
 

 

  

Abstract—This study applies the sequential panel selection 

method (SPSM) procedure proposed by Chortareas and Kapetanios 

(2009) to investigate the time-series properties of energy 

consumption in 50 US states from 1963 to 2009. SPSM involves the 

classification of the entire panel into a group of stationary series and 

a group of non-stationary series to identify how many and which 

series in the panel are stationary processes. Empirical results obtained 

through SPSM with the panel KSS unit root test developed by Ucar 

and Omay (2009) combined with a Fourier function indicate that 

energy consumption in all the 50 US states are stationary. The results 

of this study have important policy implications for the 50 US states. 

 

Keywords—Energy Consumption, Panel Unit Root, Sequential 

Panel Selection Method, Fourier Function, US states. 

I. INTRODUCTION 

ESEARCH in energy economics has long focused on the 

time-series properties of energy consumption, with 

particular interest in whether energy consumption can be 

described as a random walk (unit root) or mean reverting 

(trend stationary) process.  Nelson and Plosser (1982) pointed 

out that modeling of energy consumption as a trend-stationary 

or difference-stationary process has important implications vis-

à-vis modeling, testing, and forecasting. Shocks in energy 

consumption will have permanent effects if energy 

consumption follows a unit root process; this condition is 

consistent with path dependency or hysteresis in energy 

consumption (Agnolucci et al., 2004). Path dependency of 

energy consumption implies that innovations in world energy 

markets will have permanent effects. However, if energy 

consumption is a stationary process, then shocks in energy 

consumption will have only temporary effects; a subsequent 

major shock in the energy market will allow energy 

consumption to return to its original equilibrium level. When 

energy consumption deviates from the trend because of a 

shock in the energy market, then governments should not 

adopt unnecessary targets.  

The stationarity properties of energy consumption also have 

several important implications. Properly modelling the 

 
Wen-Chi Liu is with Department of Finance, Da-Yeh University, 

Changhua, TAIWAN (e-mail: vincent8@mail.dyu.edu.tw; tel: +886-4-

8511888) ext. 3520 No.168, University Rd., Dacun, Changhua 51591, 

Taiwan, R.O.C. 

relationship between energy consumption and other 

macroeconomic variables is important because of its crucial 

policy implications.  Many recent empirical studies in the field 

of energy economics have focused on the analysis of the 

relationship between energy consumption and real output (for 

a recent survey on this issue, see Ozturk, 2010 and Payne, 

2010). Given the importance and policy implications of the 

results of these studies, the stochastic behavior of energy 

consumption must be considered and a proper modeling 

approach must be adopted to obtain statistically valid results. 

The stationary behavior of energy consumption also has 

important implications on energy consumption forecasting. 

Energy consumption forecasts are crucial for the formulation 

of energy policies. Given the importance of having a safe 

energy supply for economic growth, reliable forecasts of 

energy demand should be obtained to formulate future energy 

policies. If energy consumption is a stationary process, then 

future energy demand can be forecasted based on past 

observations. However, if energy consumption is characterized 

by a stochastic trend, then past observations would not be 

useful in forecasting future trends in energy demand. 

Serveral empirical studies in the field of energy economics 

have focused on the examination of the stationary properties of 

the energy consumption. Earlier studies on the stationary 

properties of energy consumption failed to reject the null 

hypothesis of unit root. Previous studies reported that 

conventional unit root tests not only fail to consider 

information across regions, thereby leading to less efficient 

estimations, but also have lower power compared with near-

unit-root but stationary alternatives (Maddala and Wu, 1999; 

Levin et al., 2002; Im et al., 2003; Pesaran, 2007). These 

factors have shed considerable doubt on many of the earlier 

findings, which were based on a unit root in energy 

consumption (see, for instance, Soytas and Sari, 2003; Lee, 

2005). Many researchers have employed panel data to increase 

testing power for a unit root. For instance, Levin et al. (2002) 

and Im et al. (2003) developed asymptotic theory and the 

finite-sample properties of augmented Dickey-Fuller (ADF) 

tests for use with panel data. These two tests have significantly 

improved testing power even in relatively small panels. 

Narayan and Smyth (2007) applied panel data unit root tests to 

the annual data of 182 countries to examine the stationarity of 
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per capita energy consumption. The researchers first applied a 

conventional ADF test and reported that a univariate unit root 

test results in the rejection of the null hypothesis of unit root in 

56 countries or 31% of the sample. They attributed this result 

to the low power of the conventional ADF test. The 

researchers then applied panel unit root tests to overcome this 

problem. When the panel unit root test proposed by Im et al. 

(2003) was applied, strong evidence in favor of panel 

stationarity of energy consumption was obtained. 

Although panel unit root tests have good small-sample 

properties and high power compared with time series unit root 

tests, the use of panel data techniques requires careful 

treatment. Chen and Lee (2007) argued that ignoring cross-

sectional dependency and structural breaks in panel unit root 

tests can result in severe size biases and loss of power. The 

researchers first applied conventional panel unit root tests and 

found that per capita energy consumption in 104 countries 

categorized into seven geographical groups is not stationary 

even after controlling for cross-sectional dependence. The test 

procedure proposed by Carrion-i-Silvestre et al. (2005), which 

allows for multiple structural breaks, was then applied. The 

application of this test procedure revealed that energy 

consumption is panel stationary in all groups of countries. 

Mishra et al. (2009) also applied the panel unit root test 

proposed by Carrion-i- Silvestre et al. (2005) to examine the 

stationarity properties of per capita energy consumption in 13 

Pacific Island countries. Mishra et al. (2009) first applied 

conventional panel stationarity and unit root tests that ignore 

structural breaks, and found that energy consumption in the 

sample countries contains a unit root. However, after allowing 

for multiple structural breaks in the data, the researchers found 

that per capita energy consumption in only five out of the 13 

countries. Mishra et al. (2009) thereby concluded that 

countries whose energy consumption is non-stationary are the 

largest energy consumers in the region, and have the most 

volatile energy consumption. 

Another issue in a panel unit analysis is related to the 

interpretation of the null hypothesis in panel unit root tests. 

Taylor and Sarno (1998), Breuer et al. (2001, 2002), and 

Taylor and Taylor (2004) showed that the recent 

methodological refinements to the Levin-Lin-Chu test fail to 

address fully the “all-or-nothing” nature of the test.  Given that 

they are joint tests of the null hypothesis, they are not 

informative with regard to the number of series that are 

stationary processes when the null hypothesis is rejected. 

Breuer et al. (2001, 2002) further claimed that when an F-

statistic rejects the null hypothesis that a vector of coefficients 

is equal to zero by simple regression, each coefficient is not 

necessarily non-zero. When the unit-root null hypothesis is 

rejected, concluding that all series in the panel are stationary is 

erroneous. Breuer et al. (2001, 2002) developed panel 

seemingly unrelated regression ADF (panel SURADF) test, 

which allows one to account for possible cross-sectional 

effects and identify how many and which members of the panel 

contain a unit root. Hsu et al. (2008) applied the panel 

SURADF test developed by Breuer et al. (2001, 2002) to 

examine the stationarity of energy consumption in 84 countries 

in five regions. The researchers found that although the 

stationarity properties of energy consumption are affected by 

regions, most of the investigated series follow unit root 

processes. Results revealed that conventional panel unit root 

tests can lead to misleading inferences that are biased toward 

stationarity even if only one series in the panel is strongly 

stationary. 

A common feature of previous studies is that none of them 

considered possible nonlinearities in the data-generating 

process. Many economic time series are known to follow 

nonlinear processes (Granger and Tervasvirta, 1993). 

Therefore, possible nonlinearities in the data-generating 

process should be explicitly considered in analyzing time 

series to avoid spurious results. Kapetanios et al. (2003) 

argued that conventional unit root tests have low power when 

the true data-generating process is subjected to regime 

changes. If the process is globally stationary but exhibits unit 

root or explosive behavior in one of the regimes, then test 

procedures that ignore regime-dependent dynamics and 

nonlinearities might be biased against stationarity (Kapetanios 

et al., 2003). 

However, Lundbergh et al. (2003) argued that time series 

could be described more appropriately by simultaneous 

structural change and nonlinearities. Sollis (2004), Telatar and 

Hasanov (2009), and Hasanov and Telatar (2011) proved that 

considering structural changes and nonlinearity in the models 

is more appropriate for economic modeling. The researchers 

also reported that failure to consider both structural changes 

and nonlinearities in the data-generating process may seriously 

reduce the power of unit root tests. Nonlinearity and structural 

breaks are well-studied issues in empirical energy economics 

literature (Hamilton, 2003; Huang et al., 2008; 

Gabreyohannes, 2010). However, to the best of our 

knowledge, only a few researchers have simultaneously 

considered possible nonlinearities and structural changes in 

testing the stationarity of energy consumption. 
1
 This study 

attempts to fill a gap in existing empirical literature by testing 

the stationarity properties of energy consumption in 

consideration of both nonlinearities and structural breaks in the 

data-generating process.   

This study aims to determine whether shocks in energy 

consumption in the US economy are permanent or temporary. 

The stationarity properties of energy consumption in 50 US 

states were tested by applying the newly developed sequential 

 
1 With the exception of Hasanov and Telatar (2011) who re-examined the 

stochastic behavior of per capita total primary energy consumption in 178 

countries around the world. In addition to conventional unit root tests, they 

applied newly developed tests that allow for nonlinear adjustments and 

structural breaks in the data-generating process. The results of the unit root 

tests show that allowing for structural breaks and nonlinearity results in more 

frequent rejection of the null hypothesis of unit root, suggesting that most of 

the series under consideration follow a stationary process. These findings 

imply that both energy economists and policy makers must be careful and 

consider possible nonlinearities and structural breaks in their analyses of 

energy consumption. 
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panel selection method (SPSM) combined with panel 

nonlinear unit root test with a Fourier function. The results 

suggest that proper modeling of structural breaks and 

nonlinearities results in the rejection of the null hypothesis of 

unit root. 

This study contributes to literature from different 

perspectives. First, this paper is the first to test the stationarity 

properties of energy consumption by considering both 

nonlinearities and structural breaks in the data-generating 

process. Second, to the best of our knowledge, this study is the 

first to utilize panel KSS unit root test with a Fourier function 

through SPSM to determine whether energy consumption in 50 

US states is stationary. Third, independence is not a realistic 

assumption in that the energy consumption of different states 

may be contemporaneously correlated. We approximate the 

bootstrap distribution of the tests to control any cross-section 

dependence among the data sets. This procedure, which 

involves the assumption that individuals are cross-section 

independent, has not been performed in previous studies. 

O’Connell (1998) reported that the true size of both tests can 

be far greater than the normal size when the underlying data-

generating process is characterized by cross-section 

dependence. Hence, the current research hopes to fill the 

existing gap in the literature. Our empirical results indicate 

that energy consumption series are stationary in all the 50 US 

states during the sample period. Heterogeneity among the 

members of the panel is considered in panel unit root analysis 

rather than assuming that homogeneity exists in the entire 

panel. Clearly, every country moves from past to present based 

on its own features and dynamics; the consideration of cross-

country heterogeneity is therefore required in panel data 

analysis. Given that the US economy consists of state 

economies, a state-specific approach is helpful in 

understanding the dynamics of the overall economy. 

The remainder of this paper is organized as follows. Section 

II describes the utilized data. Section III outlines the 

methodology employed. Section IV discusses the empirical 

findings and then provides several economic and policy 

implications. Section V presents the conclusions. 

II. DATA 

Annual data of 50 US states from 1963 to 2009 were 

utilized in this study. The variables in this study include total 

energy consumption in each state. Energy consumption is 

expressed in terms of trillions of BTU. Data were obtained 

from the US Energy Information Administration. Table I 

provides a summary of the statistics for energy consumption in 

the 50 US states. Texas and Vermont have the highest and 

lowest mean energy consumption of 9,212 and 134 trillion 

BTUs, respectively. 
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TABLE I 

SUMMARY OF THE STATISTICS OF ENERGY CONSUMPTION BY STATE (IN TRILLION BTUS) 

 Mean Max. Min. Std. Dev. Skewness Kurtosis J.B. test 
Alabama 1677 2180 916 336 -0.36 2.44 1.63 

Alaska 456 798 81 238 -0.19 1.53 4.51 

Arizona 917 1571 349 357 0.25 2.00 2.43 

Arkansas 881 1164 486 191 -0.16 2.13 1.69 

California 6745 8451 3932 1208 -0.52 2.45 2.68 

Colorado 954 1491 467 285 0.36 2.24 2.13 

Connecticut 758  923  548  83  -0.52  3.23  2.21  

Delaware 246  312  173  39  0.02  2.04  1.82  

Florida 2869  4580  998  1112  -0.05  1.79  2.88  

Georgia 2074  3161  804  724  -0.02  1.74  3.09  

Hawaii 249  341  114  56  -0.63  2.87  3.12  

Idaho 393  536  213  92  -0.01  2.01  1.93  

Illinois 3733  4222  2728  326  -1.16  4.24  13.56***   

Indiana 2466  2936  1641  325  -0.61  2.97  2.89  

Iowa 1005  1419  645  182  0.25  2.92  0.52  

Kansas 987  1135  642  125  -1.30  3.91  14.90***  

Kentucky 1487  2018  894  347  -0.05  1.85  2.61  

Louisiana 3297  3968  1682  621  -1.39  3.88  16.57***   

Maine 410  519  232  84  -0.77  2.44  5.25*  

Maryland 1226  1557  778  195  -0.29  2.53  1.10  

Massachusetts 1414  1584  1085  116  -1.00  3.36  8.08**  

Michigan 2850  3256  2085  270  -0.90  3.59  6.97**  

Minnesota 1393  1937  777  319  0.05  2.04  1.81  

Mississippi 927  1232  474  218  -0.28  2.09  2.23  

Missouri 1532  1975  961  261  -0.18  2.41  0.94  

Montana 355  465  253  47  -0.29  3.18  0.70  

Nebraska 550  784  336  107  0.12  2.69  0.30  

Nevada 392  772  123  199  0.48  1.94  4.05  

New Hampshire 244  339  131  59  -0.24  2.07  2.15  

New Jersey 2251  2714  1528  309  -0.60  2.59  3.11  

New Mexico 538  714  354  104  0.11  1.76  3.09  

New York 3926  4440  3314  278  -0.41  2.41  2.02  

North Carolina 1938  2720  932  558  -0.09  1.77  3.04  

North Dakota 289  440  170  86  0.18  1.63  3.96  

Ohio 3900  4305  3120  281  -0.78  3.23  4.90*  

Oklahoma 1248  1621  747  248  -0.66  2.36  4.24  

Oregon 933  1160  528  162  -0.82  2.91  5.31*  

Pennsylvania 3856  4299  3388  234  -0.33  2.59  1.19  

Rhode Island 214  257  174  22  -0.26  2.49  1.03  

South Carolina 1170  1731  556  369  -0.10  1.77  3.05  

South Dakota 215  360  140  54  0.89  3.35  6.44**  

Tennessee 1808  2439  1072  366  -0.19  2.30  1.22  

Texas 9212  12108  4837  2220  -0.30  2.05  2.45  

Utah 550  801  312  141  0.22  1.93  2.60  

Vermont 134  170  72  25  -0.66  2.79  3.51  

Virginia 1804  2605  944  486  0.02  1.80  2.81  

Washington 1732  2317  901  376  -0.57  2.34  3.39  

West Virginia 811  919  716  53  0.27  2.27  1.61  

Wisconsin 1511  1899  941  263  -0.20  2.27  1.34  

Wyoming 358  541  163  96  -0.35  2.51  1.45  

Notes:  

Sample period is from 1963 to 2009. 

J.B. test is Jarque-Berra normality test. 

*, **, and *** indicate significance at 10%, 5%, and 1% level, respectively. 
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III. METHODOLOGY 

The consensus that economic time series data exhibit 

nonlinearities continues to grow. Consequently, conventional 

unit root tests such as the augmented Dickey–Fuller (ADF) test 

have low power in detecting the mean reversion of data series. 

Many studies provided empirical evidence on the nonlinear 

adjustment of economic series. However, nonlinear adjustment 

in these studies does not necessarily imply nonlinear mean 

reversion (stationarity). Therefore, stationarity tests based on a 

nonlinear framework must be applied. Ucar and Omay (2009) 

proposed a nonlinear panel unit root test by combining the 

nonlinear framework proposed by Kapetanios et al. (2003, 

KSS) with the panel unit root testing procedure developed by 

Im et al. (2003); this procedure has been proven useful in 

testing the mean reversion of data series. Perron (1989) argued 

that in cases where a structural break exists, the power to reject 

a unit root decreases when the stationary alternative is true and 

the structural break is ignored. The structural changes present 

in the data-generating process are neglected, swaying the 

analysis toward accepting the null hypothesis of a unit root. 

Therefore, the SPSM proposed by Chortareas and Kapetanios 

(2009) and panel KSS unit root tests with a Fourier function 

were utilized in the present study to investigate the time-series 

properties of energy consumption in 50 US states.  

Similar to that in Kapetanios et al. (2003), the Kapetanios, 

Shin, and Snell (KSS) unit root test detects the presence of 

nonstationarity against a nonlinear but globally stationary 

exponential smooth-transition autoregressive (ESTAR) 

process. The model is given as 

 
2

1 1{1 exp( )}t t t ty y yγ θ ν− −∆ = − − +                   (1) 

 

where ty  is the data series of interest, tv  is an independent 

identically distributed error with zero mean and constant 

variance, and 0≥θ  is the EATAR transition parameter that 

governs the transition speed. Under the null hypothesis, ty  

follows a linear unit root process; under the alternative, ty  

follows a nonlinear stationary ESTAR process. One 

shortcoming of this framework is that γ  is not identified 

under the null hypothesis. Kapetanios et al. (2003) use a first-

order Taylor series approximation for {
2

11 exp( )tyθ −− − } 

under the null hypothesis 0=θ  and then approximated 

Equation [1] by using the following auxiliary regression: 

 

3

1

1

k

t t i t i t

i

y y yξ δ θ ν− −

=

∆ = + + ∆ +∑                 (2) 

Tt ,....,2,1=  

 

The null and alternative hypotheses in this framework are 

expressed as 0=δ (nonstationarity) against 0<δ (nonlinear 

ESTAR stationarity). Ucar and Omay (2009) expand a 

nonlinear panel data unit root test based on regression [1]. The 

regression is expressed as follows: 

 
2

, , 1 , 1 ,{1 exp( )}i t i i t i i t i ty y yγ θ ν− −∆ = − − +         (3) 

 

Ucar and Omay (2009) also use first-order Taylor series 

approximation to the panel ESTAR model around  iθ  = 0 for 

all I and obtain the following auxiliary regression: 

 

3

, , 1 , , ,

1

k

i t i i i t i j i t j i t

j

y y yξ δ θ ν− −

=

∆ = + + ∆ +∑           (4) 

 

where i i iδ θ γ=  The hypotheses established for unit root 

testing based on regression [4] are as follows: 

 

0 : 0iH δ =  for all I (linear nonstationarity) 

0 : < 0iH δ for some I (nonlinear stationarity)                  (5) 

 

We estimate the following system of the KSS equations with 

a Fourier function: 

                    
1

3

, , 1 , , ,1 ,1 ,

1

2 2
sin( ) cos( )

k

i t i i i t i j i t j i i i t

j

kt kt
y y y a b

T T

π π
ξ δ θ ε− −

=

∆ = + + ∆ + + +∑ (6) 

 

where Tt ,....,2,1= , k represents the frequency selected for 

the approximation, and ],[ ′
ji ba  is the amplitude and the 

displacement. Of the frequency component 

)]/2cos(),/2[sin( TktTkt ππ is selected because a 

Fourier expression can approximate absolutely integrable 

functions to any desired degree of accuracy. At least one 

frequency component must also be present if a structural 

break
2
 exists. Gallant (1981), Becker et al. (2004), Enders and 

Lee (2011), and Pascalau (2010) observe that a Fourier 

approximation can often capture the behavior of an unknown 

function even if the function itself is not periodic. Considering 

that no a priori knowledge exists on the shape of breaks in the 

data, we perform a grid search to find the best frequency. 

The sequential panel selection method proposed by 

Chortareas and Kapetanios (2009) is based on the following 

steps: 

1) A panel KSS test with a Fourier function is performed on 

all   (energy consumption) in the panel. If the unit-root 

null hypothesis cannot be rejected, the procedure is 

stopped. Therefore, all series   in the panel are considered 

nonstationary. If the null hypothesis is rejected, Step 2 is 

performed. 

 
2
 Enders and Lee (2011) suggest that the frequencies in equation (6) should 
be obtained by minimizing the sum of squared residuals. Monte Carlo 

experiments suggest that only one or two frequencies should be used because 

of the power loss associated with many frequencies. 

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:7, No:8, 2013 

1314International Scholarly and Scientific Research & Innovation 7(8) 2013 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:7
, N

o:
8,

 2
01

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
61

74
.p

df



 

 

2) The series with the minimum KSS statistic is removed 

because it is identified as stationary. 

3) Step 1 is repeated for the remaining series, or the 

procedure is stopped if all series have been removed from 

the panel. 

The result is a separation of the whole panel into a set of 

mean-reverting series and a set of nonstationary series. 

IV. EMPIRICAL RESULTS AND ECONOMIC AND POLICY 

IMPLICATIONS 

A. Results from Unit Root Tests 

Univariate unit root tests were applied first prior to 

performing the sequential panel selection procedure. The first 

and second generation panel unit root tests were then 

conducted. Table II presents the state-by-state unit root and 

stationary tests. As shown in Table II, the three univariate unit 

root tests, namely, augmented Dickey–Fuller (1981, ADF), 

Phillips and Perron (1989, PP), and Kwiatkowski et al. (1992, 

KPSS) tests, lead to the conclusion that energy consumption in 

most of the 50 US states contains unit roots
3
. This result is 

consistent with that in existing literature and may be due to the 

low power of the three univariate unit root tests when the 

series are highly persistent. This result also implies that energy 

consumption data series are not stationary for most of the 50 

US states during the sample period. Another possible reason 

for the presence of unit roots (possibly spurious) is the recently 

forwarded argument that energy consumption series are likely 

to be nonlinear because of the existence of the business cycle 

and policies implemented for each state. The power of the 

three tests might be poor in such situations. Furthermore, 

univariate unit root tests might have low power when they are 

applied to a finite sample. The panel-based unit tests in this 

situation are of great help, provided that they allow for an 

increase in the power of the order of the integration analysis by 

allowing the cross-sectional and temporal dimensions to be 

combined.

 
3 With some exceptions. We found that unit root null hypothesis was 

rejected in Kansas, Vermont, and West Virginia when the ADF tests were 

conducted. The KPSS test also fails to reject the stationary null hypothesis for 

33 states (see Table II). 
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TABLE II 

ENERGY CONSUMPTION BY STATE (UNIVARIATE UNIT ROOT TESTS) 

State  
Levels First Differences 

ADF PP KPSS ADF PP KPSS 

Alabama 
-1.6045 

（0） 

-1.7443 

 （3） 

0.0865 

[4] 

-5.1864*** 

（0） 

-5.1568*** 

（5） 

0.0988 

[3] 

Alaska 
-0.4178 

（0） 

-0.4178 

（0） 

0.1834** 

[4] 

-7.0792*** 

（0） 

-7.0851*** 

（2） 

0.1384* 

[2] 

Arizona 
-2.3142 

(1) 

-1.9201 

(1) 

0.1550** 

[5] 

-3.6072** 

(0) 

-3.281* 

(2) 

0.0827 

[3] 

Arkansas 
-1.774 

(1) 

-1.6459 

(2) 

0.0722 

[5] 

-4.7829*** 

(0) 

-4.6968*** 

(2) 

0.1118 

[1] 

California 
-2.4548 

(1) 

-2.4658 

(2) 

0.1430* 

[4] 

-5.1923*** 

(0) 

-5.1592*** 

(3) 

0.0702 

[1] 

Colorado 
-1.2974 

(0) 

-2.6595 

(3) 

0.1539** 

[5] 

-5.8626*** 

(0) 

-5.8501*** 

(2) 

0.1383* 

[2] 

Connecticut 
-2.7391 

(0) 

-2.6595 

(2) 

0.0917 

[3] 

-5.8129*** 

(1) 

-6.9249*** 

(4) 

0.0798 

[5] 

Delaware 
-1.6864 

(0) 

-1.8777 

(1) 

0.0845 

[4] 

-5.6488*** 

(1) 

-5.4933*** 

(3) 

0.10494 

[2] 

Florida 
-2.4909 

(1) 

-1.6574 

(3) 

0.0694 

[2] 

-4.4134*** 

(0) 

-4.003** 

(7) 

0.0971 

[4] 

Georgia 
-0.9902 

(0) 

-0.9204 

(1) 

0.0837 

[4] 

-7.2002*** 

(0) 

-7.2002*** 

(0) 

0.1329* 

[1] 

Hawaii 
-1.9223 

(0) 

-2.0924 

(3) 

0.1619** 

[4] 

-5.7439*** 

(0) 

-5.6803*** 

(5) 

0.0449 

[3] 

Idaho 
-1.9857 

(0) 

-2.0785 

(1) 

0.0695 

[5] 

-5.9073*** 

(0) 

-5.9075*** 

(1) 

0.0855 

[0] 

Illinois 
-2.7252 

(0) 

-2.7452 

(2) 

0.0901 

[5] 

-4.9134*** 

(0) 

-4.9259*** 

(1) 

0.1359* 

[2] 

Indiana 
-1.9975 

(0) 

-2.0826 

(2) 

0.0804 

[5] 

-5.4542*** 

(0) 

-5.4542*** 

(0) 

0.1093 

[1] 

Iowa 
-1.1690 

(0) 

-1.4961 

(4) 

0.1192* 

[5] 

-6.6258*** 

(0) 

-6.6834*** 

(4) 

0.1492** 

[4] 

Kansas 
-3.2714* 

(0) 

-2.7795 

(7) 

0.1790** 

[5] 

-6.9226*** 

(1) 

-8.6204*** 

(19) 

0.1807** 

[18] 

Kentucky 
-1.6006 

(0) 

-1.8397 

(3) 

0.0660 

[5] 

-5.9724*** 

(0) 

-5.9757*** 

(3) 

0.0834 

[3] 

Louisiana 
-1.60352 

(0) 

-1.5587 

(1) 

0.1747 

[5] 

-7.3067*** 

(0) 

-7.3067*** 

(0) 

0.0615 

[1] 

Maine 
-1.2525 

(0) 

-0.6576 

(12) 

0.2042** 

[5] 

-6.1050*** 

(2) 

-17.6746*** 

(44) 

0.3134*** 

[32] 

Maryland 
-2.8709 

(0) 

-2.8585 

(2) 

0.0760 

[4] 

-7.4020*** 

(0) 

-7.4063*** 

(1) 

0.0701 

[1] 

Michigan 
-1.7595 

(0) 

-1.9361 

(3) 

0.0759 

[5] 

-5.43241*** 

(0) 

-5.4307*** 

(1) 

0.1194* 

[2] 

Minnesota 
-1.9098 

(0) 

-2.0156 

(3) 

0.0964 

[5] 

-5.3604*** 

(0) 

-5.3759*** 

(1) 

0.1133 

[2] 

Mississippi 
-1.8815 

(1) 

-1.4306 

(0) 

0.0731 

[5] 

-4.3763*** 

(1) 

-5.0410*** 

(4) 

0.0894 

[1] 

Missouri 
-2.4140 

(1) 

-2.2389 

(3) 

0.0856 

[5] 

-4.4221*** 

(0) 

-4.4942*** 

(3) 

0.0927 

[3] 

Montana 
-2.8601 

(0) 

-2.6614 

(6) 

0.1073 

[4] 

-6.4126*** 

(0) 

-7.1518*** 

(14) 

0.1379* 

[15] 

Nebraska 
-2.1744 

(1) 

-1.7972 

(2) 

0.1140 

[5] 

-4.6975*** 

(0) 

-4.6919*** 

(2) 

0.1352* 

[1] 

Nevada 
-2.2832 

(1) 

-1.7151 

(1) 

0.2070** 

[5] 

-3.4344* 

(2) 

-2.3469 

(5) 

0.1106 

[1] 

New Hampshire 
-2.6096 

(1) 

-1.8012 

(0) 

0.0646 

[4] 

-5.4076*** 

(0) 

-5.3392*** 

(4) 

0.0539 

[2] 

New Jersey 
-2.2166 

(0) 

-1.8406 

(2) 

0.1497** 

[4] 

-7.9907*** 

(0) 

-8.0196*** 

(1) 

0.0628 

[1] 

New Mexico 
-2.1925 

(0) 

-2.2352 

(1) 

0.0983 

[5] 

-6.7236*** 

(0) 

-6.7228*** 

(1) 

0.0747 

[3] 

New York 
-2.3534 

(0) 

-2.5038 

(3) 

0.0946 

[5] 

-5.3569*** 

(0) 

-5.2988*** 

(2) 

0.1268* 

[3] 

North Carolina 
-0.8043 

(0) 

-1.0236 

(1) 

0.0825 

[4] 

-5.2381*** 

(0) 

-5.2458*** 

(1) 

0.1063 

[1] 

North Dakota 
-3.0777 

(0) 

-3.0191 

(3) 

0.1525** 

[4] 

-6.71638*** 

(0) 

-7.4508*** 

(11) 

0.1372* 

[12] 

Ohio -2.3054 -2.3479 0.0815 -5.6666*** -5.6666*** 0.0944 
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(0) (2) [5] (0) (0) [1] 

Oklahoma 
-1.6947 

(0) 

-1.5652 

(3) 

0.1775** 

[5] 

-6.1554*** 

(0) 

-6.0406*** 

(7) 

0.0727 

[7] 

Oregon 
-2.1372 

(0) 

-2.1522 

(1) 

0.1605** 

[5] 

-6.4560*** 

(0) 

-6.4560*** 

(0) 

0.0552 

[0] 

Pennsylvania 
-2.6201 

(0) 

-2.7016 

(2) 

0.0914 

[5] 

-5.8457*** 

(0) 

-5.8451*** 

(1) 

0.1065 

[0] 

Rhode Island 
-2.4977 

(0) 

-2.4872 

(2) 

0.0654 

[5] 

-7.92133*** 

(0) 

-7.9213*** 

(0) 

0.0562 

[2] 

South Carolina 
-0.8732 

(0) 

-0.8732 

(0) 

0.0887 

[4] 

-6.8334*** 

(0) 

-6.8322*** 

(1) 

0.1223* 

[1] 

South Dakota 
0.5609 

(0) 

0.7670 

(2) 

0.1803** 

[5] 

-6.37596*** 

(0) 

-6.3844*** 

(3) 

0.1420* 

[3] 

Tennessee 
-2.0916 

(1) 

-1.7137 

(1) 

0.0892 

[5] 

-3.7235** 

(0) 

-3.5621** 

(3) 

0.0866 

[1] 

Texas 
-1.1365 

(0) 

-1.0922 

(7) 

0.1087 

[4] 

-5.3202*** 

(0) 

-5.2361*** 

(20) 

0.0989 

[10] 

Utah 
-2.0610 

(0) 

-2.1878 

(1) 

0.1108 

[5] 

-5.67836*** 

(0) 

-5.5567*** 

(4) 

0.0803 

[4] 

Vermont 
-3.7617** 

(1) 

-2.2630 

(11) 

0.1263* 

[4] 

-6.6706*** 

(1) 

-7.2995*** 

(18) 

0.3132*** 

[26] 

Virginia 
-2.7817 

(1) 

-1.7346 

(0) 

0.0721 

[3] 

-4.9134*** 

(0) 

-4.8606*** 

(2) 

0.0811 

[1] 

Washington 
-1.8300 

(1) 

-1.5434 

(2) 

0.1857** 

[5] 

-5.0307*** 

(0) 

-4.8176*** 

(6) 

0.0475 

[4] 

West Virginia 
-3.1960* 

(0) 

-3.1762 

(3) 

0.0920 

[4] 

-6.5522*** 

(0) 

-6.5855*** 

(7) 

0.1002 

[8] 

Wisconsin 
-1.8703 

(0) 

-1.8492 

(2) 

0.0737 

[5] 

-5.6964*** 

(0) 

-5.5884*** 

(2) 

0.1053 

[2] 

Wyoming 
-2.5134 

(0) 

-2.5224 

(1) 

0.1376* 

[5] 

-6.7410*** 

(0) 

-6.7410*** 

(0) 

0.0623 

[0] 

Notes:  

***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively. The number in parentheses indicates the lag order selected based on recursive t-

statistic as suggested by Perron (1989). The number in the brackets indicates the truncation for the Bartlett kernel as suggested by the Newey-West test (1994). 

 

Tables III and IV present the results of the first-generation 

and second-generation panel-based unit root tests. Three first-

generation panel-based unit root tests, namely, Levin–Lin–Chu 

(Levin et al., 2002), Im–Pesaran–Shin (Im et al., 2003), and 

Maddala–Wu (Maddala and Wu, 1999) tests, all yield the 

same results, indicating that energy consumption in all the 50 

US states is stationary. 
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TABLE III 

FIRST-GENERATION PANEL UNIT ROOT TESTS 

Levin, Lin and Chu (2002) 

*tρ  ρ̂  
*Btρ  

*Ctρ   

-17.79*** 

(0.000) 

-0.05*** 

(0.000) 

-17.69*** 

(0.000) 

-17.688*** 

(0.000) 
 

Im, Pesaran and Shin (2003) 

_ NTt bar  ,t barW  ,t barZ  _ DF

NTt bar  ,

DF

t barZ  

-2.780 

 

-10.16*** 

(0.000) 

-10.140*** 

(0.000) 

-2.863 

 

-10.84*** 

(0.000) 

Maddala and Wu (1999) 

MWP  MWZ     

273.97*** 

(0.000) 

12.30*** 

(0.000) 
   

Notes:  

Levin, Lin and Chu (2002): 
*tρ denotes the adjusted t-statistic computed with a Bartlett kernel function and a common lag truncation parameter given by 

1 33.21K T=  (Levin et al., 2002). Corresponding p-value is in parentheses. ρ̂  is the pooled least squares estimator. Corresponding standard error is in 

parentheses. 
*B

pt denotes the adjusted t-statistic computed with a Bartlett kernel function and individual bandwidth parameters (Newey and West, 1994). 

*C

pt denotes the adjusted t-statistic computed with a Quadratic Spectral kernel function and individual bandwidth parameters. Finally, 
*tρ  denotes the adjusted 

t-statistic computed with a Bartlett kernel function and a common lag truncation parameter. Corresponding p-values are in parentheses. 

Im, Pesaran and Shin (2003): _ DF

NTt bar  (respectively _ NTt bar ) denotes the mean of Dickey Fuller (respectively Augmented Dickey Fuller) 

individual statistics. ,

DF

t barZ  is the standardized _ DF

NTt bar  statistic and associated p-values are in parentheses. ,t barZ  is the standardized _ NTt bar  

statistic based on the moments of the Dickey Fuller distribution. ,t barW  denotes the standardized _ NTt bar  statistic based on simulated approximated 

moments (Im, Pesaran and Shin, 2003, Table III). The corresponding p-values are in parentheses.  

Maddala and Wu (1999): MWP  denotes the Fisher’s test statistic defined as ( )2 log
MW iP p= − ∑ ; where ip  are the p-values from ADF unit root tests 

for each cross-section. Under 0H ; MWP  has 
2χ distribution with 2N of freedom when T tends to infinity and N is fixed. ZMW is the standardized statistic 

used for large N samples: under 0H ; MWZ  has a N(0, 1) distribution when T and N tend to infinity. 

*** indicates significance at the 1% level. 

 

A serious drawback of first-generation panel-based unit root 

tests is that they ignore possible cross-sectional dependencies 

in the panel-based unit root test procedure. O’Connell (1988) 

pointed out that failure to consider contemporaneous 

correlations among data will generate bias toward rejecting the 

joint unit root hypothesis in panel-based unit root tests. Cross-

sectional dependencies are considered in second-generation 

panel unit root tests. Hence, these tests offer a superior method 

of studying the long-term behavior of energy consumption. 

Four second-generation panel-based unit root tests are 

employed in the present study. These four tests are the tests 

proposed by Bai and Ng (2004), Choi (2002), Moon and 

Perron (2004), and Pesaran (2007). Table IV presents the 

results of these four second-generation panel-based unit root 

tests. The tests proposed by Bai and Ng (2004) and Choi 

(2002) provide evidence that energy consumption is stationary, 

whereas the results from the other two tests indicate that 

energy consumption is stationary in the 50 US states. Our 

results therefore indicate that energy consumption in the 50 US 

states could either be a stationary or non-stationary process. 
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TABLE IV 

SECOND-GENERATION PANEL UNIT ROOT TESTS 

Bai and Ng (2004) 
r̂  ˆ

c

eZ  ˆ

c

eP  cMQ  fMQ  

2 -1.352 (0.912) 80.875 (0.920) 2 2 

Moon and Perron (2004) 

*

at  
*

bt  
*ˆ
poolρ  

*B

at  
*B

bt  

-12.88***(0.000) -7.27***(0.000) 0.931 -12.71***(0.000) -7.24***(0.000) 

Choi (2002) 
mP  Z  

*L    

13.64***(0.000) -8.670***(0.000) -9.77***(0.000)   

Pesaran (2003) 

*P  CIPS  
*CIPS    

2 -1.730(0.555) -1.730(0.555)   

Notes: 

Bai and Ng (2004): r̂  is the estimated number of common factors, based on IC criteria functions. ˆ

c

eP is a Fisher’s type statistic based on p-values of the 

individual ADF tests. ˆ

c

eZ is a standardized Choi’s type statistic for large N samples. P-values are in parentheses. The first estimated value of 
1̂r  is derived 

from the filtered test 
fMQ  and the second one is derived from the corrected test 

cMQ . 

Moon and Perron (2004): 
*

at  and 
*

bt  are the unit root test statistics based on de-factored panel data (Moon and Perron, 2004). Corresponding p-values are 

in parentheses. 
*ˆ
poolρ  is the corrected pooled estimates of the auto- regressive parameter. 

*B

at  and 
*B

bt  are computed with a Bartlett kernel function in spite 

of a Quadratic Spectral kernel function. 

Choi (2002): The mP  test is a modified Fisher’s inverse chi-square test (Choi, 2001). The Z  test is an inverse normal test. The 
*L  test is a modified logit 

test. P-values are in parentheses. 

Pesaran (2007): CIPS  is the mean of individual Cross sectionally augmented ADF statistics (CADF). 
*CIPS denotes the mean of truncated individual 

CADF statistics. Corresponding p-values are in parentheses. 
*P denotes the nearest integer of the mean of the individual lag lengths in ADF tests. 

 

Although the second-generation panel unit root tests 

employed above account for cross-section dependence, they do 

not consider structural shifts in testing the unit root hypothesis. 

Thus, we also employed the panel unit root test with multiple 

structural breaks recently developed by Carrion-i-Silvestre et 

al. (2005). This test is a panel extension of univariate KPSS 

test. This test allows for multiple structural breaks in the mean 

and/or trend and cross-section dependence. This unit root 

approach to panel unit root analysis involves testing the null 

hypothesis of stationarity against non-stationarity. The results 

of the panel unit root test with multiple structural breaks are 

presented in Table V. When the breaks are ignored in unit root 

analysis, the null hypothesis of stationarity is strongly rejected 

irrespective of whether cross-section dependency is controlled. 

In contrast, the test statistic for structural breaks without cross-

section dependence provides evidence for non-stationarity. 

When cross-section dependency is considered through 

bootstrapping, the test statistic with the breaks provides 

evidence for stationarity. Therefore, similar to the first- and 

second-generation panel unit root tests, the panel stationarity 

test with structural breaks and cross-section dependence fails 

to indicate whether a shock in energy consumption in the US 

economy is permanent or temporary. 

 

 

 

 

TABLE V 

PANEL STATIONARY TEST WITH AND WITHOUT BREAKS 

Without Breaks With Breaks 

Asymptotic p-val. Bootstrap p-val. Asymptotic p-val. Bootstrap p-val. 

0.000 0.000 0.000 0.956 

Note: This table shows the panel stationary test results for each variable. 

The second and fourth columns contain the asymptotic p-value, and the third 

and fifth columns contain the bootstrapped p-value. The number of bootstrap 

replications is 5000. 

 

As mentioned earlier, panel-based unit root tests are joint 

tests of a unit root for all members of a panel. These tests 

cannot determine the mix of I(0) and I(1) series in a panel 

setting. Failure to incorporate the structural breaks in the 

model would cause low power in detecting the mean reversion 

of data series. Therefore, we tested energy consumption 

through SPSM combined with panel KSS unit root test with a 

Fourier function to investigate the time-series properties of 

energy consumption in the 50 US states. SPSM classifies the 

entire panel into a group of stationary series and a group of 

non-stationary series to clearly identify how many and which 

series in the panel are stationary processes. 

B. SPSM 

The results of the panel KSS unit root test without a Fourier 

function are also reported as a benchmark. Table VI presents 

the results of the panel KSS unit root test without a Fourier 
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function. A sequence of panel KSS statistics with their 

bootstrap p-values on a reducing panel, the individual 

minimum KSS statistic, and the stationary series identified 

each time through this procedure are also shown. The unit root 

null hypothesis in   is rejected when the panel KSS unit root 

test is first applied to the entire panel, producing a value of -

2.433 with a very small p-value of 0.0002. After implementing 

SPSM, we found that Vermont is stationary with a minimum 

KSS value of -4.651. Vermont was then removed from the 

panel, and the panel KSS unit root test was implemented again 

for the remaining set of series. Afterward, we found that the 

panel KSS unit root test still rejected the unit root null 

hypothesis with a value of -2.388 (p-value of 0.0000) and that 

Kansas is stationary with a minimum KSS value of -4.361. 

Kansas was then removed from the panel, and the panel KSS 

unit root test was implemented again for the remaining set of 

series. Again, we found that the panel KSS unit root test still 

rejected the unit root null hypothesis with a value of -2.346 (p-

value of 0.0002) and that New Hampshire is stationary with a 

minimum KSS value of -3497. New Hampshire was then 

removed from the panel, and the panel KSS unit root test was 

implemented again for the remaining set of series. The 

procedure was repeated until the panel KSS unit root test 

failed to reject the unit root null hypothesis at 10% 

significance level. The procedure stopped at sequence 41 when 

the 41 states was removed from the panel. The procedure was 

performed until the last sequence to verify the robustness of 

the test. We then found that the panel KSS statistic failed to 

reject the unit root null hypothesis in the remaining sequences. 

SPSM combined with panel KSS unit root test and a Fourier 

function provided strong evidence in favor of stationarity in 

energy consumption in 41 of the 50 US states studied. This 

finding leads to the conclusion that stationarity in energy 

consumption exists in 41 of the 50 US states under study.   
 

TABLE VI 

PANEL KSS UNIT ROOT WITHOUT FOURIER FUNCTION 

Sequence OU stat P-Value Min KSS I(0)series 

1.0000  -2.4328  0.0002  -4.6523  Vermont 

2.0000  -2.3876  0.0000  -4.3609  Kansas 

3.0000  -2.3464  0.0002  -3.4966  New Hamspire 

4.0000  -2.3220  0.0008  -3.4192  Wyoming 

5.0000  -2.2981  0.0004  -3.2699  California 

6.0000  -2.2765  0.0002  -3.2582  Maryland 

7.0000  -2.2542  0.0002  -3.2279  West Virginia 

8.0000  -2.2316  0.0034  -3.2167  Mississippi 

9.0000  -2.2081  0.0010  -3.1275  Illinois 

10.0000  -2.1857  0.0004  -3.0858  North Dakota 

11.0000  -2.1632  0.0024  -2.9781  Oklahoma 

12.0000  -2.1423  0.0042  -2.9472  Oregon 

13.0000  -2.1211  0.0024  -2.9465  Virginia 

14.0000  -2.0988  0.0036  -2.9242  Connecticut 

15.0000  -2.0759  0.0050  -2.8839  Montana 

16.0000  -2.0528  0.0028  -2.8132  Missouri 

17.0000  -2.0304  0.0084  -2.7535  Michigan 

18.0000  -2.0085  0.0044  -2.7021  Arkansas 

19.0000  -1.9868  0.0042  -2.6603  Pennsylvania 

20.0000  -1.9651  0.0120  -2.5807  Hawaii 

21.0000  -1.9446  0.0098  -2.4733  Indiana 

22.0000  -1.9264  0.0088  -2.4408  Ohio 

23.0000  -1.9080  0.0078  -2.4228  Minnesota 

24.0000  -1.8889  0.0078  -2.4188  Rhode Island 

25.0000  -1.8685  0.0068  -2.4146  New York 

26.0000  -1.8467  0.0062  -2.4034  Idaho 

27.0000  -1.8235  0.0110  -2.3974  Wisconsin 

28.0000  -1.7985  0.0118  -2.3692  New Jersey 

 29.0000  -1.7726  0.0088  -2.3635  Alabama 

30.0000  -1.7445  0.0286  -2.3323  Nebraska 
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31.0000  -1.7151  0.0122  -2.3295  Texas 

32.0000  -1.6827  0.0248  -2.2840  Utah 

33.0000  -1.6493  0.0402  -2.2348  Colorado 

34.0000  -1.6149  0.0318  -2.2218  New Mexico 

35.0000  -1.5770  0.0208  -2.1349  Louisiana 

36.0000  -1.5398  0.0620  -2.0686  Michigan 

37.0000  -1.5020  0.0530  -2.0162  Arizona 

38.0000  -1.4625  0.0556  -1.9941  Washington 

39.0000  -1.4181  0.0768  -1.9303  Delaware 

40.0000  -1.3716  0.0854  -1.8687  Iowa 

41.0000  -1.3219  0.0568  -1.8044  Georgia 

42.0000  -1.2683  0.1202  -1.8016  Tennessee 

43.0000  -1.2016  0.1748  -1.7584  Nevada 

44.0000  -1.1220  0.1526  -1.5429  Maine 

45.0000  -1.0519  0.1532  -1.3800  Kentucky 

46.0000  -0.9863  0.2150  -1.3576  Maryland 

47.0000  -0.8935  0.1434  -1.2126  Florida 

48.0000  -0.7871  0.2030  -0.8707  Alaska 

49.0000  -0.7452  0.3820  -0.7595  South Carolina 

50.0000  -0.7310  0.3886  -0.7310  South Dakota 

 

As mentioned earlier, Perron (1989) argued that in cases 

where a structural break exists, the power to reject a unit root 

decreases when the stationary alternative is true and the 

structural break is ignored. The structural changes in the data-

generating process are neglected, swaying the analysis toward 

accepting the null hypothesis of a unit root. Therefore, we 

utilized the panel KSS unit root test with a Fourier function. A 

grid search was performed to determine the best frequency 

given that the shape of the breaks in the data is unknown. 

Equation [6] was also estimated for each integer k = 1, ...5 

following the recommendations of Enders and Lee (2011). The 

residual sum of squares indicates that frequency (k=5) is 

appropriate for all the 50 US states (refer to the sixth column 

in Table VII). 

Table VII presents the results of panel KSS unit root test 

with a Fourier function for energy consumption in the 50 US 

states. A sequence of panel KSS statistics with their bootstrap 

p-values on a reducing panel, the individual minimum KSS 

statistic, and the stationary series identified each time through 

this procedure each time are also shown. As shown in Table 

VI, the unit root null hypothesis in   is rejected when panel 

KSS unit root test is applied to the entire panel, producing a 

value of -3.341 with a very small p-value of 0.000. After 

implementing SPSM, we found that Vermont is stationary with 

a minimum KSS value of -4.652. Vermont was then removed 

from the panel, and the panel KSS unit root test was 

implemented again for the remaining set of series. 

Subsequently, we found that the panel KSS unit root test still 

rejected the unit root null hypothesis with a value of -3.305 (p-

value of 0.000) and that Kansas is stationary with a minimum 

KSS value of -4.361. Kansas was then removed from the 

panel, and the panel KSS unit root test was implemented again 

for the remaining set of series. Again, we found that the panel 

KSS unit root test still rejected the unit root null hypothesis 

with a value of -3.289 (p-value of 0.000) and that New 

Hampshire is stationary with a minimum KSS value of -3.735. 

New Hampshire was then removed from the panel, and the 

panel KSS unit root test was implemented again for the 

remaining set of series. The procedure was repeated until the 

panel KSS unit root test failed to reject the unit root null 

hypothesis at 10% significance level. The procedure stopped at 

sequence 50 when the energy consumption for 50 states was 

removed from the panel. SPSM combined with panel KSS unit 

root test and a Fourier function provided strong evidence in 

favor of stationarity in energy consumption in all the 50 US 

states. This finding leads to the conclusion that stationarity in 

energy consumption exists in all of the 50 US states. Our 

empirical findings suggest that allowing for nonlinearities and 

structural breaks results in further rejection of the unit root null 

hypothesis. The results reveal the importance of proper 

modeling of structural breaks and nonlinearities in the data 

series of the 50 US states. The results are also consistent with 

that of Apergis and Payne (2010) who found that energy 

consumption is stationary in most of the US states when 

structural breaks are incorporated into the testing model. 
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TABLE VII 

PANEL KSS UNIT ROOT TEST WITH THE FOURIER FUNCTION 

Sequence OU stat P-Value Min KSS I(0)series k 

1.0000 -3.3406 0.0000 -4.6523 Vermont   5.0000 

2.0000 -3.3047 0.0000 -4.3609 Kansas   5.0000 

3.0000 -3.2895 0.0000 -3.7351 New Jersey  5.0000 

4.0000 -3.3112 0.0000 -3.5798 Arkansas  5.0000 

5.0000 -3.2751 0.0000 -3.5160 Ohio   5.0000 

6.0000 -3.2125 0.0000 -3.2699 California   5.0000 

7.0000 -3.2090 0.0000 -3.2582 Maryland  5.0000 

8.0000 -3.1967 0.0000 -3.2279 West Virginia  5.0000 

9.0000 -3.1821 0.0000 -3.1275 Illinois   5.0000 

10.0000 -3.1734 0.0000 -3.0858 North Dakota  5.0000 

11.0000 -3.1552 0.0000 -2.9781 Oklahoma  5.0000 

12.0000 -3.1594 0.0000 -2.9472 Oregon  5.0000 

13.0000 -3.1610 0.0000 -2.9242 Connecticut   5.0000 

14.0000 -3.1678 0.0000 -2.8839 Montana  5.0000 

15.0000 -3.1738 0.0000 -2.7535 Massachusetts    5.0000 

16.0000 -3.1731 0.0000 -2.7406 Wyoming   5.0000 

17.0000 -3.1782 0.0000 -2.7016 Nebraska   5.0000 

18.0000 -3.1902 0.0000 -2.6603 Pennsylvania   5.0000 

19.0000 -3.1903 0.0000 -2.6209 Missouri   5.0000 

20.0000 -3.1307 0.0000 -2.5807 Hawaii   5.0000 

21.0000 -3.1365 0.0000 -2.4733 Indiana   5.0000 

22.0000 -3.1214 0.0000 -2.4228 Minnesota    5.0000 

23.0000 -3.1062 0.0000 -2.4188 Rhode Island  5.0000 

24.0000 -3.0516 0.0000 -2.4146 New York  5.0000 

25.0000 -3.0614 0.0000 -2.4034 Idaho   5.0000 

26.0000 -3.0099 0.0000 -2.3974 Wisconsin   5.0000 

27.0000 -2.9314 0.0000 -2.3738 Nevada   5.0000 

28.0000 -2.9656 0.0000 -2.3692 New Jersey  5.0000 

29.0000 -2.9666 0.0000 -2.3635 Alabama   5.0000 

30.0000 -2.9330 0.0000 -2.2840 Utah    5.0000 

31.0000 -2.8880 0.0000 -2.2348 Colorado   5.0000 

32.0000 -2.9101 0.0000 -2.2243 Mississippi  5.0000 

33.0000 -2.8129 0.0000 -2.2218 New Mexico  5.0000 

34.0000 -2.7510 0.0000 -2.1349 Louisiana   5.0000 

35.0000 -2.7710 0.0002 -2.0686 Michigan   5.0000 

36.0000 -2.7112 0.0002 -2.0162 Arizona   5.0000 

37.0000 -2.6884 0.0004 -1.9941 Washington  5.0000 

38.0000 -2.7410 0.0004 -1.9694 Virginia   5.0000 

39.0000 -2.8198 0.0000 -1.9303 Delaware  5.0000 

40.0000 -2.6760 0.0002 -1.8687 Iowa   5.0000 

41.0000 -2.6965 0.0000 -1.8044 Georgia   5.0000 

42.0000 -2.8163 0.0000 -1.8016 Tennessee   5.0000 

43.0000 -2.7873 0.0000 -1.5976 Texas   5.0000 

44.0000 -2.8466 0.0000 -1.5429 Kentucky  5.0000 

45.0000 -2.7380 0.0002 -1.3800 North Carolina  5.0000 

46.0000 -3.0459 0.0000 -1.3576 Maine   5.0000 
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47.0000 -2.3958 0.0030 -1.2126 Florida   5.0000 

48.0000 -2.8438 0.0034 -0.8707 Alaska   5.0000 

49.0000 -2.5802 0.0590 -0.7595 South Carolina California   5.0000 

50.0000 -3.2785 0.0558 -0.7310 South Dakota  5.0000 

 

Figs. 1 to 6 present the time paths of energy consumption in 

each state. The structural shifts in the data trend can be clearly 

observed. Allowing for structural breaks in testing a unit root 

(and/or stationarity) seems sensible. The estimated time paths 

of the time-varying intercepts are also shown in Figs. 1 to 6. 

Further examination of the figures indicates that all Fourier 

approximations are reasonable and support the notion of long 

swings in energy consumption processes. 
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Fig. 1 Plots of Energy Consumption and Fitted Nonlinearities (1 to 9 States)
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Fig. 2 Plots of Energy Consumption and Fitted Nonlinearities (10 to 18 States) 
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Fig. 3 Plots of Energy Consumption and Fitted Nonlinearities (19 to 27 States) 
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Fig. 4 Plots of Energy Consumption and Fitted Nonlinearities (28 to 36 States) 
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Fig. 5 Plots of Energy Consumption and Fitted Nonlinearities (37 to 45 States) 
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C. Economic and Policy Implications 

The findings of this research have several important policy 

implications. First, if the data were erroneously treated as non-

stationary and the causality tests for energy consumption and 

other macroeconomic variables (such as GDP) were applied to 

the first difference, then spurious causality would result. 

Second, overwhelming evidence in favor of the I(0) stationary 

hypothesis is found, implying that the shocks in energy 

consumption are only temporary. This result also implies that 

after a major structural change in energy markets, energy 

consumption will return to its original equilibrium over a 

period of time. When energy consumption deviates from the 

trend because of a shock in the energy market, then 

governments should not adopt unnecessary targets. Third, the 

stationarity properties of energy consumption have important 

implications on modeling the relationship between energy 

consumption and macroeconomic variables. Fourth, the 

stationary behavior of the energy consumption also has 

important implications on forecasting energy consumption. 

Forecasts of energy consumption are crucial for the 

formulation of energy policies. Considering the importance of 

having a safe energy supply for economic growth, reliable 

forecasts of energy demand should be obtained to formulate 

future energy policies. If energy consumption is a stationary 

process, then future energy demand can be forecasted based on 

past observations. However, if energy consumption is 

characterized by a stochastic trend, then past observations 

would be useless in forecasting future trends in energy 

demand. The fact that energy consumption shows I(0) 

stationarity indicates that the series should be able to forecast 

future trends in energy demand based on past behavior. 

V. CONCLUSIONS 

This study applied SPSM proposed by Chortareas and 

Kapetanios (2009) to investigate the time-series properties of 

energy consumption in 50 US states from 1963 to 2009. SPSM 

classifies the entire panel into a group of stationary series and 

a group of non-stationary series to identify how many and 

which series in the panel are stationary processes. Empirical 

results from SPSM combined with panel KSS unit root test 

(Ucar and Omay, 2009) and a Fourier function indicate that 

energy consumption in all the 50 US states are stationary. Our 

results have important policy implications for the 50 US states. 
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