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Abstract—Recent experimental evidences have shown that because
of a fast convergence and a nice accuracy, neural networks training
via extended kalman filter (EKF) method is widely applied. However,
as to an uncertainty of the system dynamics or modeling error, the
performance of the method is unreliable. In order to overcome this
problem in this paper, a new finite impulse response (FIR) filter based
learning algorithm is proposed to train radial basis function neural
networks (RBFN) for nonlinear function approximation. Compared
to the EKF training method, the proposed FIR filter training method
is more robust to those environmental conditions. Furthermore , the
number of centers will be considered since it affects the performance
of approximation.

Keywords—Extended kalmin filter (EKF), classification problem,
radial basis function networks (RBFN), finite impulse response (FIR)

I. INTRODUCTION

RADIAL basis function neural networks (RBFN) have
originated from multidimensional interpolation models

and have been proposed by D. S. Broomhead in the literature
since 1985 [1]-[3]. Those have many uses, including system
identification, classification, and system control. Additionally
this the output of is weighted by trained weight. Special
issues on RBFN are submitted [4], [5]. RBFN consists of
m dimensional input x directly connected to hidden layer,
c neurons which is prototype vector in the hidden layer, n
dimensional output y, and wij ∈ �c×n weight parameter to
output of c vectors. This is the m−n mapping. Fig. 1 shows a
structure of an RBFN. a weight and a prototype vector called
a center should be trained. Since the value of the prototype

Fig. 1. Radial basis function network structure.
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vector and a function which will be used as an activation
function are out of question, it is assumed to be fixed. But
because the number of centers is important to compare the
performance between training methods, we control this value.
Many researchers have trained RBFN with various methods
and algorithms [6]-[9]. Because it is important to consider
the number of centers, we simulate relation between center
number and training method which are FIR filter training
method and EKF training method. we have used method which
picks random centers from the data set [10].

In this article, we apply FIR filter [16]-[18] to the training
of reformulated RBFN. EKF based learning method have
been used extensively to many neural networks training such
as multilayer perceptrons [11]-[13] and recurrent networks
[14], [15], whereas there are a few FIR filter articles apllied
to neural networks training method. But FIR filter is not
so although it has a strong point which is robust to the
uncertainty and the unmodeled system [19], [20]. Furthermore
the guaranteed stability, temporary uncertainties, and perfect
signal reconstruction such as a linear phase properties are
well known desirable properties of the FIR structure. Also,
it has the potential to be apllied to diverse fields of research
[21], [22]. So using FIR filter training will confirm that the
robust to uncertain situation is guaranteed. The following
section presents the derivation of EKF [7] approach to the

FIR filter training. Next Section will be simulation results on
a comparison of EKF and FIR filter. Final section contains an
analysis and a suggestion for a future research.

II. TRAINING WITH FIR FILTER

A. A Mathmatical Model of RBFN

The fundamental model of the RBFN of Fig. 1 can be
written as follows

ŷ =

⎡
⎢⎢⎢⎣
w10 w11 . . . w1c

w20 w21 . . . w2c

...
...

...
...

wn0 wn1 . . . wnc

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1
g(‖x− v1‖2)

...
g(‖x− vc‖2)

⎤
⎥⎥⎥⎦ , (1)

where the function g(·) is an activation function of RBFN as

g(v) =
1√

1 + ‖x− v‖2 , ∀v ∈ (0,∞), (2)

when v is a distance between a center and an input data. But
various types of functions can be used [21]. ŷ will be used with
the simplified weight and activation function as the following
notation (3-4):

filter.

ysh88, mlim, hironaka@korea.ac.kr).

recursive training, and Section III presents the derivation of
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⎡
⎢⎢⎢⎣
w10 w11 . . . w1c

w20 w21 . . . w2c

...
...

...
...

wn0 wn1 . . . wnc

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
wT

1

wT
2
...

wT
n

⎤
⎥⎥⎥⎦ = W, (3)

⎡
⎢⎢⎢⎣

1
g(‖x− v1‖2)

...
g(‖x− vc‖2)

⎤
⎥⎥⎥⎦ = h. (4)

B. Derivation of RBFN Optimization Algorithm with FIR
Filter

FIR filter structure is consisted of linear combinations of
input and output in the horizon [k −N, k] as follows:

ˆxk‖k−1 = Hk−1Yk−1 + Lk−1Uk−1. (5)

The process to derive Hk−1 and Lk−1 as to nonlinear system
is defined as finding Jacobian matrix about state, input and
noise as follows:

xk = f(xk−1, uk−1, wk−1), wk ∼ (0, Q),

yk = h(xk−1, uk−1, vk−1) + vk, vk ∼ (0, R). (6)

If we define matrixes as follows

Yk−1 = [yTk−NyTk−N+1 . . . y
T
k−1], (7)

Wk−1 = [wT
k−NwT

k−N+1 . . . w
T
k−1], (8)

Vk−1 = [vTk−NvTk−N+1 . . . v
T
k−1], (9)

and ẼN,k, C̃N,k, and G̃N,k are obtained from

ẼN,k =
[
Ak−1:k−N+1G Ak−1:k−N+2G . . . G

]
, (10)

C̃N,k =

⎡
⎢⎢⎢⎢⎢⎣

Ck−N

Ck−N+1Ak−N

Ck−N+2Ak−N+1:k−N

...
Ck−1Ak−2:k−N

⎤
⎥⎥⎥⎥⎥⎦ , (11)

G̃N,k =

⎡
⎢⎢⎢⎢⎢⎣

0 0
Ck−N+1G 0

Ck−N+2Ak−N+1G Ck−N+2G
...

...
Ck−1Ak−2:k−N+1G Ck−1Ak−−2:k−N+2G

. . . 0 0

. . . 0 0

. . . 0 0
...

...
...

. . . Ck−1G 0

⎤
⎥⎥⎥⎥⎥⎦ , (12)

where G = ones(nic+(c+1)no, 1). Mind that matrix A has
different values in uncertain situation although it is usually
identity matrix. The other way Ck is calculated with jacobian
matrix as follows:

Ck−1 =
∂h

∂x
|x=x̂k−1

. (13)

When matrix A, C is observable and N ≥ n, for a singular
or non singular A, the minimum variance FIR filter with a
batch form on the horizon [k −N, k] is given as follows:

x̂k|k−1 = [Ak−1:k−N ẼN,k]

[
W1,1 W1,2

WT
1,2 W2,2

]−1
[

˜CN,k
T

˜GN,k
T

]

×R−1
N Yk−1, (14)

Vk−1 = [vTk−NvTk−N+1 . . . v
T
k−1], (15)

where

W1,1 = C̃T
N,k R−1

N C̃T
N,k,

W1,2 = C̃T
N,k R−1

N G̃T
N,k,

W2,2 = G̃T
N,k R−1

N G̃T
N,k,

QN = diag(Q, Q, . . . , Q︸ ︷︷ ︸
N

),

RN = diag(R, R, . . . , R︸ ︷︷ ︸
N

). (16)

III. SIMULATION RESULTS

To compare the performance between EKF and FIR filter
training method, a nonlinear discrete-time function is used via
simulation. The systems is written as

y1(k + 1) =
y1(k + 1)y2(k + 1)y3(k + 1)

1 + y1(k + 1)2 + y2(k + 1)2 + y3(k + 1)2

+ 2u(k) + δk, (17)

where δk is an uncertain model parameter. y2(k + 1) =
y1(k), y3(k + 1) = y2(k), y4(k + 1) = y3(k)and u(t) =
0.5cos(3πkTs) + 0.1sin(4πkTs)2 + 0.4sin(πkTs) ∈ R.
Ts = 0.034. The system noise covariance Qw with the
EKF training is eye(nic + (c + 1)no), the measurment noise
covariance Rv with the EKF training is 12eye(no), the system
noise covariance Qw with the FIR filter training is eye(1) ,
the measurment noise covariance Rv with the EKF training
is 12eye(no) and P0 is eye(nic + (c + 1)no). In this paper,
in order to examine the effectiveness of the training, we use
center numbers from 1 to 20 in the hidden node. The initial
centers are randomly selected. The uncertain model parameter
δk is considered as

δk =

⎧⎨
⎩

2, 50 ≤ k ≤ 100,
2, 150 ≤ k ≤ 200,

0, otherwise.
(18)

The identification result for y2 is shown in Fig. 2 The
result compares the robustness of two filters training given
uncertainty. When the uncertain shift of the system occurs at
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Fig. 2. Output function approximation

50 ≤ k ≤ 100 and 150 ≤ k ≤ 200, the difference between
EKF training is maximized. This means that when EKF
training method is applied to unstable system or unmodeled
system, the approximation results will shows large deviation
from the system value. On the other hand RBFN with FIR
filter shows fast convergence to system function. If the system
is moving plant, large deviation from real value is critical to
plant processing. We apply squared error for finite time as
J(N) =

∑k=1
N e2(k). The results for J(N) are shown in Fig.

3 This visible result confirms the fact that FIR filter follows
the system function well compared with the EKF. The final
simulation is the comparison of squared error about center
number on Fig. 4.
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Fig. 3. Error comparison between FIR filter learning and EKF learning

When a data set is complex and large to be controlled,
the number of center affect the computation load critically.
Although the squared error of EKF training have a tendency
to decrease, FIR filter training apparently excels EKF in a few
number of center.
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Fig. 4. Error related center number on FIR filter learning and EKF learning

IV. CONCLUSION

A novel approach of neural networks approximation with
the FIR filter training is proposed in this paper. FIR filter
training method has a robust property to uncertain change of
a system function. In a function approximation problem, the
convergence performance is most important among properties.
Moreover it is better to use robust training method because it is
difficult to model majority of the plants in the world and most
systems change dynamically. This learning method is well
adapted to a weight and prototype vector training. Considered
in a dynamic system perspective, such training can be applied
usefully for all neural network applications. In future work,
we will apply this training method to system control.
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