analgesic, hepatoprotective, antimicrobial and antioxidant activities and also have therapeutic effects on burns, bruises, swelling, anxiety and mild to moderate depression. In this study, the aerial parts of Hypericum perforatum L. are extracted and the main and effective constituents are determined. The analysis of the extracts was performed by GC-MS and LC-MS. As a next step, it is aimed to investigate the usage of the main constituents of the medicinal plant.
Keywords: Hypericaceae, Hypericum perforatum L., GC-MS, Guttiferae, LC-MS, Medicinal plant, St. John’s wort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4335601 UB-Tree Indexing for Semantic Query Optimization of Range Queries
Authors: S. Housseno, A. Simonet, M. Simonet
Abstract:
Semantic query optimization consists in restricting the search space in order to reduce the set of objects of interest for a query. This paper presents an indexing method based on UB-trees and a static analysis of the constraints associated to the views of the database and to any constraint expressed on attributes. The result of the static analysis is a partitioning of the object space into disjoint blocks. Through Space Filling Curve (SFC) techniques, each fragment (block) of the partition is assigned a unique identifier, enabling the efficient indexing of fragments by UB-trees. The search space corresponding to a range query is restricted to a subset of the blocks of the partition. This approach has been developed in the context of a KB-DBMS but it can be applied to any relational system.Keywords: Index, Range query, UB-tree, Space Filling Curve, Query optimization, Views, Database, Integrity Constraint, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500600 User Requirements Analysis for the Development of Assistive Navigation Mobile Apps for Blind and Visually Impaired People
Authors: Paraskevi Theodorou, Apostolos Meliones
Abstract:
In the context of the development process of two assistive navigation mobile apps for blind and visually impaired people (BVI) an extensive qualitative analysis of the requirements of potential users has been conducted. The analysis was based on interviews with BVIs and aimed to elicit not only their needs with respect to autonomous navigation but also their preferences on specific features of the apps under development. The elicited requirements were structured into four main categories, namely, requirements concerning the capabilities, functionality and usability of the apps, as well as compatibility requirements with respect to other apps and services. The main categories were then further divided into nine sub-categories. This classification, along with its content, aims to become a useful tool for the researcher or the developer who is involved in the development of digital services for BVI.
Keywords: Accessibility, assistive mobile apps, blind and visually impaired people, user requirements analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947599 A Rough Sets Approach for Relevant Internet/Web Online Searching
Authors: Erika Martinez Ramirez, Rene V. Mayorga
Abstract:
The internet is constantly expanding. Identifying web links of interest from web browsers requires users to visit each of the links listed, individually until a satisfactory link is found, therefore those users need to evaluate a considerable amount of links before finding their link of interest; this can be tedious and even unproductive. By incorporating web assistance, web users could be benefited from reduced time searching on relevant websites. In this paper, a rough set approach is presented, which facilitates classification of unlimited available e-vocabulary, to assist web users in reducing search times looking for relevant web sites. This approach includes two methods for identifying relevance data on web links based on the priority and percentage of relevance. As a result of these methods, a list of web sites is generated in priority sequence with an emphasis of the search criteria.Keywords: Web search, Web Mining, Rough Sets, Web Intelligence, Intelligent Portals, Relevance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550598 Ultrasonic Echo Image Adaptive Watermarking Using the Just-Noticeable Difference Estimation
Authors: Amnach Khawne, Kazuhiko Hamamoto, Orachat Chitsobhuk
Abstract:
Most of the image watermarking methods, using the properties of the human visual system (HVS), have been proposed in literature. The component of the visual threshold is usually related to either the spatial contrast sensitivity function (CSF) or the visual masking. Especially on the contrast masking, most methods have not mention to the effect near to the edge region. Since the HVS is sensitive what happens on the edge area. This paper proposes ultrasound image watermarking using the visual threshold corresponding to the HVS in which the coefficients in a DCT-block have been classified based on the texture, edge, and plain area. This classification method enables not only useful for imperceptibility when the watermark is insert into an image but also achievable a robustness of watermark detection. A comparison of the proposed method with other methods has been carried out which shown that the proposed method robusts to blockwise memoryless manipulations, and also robust against noise addition.
Keywords: Medical image watermarking, Human Visual System, Image Adaptive Watermark
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602597 Goal Based Episodic Processing in Implicit Learning
Authors: Peter A. Bibby
Abstract:
Research has suggested that implicit learning tasks may rely on episodic processing to generate above chance performance on the standard classification tasks. The current research examines the invariant features task (McGeorge and Burton, 1990) and argues that such episodic processing is indeed important. The results of the experiment suggest that both rejection and similarity strategies are used by participants in this task to simultaneously reject unfamiliar items and to accept (falsely) familiar items. Primarily these decisions are based on the presence of low or high frequency goal based features of the stimuli presented in the incidental learning phase. It is proposed that a goal based analysis of the incidental learning task provides a simple step in understanding which features of the episodic processing are most important for explaining the match between incidental, implicit learning and test performance.Keywords: Episodic processing, incidental learning, implicitlearning, invariant learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437596 Hydraulic Analysis on Microhabitat of Benthic Macroinvertebrates at Riparian Riffles
Authors: Jin-Hong Kim
Abstract:
Hydraulic analysis on microhabitat of Benthic Macro- invertebrates was performed at riparian riffles of Hongcheon River and Gapyeong Stream. As for the representative species, Ecdyonurus kibunensis, Paraleptophlebia cocorata, Chironomidae sp. and Psilotreta kisoensis iwata were chosen. They showed hydraulically different habitat types by flow velocity and particle diameters of streambed materials. Habitat conditions of the swimmers were determined mainly by the flow velocity rather than by flow depth or by riverbed materials. Burrowers prefer sand and silt, and inhabited at the riverbed. Sprawlers prefer cobble or boulder and inhabited for velocity of 0.05-0.15 m/s. Clingers prefer pebble or cobble and inhabited for velocity of 0.06-0.15 m/s. They were found to be determined mainly by the flow velocity.
Keywords: Benthic macroinvertebrates, riffles, clinger, swimmer, burrower, sprawler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335595 The Study on the Stationarity of Energy Consumption in US States: Considering Structural Breaks, Nonlinearity, and Cross- Sectional Dependency
Authors: Wen-Chi Liu
Abstract:
This study applies the sequential panel selection method (SPSM) procedure proposed by Chortareas and Kapetanios (2009) to investigate the time-series properties of energy consumption in 50 US states from 1963 to 2009. SPSM involves the classification of the entire panel into a group of stationary series and a group of non-stationary series to identify how many and which series in the panel are stationary processes. Empirical results obtained through SPSM with the panel KSS unit root test developed by Ucar and Omay (2009) combined with a Fourier function indicate that energy consumption in all the 50 US states are stationary. The results of this study have important policy implications for the 50 US states.
Keywords: Energy Consumption, Panel Unit Root, Sequential Panel Selection Method, Fourier Function, US states.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813594 A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process
Authors: Salvatore L., Pires B., Campos M. C. M., De Souza Jr M. B.
Abstract:
It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.Keywords: Fault detection, hydrotreatment, hybrid systems, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649593 A New Automatic System of Cell Colony Counting
Authors: U. Bottigli, M.Carpinelli, P.L. Fiori, B. Golosio, A. Marras, G. L. Masala, P. Oliva
Abstract:
The counting process of cell colonies is always a long and laborious process that is dependent on the judgment and ability of the operator. The judgment of the operator in counting can vary in relation to fatigue. Moreover, since this activity is time consuming it can limit the usable number of dishes for each experiment. For these purposes, it is necessary that an automatic system of cell colony counting is used. This article introduces a new automatic system of counting based on the elaboration of the digital images of cellular colonies grown on petri dishes. This system is mainly based on the algorithms of region-growing for the recognition of the regions of interest (ROI) in the image and a Sanger neural net for the characterization of such regions. The better final classification is supplied from a Feed-Forward Neural Net (FF-NN) and confronted with the K-Nearest Neighbour (K-NN) and a Linear Discriminative Function (LDF). The preliminary results are shown.Keywords: Automatic cell counting, neural network, region growing, Sanger net.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461592 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In the context of the handwriting recognition, we propose an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods. The Distribution parameters, the centered moments of the different projections of the different segments, the centered moments of the word image coding according to the directions of Freeman, and the Barr features applied binary image of the word and on its different segments. The classification is achieved by a multi layers perceptron. A detailed experiment is carried and satisfactory recognition results are reported.Keywords: Handwritten word recognition, neural networks, image processing, pattern recognition, features extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902591 Heavy Metal Contamination of the Landscape at the ─¢ubietová Deposit (Slovakia)
Authors: Peter Andráš, Adam Lichý, Jana Rusková, Lenka Matúšková
Abstract:
The heavy metal contamination of the technogenous sediments and soils at the investigated dump-field show irregular planar distribution. Also the heavy metal content in the surface water, drainage water and in the groundwater was studied both in the dry as well as during the rainy periods. The cementation process causes substitution of iron by copper. Natural installation and development of plant species was observed at the old mine waste dumps, specific to the local chemical conditions such as low content of essential nutrients and high content of heavy metals. The individual parts of the plant tissues (roots, branches/stems, leaves/needles, flowers/ fruits) are contaminated by heavy metals and tissues are damaged differently, respectively.Keywords: Contamination, dump-field, heavy metals, plants, sediment, water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3081590 Enhanced Character Based Algorithm for Small Parsimony
Authors: Parvinder Singh Sandhu, Sumeet Kaur Sehra, Karmjit Kaur
Abstract:
Phylogenetic tree is a graphical representation of the evolutionary relationship among three or more genes or organisms. These trees show relatedness of data sets, species or genes divergence time and nature of their common ancestors. Quality of a phylogenetic tree requires parsimony criterion. Various approaches have been proposed for constructing most parsimonious trees. This paper is concerned about calculating and optimizing the changes of state that are needed called Small Parsimony Algorithms. This paper has proposed enhanced small parsimony algorithm to give better score based on number of evolutionary changes needed to produce the observed sequence changes tree and also give the ancestor of the given input.Keywords: Phylogenetic Analysis, Small Parsimony, EnhancedFitch Algorithm, Enhanced Sakoff Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349589 Power System Security Assessment using Binary SVM Based Pattern Recognition
Authors: S Kalyani, K Shanti Swarup
Abstract:
Power System Security is a major concern in real time operation. Conventional method of security evaluation consists of performing continuous load flow and transient stability studies by simulation program. This is highly time consuming and infeasible for on-line application. Pattern Recognition (PR) is a promising tool for on-line security evaluation. This paper proposes a Support Vector Machine (SVM) based binary classification for static and transient security evaluation. The proposed SVM based PR approach is implemented on New England 39 Bus and IEEE 57 Bus systems. The simulation results of SVM classifier is compared with the other classifier algorithms like Method of Least Squares (MLS), Multi- Layer Perceptron (MLP) and Linear Discriminant Analysis (LDA) classifiers.Keywords: Static Security, Transient Security, Pattern Recognition, Classifier, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875588 Palynomorphological Data of Pollen Grains of Lamium garganicum
Authors: Nikoleta Kallajxhiu, Gëzim Kapidani, Peçi Naqellari, Blerina Pupuleku
Abstract:
This study shows palynomorphological description of pollen grains of Lamium garganicum, species of the family Labiatae. Fresh material of this plant is taken in Mount Llogara, in Albania. By comparison made between palinomorphological characteristics of pollen grains of Lamium garganicum with those of Lamium maculatum and Lamium purpureum, showed that granules have similarities in the number of furrows. The pollen grains of Lamium garganicum were larger in length and width than those of Lamium maculatum and almost equal with those of Lamium purpureum. Furrows are longer than those of pollen grains in Lamium maculatum and shorter than those of Lamium purpureum. The layer of exine of Lamium garganicum was thinner than that of two others. The sculpture of exine was fine reticulate, where reticulas were uniform whereas in Lamium purpureum was verrucate, with small verrucae; in Lamium maculatum was reticulate.
Keywords: Lamium garganicum, pollen grains, Llogara, Albania.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792587 Partial Oxidation of Methane in the Pulsed Compression Reactor: Experiments and Simulation
Authors: Timo Roestenberg, Maxim Glushenkov, Alexander Kronberg, Anton A. Verbeek, Theo H. vd Meer
Abstract:
The Pulsed Compression Reactor promises to be a compact, economical and energy efficient alternative to conventional chemical reactors. In this article, the production of synthesis gas using the Pulsed Compression Reactor is investigated. This is done experimentally as well as with simulations. The experiments are done by means of a single shot reactor, which replicates a representative, single reciprocation of the Pulsed Compression Reactor with great control over the reactant composition, reactor temperature and pressure and temperature history. Simulations are done with a relatively simple method, which uses different models for the chemistry and thermodynamic properties of the species in the reactor. Simulation results show very good agreement with the experimental data, and give great insight into the reaction processes that occur within the cycle.Keywords: Chemical reactors, Energy, Pulsed compressionreactor, Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640586 Function Approximation with Radial Basis Function Neural Networks via FIR Filter
Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim
Abstract:
Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore , the number of centers will be considered since it affects the performance of approximation.
Keywords: Extended kalmin filter (EKF), classification problem, radial basis function networks (RBFN), finite impulse response (FIR)filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399585 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Authors: Birmohan Singh, V. K. Jain
Abstract:
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support vector machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and an accuracy of 96% for mammogram images collected from digital database for screening mammography database.Keywords: Architecture Distortion, GLCM Texture features, GLRLM Texture Features, Mammograms, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261