Search results for: optimum utilization.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1432

Search results for: optimum utilization.

412 Performance Analysis of Deterministic Stable Election Protocol Using Fuzzy Logic in Wireless Sensor Network

Authors: Sumanpreet Kaur, Harjit Pal Singh, Vikas Khullar

Abstract:

In Wireless Sensor Network (WSN), the sensor containing motes (nodes) incorporate batteries that can lament at some extent. To upgrade the energy utilization, clustering is one of the prototypical approaches for split sensor motes into a number of clusters where one mote (also called as node) proceeds as a Cluster Head (CH). CH selection is one of the optimization techniques for enlarging stability and network lifespan. Deterministic Stable Election Protocol (DSEP) is an effectual clustering protocol that makes use of three kinds of nodes with dissimilar residual energy for CH election. Fuzzy Logic technology is used to expand energy level of DSEP protocol by using fuzzy inference system. This paper presents protocol DSEP using Fuzzy Logic (DSEP-FL) CH by taking into account four linguistic variables such as energy, concentration, centrality and distance to base station. Simulation results show that our proposed method gives more effective results in term of a lifespan of network and stability as compared to the performance of other clustering protocols.

Keywords: Deterministic stable election protocol, energy model, fuzzy logic, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977
411 Investigation of Hydraulic and Thermal Performances of Fin Array at Different Shield Positions without By-Pass

Authors: Ramy H. Mohammed

Abstract:

In heat sinks, the flow within the core exhibits separation and hence does not lend itself to simple analytical boundary layer or duct flow analysis of the wall friction. In this paper, we present some findings from an experimental and numerical study aimed to obtain physical insight into the influence of the presence of the shield and its position on the hydraulic and thermal performance of square pin fin heat sink without top by-pass. The variations of the Nusselt number and friction factor are obtained under varied parameters, such as the Reynolds number and the shield position. The numerical code is validated by comparing the numerical results with the available experimental data. It is shown that, there is a good agreement between the temperature predictions based on the model and the experimental data. Results show that, as the presence of the shield, the heat transfer of fin array is enhanced and the flow resistance increased. The surface temperature distribution of the heat sink base is more uniform when the dimensionless shield position equals to 1/3 or 2/3. The comprehensive performance evaluation approach based on identical pumping power criteria is adopted and shows that the optimum shield position is at x/l=0.43.

Keywords: Shield, Fin array, Performance evaluation, Heat transfer, Validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
410 A Noble Flow Rate Control based on Leaky Bucket Method for Multi-Media OBS Networks

Authors: Kentaro Miyoko, Yoshihiko Mori, Yugo Ikeda, Yoshihiro Nishino, Yong-Bok Choi, Hiromi Okada

Abstract:

Optical burst switching (OBS) has been proposed to realize the next generation Internet based on the wavelength division multiplexing (WDM) network technologies. In the OBS, the burst contention is one of the major problems. The deflection routing has been designed for resolving the problem. However, the deflection routing becomes difficult to prevent from the burst contentions as the network load becomes high. In this paper, we introduce a flow rate control methods to reduce burst contentions. We propose new flow rate control methods based on the leaky bucket algorithm and deflection routing, i.e. separate leaky bucket deflection method, and dynamic leaky bucket deflection method. In proposed methods, edge nodes which generate data bursts carry out the flow rate control protocols. In order to verify the effectiveness of the flow rate control in OBS networks, we show that the proposed methods improve the network utilization and reduce the burst loss probability through computer simulations.

Keywords: Optical burst switching, OBS, flow rate control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
409 Steel Dust as a Coating Agent for Iron Ore Pellets at Ironmaking

Authors: M. Bahgat, H. Hanafy, H. Al-Tassan

Abstract:

Cluster formation is an essential phenomenon during direct reduction processes at shaft furnaces. Decreasing the reducing temperature to avoid this problem can cause a significant drop in throughput. In order to prevent sticking of pellets, a coating material basically inactive under the reducing conditions prevailing in the shaft furnace, should be applied to cover the outer layer of the pellets. In the present work, steel dust is used as coating material for iron ore pellets to explore dust coating effectiveness and determines the best coating conditions. Steel dust coating is applied for iron ore pellets in various concentrations. Dust slurry concentrations of 5.0-30% were used to have a coated steel dust amount of 1.0-5.0 kg per ton iron ore. Coated pellets with various concentrations were reduced isothermally in weight loss technique with simulated gas mixture to the composition of reducing gases at shaft furnaces. The influences of various coating conditions on the reduction behavior and the morphology were studied. The optimum reduced samples were comparatively applied for sticking index measurement. It was found that the optimized steel dust coating condition that achieve higher reducibility with lower sticking index was 30% steel dust slurry concentration with 3.0 kg steel dust/ton ore.

Keywords: Ironmaking, coating, steel dust, reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939
408 Design of One – Dimensional Tungsten Gratings for Thermophotovoltaic Emitters

Authors: Samah. G. Babiker, Shuai Yong, Mohamed Osman Sid-Ahmed Xie Ming, A.M. Abdelbagi

Abstract:

In this paper, a one - dimensional microstructure tungsten grating (pyramids) is optimized for potential application as thermophotovoltaic (TPV) emitter. The influence of gratings geometric parameters on the spectral emittance are studied by using the rigorous coupled-wave analysis (RCWA).The results show that the spectral emittance is affected by the gratings geometrical parameters. The optimum parameters are grating period of 0.5µm, a filling ratio of 0.8 and grating height of h=0.2µm. A broad peak of high emittance is obtained at wavelengths between 0.5 and 1.8µm. The emittance drops below 0.2 at wavelengths above 1.8µm. This can be explained by the surface plasmon polaritons excitation coupled with the grating microstructures. At longer wavelengths, the emittance remains low and this is highly desired for thermophotovoltaic applications to reduce the thermal leakage due to low-energy photons that do not produce any photocurrent. The proposed structure can be used as a selective emitter for a narrow band gap cell such as GaSb. The performance of this simple 1-D emitter proved to be superior to that from more complicated structures. Almost all the radiation from the emitter incident, at angles up to 40°, on the cell, could be utilized to produce a photocurrent. There is no need for a filter.

Keywords: Thermophotovoltaic, RCWA, Grating, Emittance, Surface plasmon polaritons

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
407 MiSense Hierarchical Cluster-Based Routing Algorithm (MiCRA) for Wireless Sensor Networks

Authors: Kavi K. Khedo, R. K. Subramanian

Abstract:

Wireless sensor networks (WSN) are currently receiving significant attention due to their unlimited potential. These networks are used for various applications, such as habitat monitoring, automation, agriculture, and security. The efficient nodeenergy utilization is one of important performance factors in wireless sensor networks because sensor nodes operate with limited battery power. In this paper, we proposed the MiSense hierarchical cluster based routing algorithm (MiCRA) to extend the lifetime of sensor networks and to maintain a balanced energy consumption of nodes. MiCRA is an extension of the HEED algorithm with two levels of cluster heads. The performance of the proposed protocol has been examined and evaluated through a simulation study. The simulation results clearly show that MiCRA has a better performance in terms of lifetime than HEED. Indeed, MiCRA our proposed protocol can effectively extend the network lifetime without other critical overheads and performance degradation. It has been noted that there is about 35% of energy saving for MiCRA during the clustering process and 65% energy savings during the routing process compared to the HEED algorithm.

Keywords: Clustering algorithm, energy consumption, hierarchical model, sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
406 Ethnographic Exploration of Elderly Residents' Perceptions and Utilization of Health Care to Improve Their Quality of Life

Authors: Seyed Ziya Tabatabaei, Azimi Bin Hj Hamzah, Fatemeh Ebrahimi

Abstract:

The increase in proportion of older people in Malaysia has led to a significant growth of health care demands. The aim of this study is to explore how perceived health care needs influence on quality of life among elderly Malay residents who reside in a Malaysian residential home. This study employed a method known as ethnographic research from May 2011 to January 2012. Four data collection strategies were selected as the main data-collecting tools including participant observation, field notes, in-depth interviews, and review of related documents. The nine knowledgeable participants for the present study were selected using the purposive sampling method. Two themes were identified: (1) Medical concerns: Feeling secure, lack of information, inadequate medical staff; and (2) Health promotion: Body condition, health education, physiotherapy and rehabilitation. These results could evoke the attention of policy-makers and care providers to better meet elderly residents’ health care needs.

Keywords: Ethnographic study, health care needs, elderly Malay people, Malaysia, quality of life, residential home.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
405 Bioremediation of Hydrocarbon and Some Heavy Metal Polluted Wastewater Effluent of a Typical Refinery

Authors: S. Abdulsalam, A. D. I. Suleiman, N. M. Musa, M. Yusuf

Abstract:

Environment free of pollutants should be the concern of every individual but with industrialization and urbanization it is difficult to achieve. In view of achieving a pollution limited environment at low cost, a study was conducted on the use of bioremediation technology to remediate hydrocarbons and three heavy metals namely; copper (Cu), zinc (Zn) and iron (Fe) from a typical petroleum refinery wastewater in a closed system. Physicochemical and microbiological characteristics on the wastewater sample revealed that it was polluted with the aforementioned pollutants. Isolation and identification of microorganisms present in the wastewater sample revealed the presence of Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and Staphylococcus epidermidis. Bioremediation experiments carried out on five batch reactors with different compositions but at same environmental conditions revealed that treatment T5 (boosted with the association of Bacillus subtilis, Micrococcus luteus) gave the best result in terms of oil and grease content removal (i.e. 67% in 63 days). In addition, these microorganisms were able of reducing the concentrations of heavy metals in the sample. Treatments T5, T3 (boosted with Bacillus subtilis only) and T4 (boosted with Micrococcus luteus only) gave optimum percentage uptakes of 65, 75 and 25 for Cu, Zn and Fe respectively.

Keywords: Boosted, bioremediation, closed system, aeration, uptake, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
404 Avicelase Production by a Thermophilic Geobacillus stearothermophilus Isolated from Soil using Sugarcane Bagasse

Authors: E. A. Makky

Abstract:

Studies were carried out on the comparative study of the production of Avicelase enzyme using sugarcane bagasse-SCB in two different statuses (i.e. treated and untreated SCB) by thermophilic Geobacillus stearothermophilus at 50ºC. Only four thermophilic bacterial isolates were isolated and assayed for Avicelase production using UntSCB and TSCB. Only one isolate selected as most potent and identified as G. stearothermophilus used in this study. A specific endo-β-1,4-D-glucanase (Avicelase EC 3.2.1.91) was partially purified from a thermophilic bacterial strain was isolated from different soil samples when grown on cellulose enrichment SCB substrate as the sole carbon source. Results shown that G. stearothermophilus was the better Avicelase producer strain. Avicelase had an optimum pH and temperature 7.0 and 50ºC for both UntSCB and TSCB and exhibited good pH stability between "5-8" and "4-9", however, good temperature stability between (30-80ºC) for UntSCB and TSCB, respectively. Other factors affecting the production of Avicelase were compared (i.e. SCB concentration, inoculum size and different incubation periods), all results observed and obtained were revealed that the TSCB was exhibited maximal enzyme activity in comparison with the results obtained from UntSCB, so, the TSCB was enhancing the Avicelase production.

Keywords: Geobacillus stearothermophilus, Avicelase, Sugarcane bagasse

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2807
403 Using New Technologies for Public Parking in Isfahan City

Authors: M. Ahmadi Baseri, R. Mokhtari Malekabadi, A. Gandomkar

Abstract:

Cities expansion, urban travels increase, the technology development, the automobile price cheapen, and the families' income ascending cause the considerable increase in automobile numbers of the city. This fact has led to the traffic creation and the automobile parking site shortage in the city. Also in Esfahan metropolis, the parking lots shortage has been the great problem of this town; in addition, in designing and constructing of the parking sites the traditional methods are utilized which do not have a reasonable and optimized usage of the valuable urban lands. In this article, by introducing the prefabricate mechanized parking system which is inexpensive, simple and quick, and occupies very small space, therefore provides the high content of parking site for the cities, we can eliminate the parking space shortage difficulty of the cities. The achieved results of this research represent that an optimized utilization of the existent urban spaces for parking site construction has not been accomplished. By employing the new parking site technologies such as mechanization categorized parking sites and the capacity prefabricate mechanized of each parking space have become 8 multiples; in this case, the valuable urban lands can be used in an optimized way.

Keywords: Public parking sites, New parking sites technologies, Prefabricate mechanized parking site, Isfahan City.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
402 Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber

Authors: Peng Hao Wang, Ronald Sterkenburg, Garam Kim, Yuwei He

Abstract:

As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.

Keywords: 3D printed, carbon fiber, fiber content, recycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 767
401 Palladium-Catalyzed Hydrodechlorination for Water Remediation: Catalyst Deactivation and Regeneration

Authors: Dalia Angeles-Wedler, Katrin Mackenzie, Frank-Dieter Kopinke

Abstract:

Palladium-catalyzed hydrodechlorination is a promising alternative for the treatment of environmentally relevant water bodies, such as groundwater, contaminated with chlorinated organic compounds (COCs). In the aqueous phase hydrodechlorination of COCs, Pd-based catalysts were found to have a very high catalytic activity. However, the full utilization of the catalyst-s potential is impeded by the sensitivity of the catalyst to poisoning and deactivation induced by reduced sulfur compounds (e.g. sulfides). Several regenerants have been tested before to recover the performance of sulfide-fouled Pd catalyst. But these only delivered partial success with respect to re-establishment of the catalyst activity. In this study, the deactivation behaviour of Pd/Al2O3 in the presence of sulfide was investigated. Subsequent to total deactivation the catalyst was regenerated in the aqueous phase using potassium permanganate. Under neutral pH condition, oxidative regeneration with permanganate delivered a slow recovery of catalyst activity. However, changing the pH of the bulk solution to acidic resulted in the complete recovery of catalyst activity within a regeneration time of about half an hour. These findings suggest the superiority of permanganate as regenerant in re-activating Pd/Al2O3 by oxidizing Pd-bound sulfide.

Keywords: Deactivation, hydrodechlorination, Pd catalyst, regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268
400 Optimization of Turbocharged Diesel Engines

Authors: Ebrahim Safarian, Kadir Bilen, Akif Ceviz

Abstract:

The turbocharger and turbocharging have been the inherent component of diesel engines, so that critical parameters of such engines, as BSFC (Brake Specific Fuel Consumption) or thermal efficiency, fuel consumption, BMEP (Brake Mean Effective Pressure), the power density output and emission level have been improved extensively. In general, the turbocharger can be considered as the most complex component of diesel engines, because it has closely interrelated turbomachinery concepts of the turbines and the compressors to thermodynamic fundamentals of internal combustion engines and stress analysis of all components. In this paper, a waste gate for a conventional single stage radial turbine is investigated by consideration of turbochargers operation constrains and engine operation conditions, without any detail designs in the turbine and the compressor. Amount of opening waste gate which extended between the ranges of full opened and closed valve, is demonstrated by limiting compressor boost pressure ratio. Obtaining of an optimum point by regard above mentioned items is surveyed by three linked meanline modeling programs together which consist of Turbomatch®, Compal®, Rital® madules in concepts NREC® respectively.

Keywords: Turbocharger, Wastegate, diesel engine, CONCEPT NREC programs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3421
399 A Study of the Trade-off Energy Consumption-Performance-Schedulability for DVFS Multicore Systems

Authors: Jalil Boudjadar

Abstract:

Dynamic Voltage and Frequency Scaling (DVFS) multicore platforms are promising execution platforms that enable high computational performance, less energy consumption and flexibility in scheduling the system processes. However, the resulting interleaving and memory interference together with per-core frequency tuning make real-time guarantees hard to be delivered. Besides, energy consumption represents a strong constraint for the deployment of such systems on energy-limited settings. Identifying the system configurations that would achieve a high performance and consume less energy while guaranteeing the system schedulability is a complex task in the design of modern embedded systems. This work studies the trade-off between energy consumption, cores utilization and memory bottleneck and their impact on the schedulability of DVFS multicore time-critical systems with a hierarchy of shared memories. We build a model-based framework using Parametrized Timed Automata of UPPAAL to analyze the mutual impact of performance, energy consumption and schedulability of DVFS multicore systems, and demonstrate the trade-off on an actual case study.

Keywords: Time-critical systems, multicore systems, schedulability analysis, performance, memory interference, energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 467
398 Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry

Authors: F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim

Abstract:

An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.

Keywords: Steam turbine generator, energy efficiency, exergy efficiency, phosphoric acid plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
397 QoS Expectations in IP Networks: A Practical View

Authors: S. Arrizabalaga, A. Salterain, M. Domínguez, I. Alvaro

Abstract:

Traditionally, Internet has provided best-effort service to every user regardless of its requirements. However, as Internet becomes universally available, users demand more bandwidth and applications require more and more resources, and interest has developed in having the Internet provide some degree of Quality of Service. Although QoS is an important issue, the question of how it will be brought into the Internet has not been solved yet. Researches, due to the rapid advances in technology are proposing new and more desirable capabilities for the next generation of IP infrastructures. But neither all applications demand the same amount of resources, nor all users are service providers. In this way, this paper is the first of a series of papers that presents an architecture as a first step to the optimization of QoS in the Internet environment as a solution to a SMSE's problem whose objective is to provide public service to internet with certain Quality of Service expectations. The service provides new business opportunities, but also presents new challenges. We have designed and implemented a scalable service framework that supports adaptive bandwidth based on user demands, and the billing based on usage and on QoS. The developed application has been evaluated and the results show that traffic limiting works at optimum and so it does exceeding bandwidth distribution. However, some considerations are done and currently research is under way in two basic areas: (i) development and testing new transfer protocols, and (ii) developing new strategies for traffic improvements based on service differentiation.

Keywords: Differentiated Services, Linux, Quality of Service, queueing disciplines, web application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
396 Impulse Response Shortening for Discrete Multitone Transceivers using Convex Optimization Approach

Authors: Ejaz Khan, Conor Heneghan

Abstract:

In this paper we propose a new criterion for solving the problem of channel shortening in multi-carrier systems. In a discrete multitone receiver, a time-domain equalizer (TEQ) reduces intersymbol interference (ISI) by shortening the effective duration of the channel impulse response. Minimum mean square error (MMSE) method for TEQ does not give satisfactory results. In [1] a new criterion for partially equalizing severe ISI channels to reduce the cyclic prefix overhead of the discrete multitone transceiver (DMT), assuming a fixed transmission bandwidth, is introduced. Due to specific constrained (unit morm constraint on the target impulse response (TIR)) in their method, the freedom to choose optimum vector (TIR) is reduced. Better results can be obtained by avoiding the unit norm constraint on the target impulse response (TIR). In this paper we change the cost function proposed in [1] to the cost function of determining the maximum of a determinant subject to linear matrix inequality (LMI) and quadratic constraint and solve the resulting optimization problem. Usefulness of the proposed method is shown with the help of simulations.

Keywords: Equalizer, target impulse response, convex optimization, matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
395 Process Parameter Optimization in Resistance Spot Welding of Dissimilar Thickness Materials

Authors: Pradeep M., N. S. Mahesh, Raja Hussain

Abstract:

Resistance spot welding (RSW) has been used widely to join sheet metals. It has been a challenge to get required weld quality in spot welding of dissimilar thickness materials. Weld parameters are not generally available in standards for thickness beyond 4mm. This paper presents the welding process design and parameter optimization of RSW used in joining of low carbon steel sheet of thickness 0.8 mm and metal strips of cross section 10 x 5mm for electrical motor applications. Taguchi quality design was adopted for weld current and time optimization using L9 orthogonal array. Optimum process parameters (current- 3.5kA and time- 10 cycles) were obtained from the Taguchi analysis and shear test results. Confirmation experiment result revealed that the weld quality was within acceptable interval. Further, numerical simulation of RSW process was carried out with selected weld parameters to quantify the temperature at faying surface and check for formation of appropriate nugget. The nugget geometry measured after peel test and predicted from numerical validation method were similar and in accordance with the standards.

Keywords: Resistance spot welding, dissimilar thickness, weld parameters, Taguchi method, numerical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5189
394 Computer Aided Design of Reshaping Process of Circular Pipes into Square Pipes

Authors: Parviz Alinezhad, Ali Sanati, Koorosh Naser Momtahen

Abstract:

Square pipes (pipes with square cross sections) are being used for various industrial objectives, such as machine structure components and housing/building elements. The utilization of them is extending rapidly and widely. Hence, the out-put of those pipes is increasing and new application fields are continually developing. Due to various demands in recent time, the products have to satisfy difficult specifications with high accuracy in dimensions. The reshaping process design of pipes with square cross sections; however, is performed by trial and error and based on expert-s experience. In this paper, a computer-aided simulation is developed based on the 2-D elastic-plastic method with consideration of the shear deformation to analyze the reshaping process. Effect of various parameters such as diameter of the circular pipe and mechanical properties of metal on product dimension and quality can be evaluated by using this simulation. Moreover, design of reshaping process include determination of shrinkage of cross section, necessary number of stands, radius of rolls and height of pipe at each stand, are investigated. Further, it is shown that there are good agreements between the results of the design method and the experimental results.

Keywords: Circular Pipes, Square Pipes, Shear Deformation, Reshaping Process, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
393 Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks

Authors: Tripatjot S. Panag, J. S. Dhillon

Abstract:

The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.

Keywords: Coverage, disjoint sets, heuristic, lifetime, scheduling, wireless sensor networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
392 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition

Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover

Abstract:

Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.

Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3073
391 Optimization of Element Type for FE Model and Verification of Analyses with Physical Tests

Authors: M. Tufekci, C. Guven

Abstract:

In Automotive Industry, sliding door systems that are also used as body closures are safety members. Extreme product tests are realized to prevent failures in design process, but these tests realized experimentally result in high costs. Finite element analysis is an effective tool used for design process. These analyses are used before production of prototype for validation of design according to customer requirement. In result of this, substantial amount of time and cost is saved. Finite element model is created for geometries that are designed in 3D CAD programs. Different element types as bar, shell and solid, can be used for creating mesh model. Cheaper model can be created by selection of element type, but combination of element type that was used in model, number and geometry of element and degrees of freedom affects the analysis result. Sliding door system is a good example which used these methods for this study. Structural analysis was realized for sliding door mechanism by using FE models. As well, physical tests that have same boundary conditions with FE models were realized. Comparison study for these element types, were done regarding test and analyses results then optimum combination was achieved.

Keywords: Finite Element Analysis, Sliding Door Mechanism, Element Type, Structural Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
390 Annual Changes in Some Qualitative Parameters of Groundwater in Shirvan Plain North East of Iran

Authors: Hadi Ghorbani, Samira Mohammadi Sadabad

Abstract:

Shirvan is located in plain in Northern Khorasan province north east of Iran and has semiarid to temperate climate. To investigate the annual changes in some qualitative parameters such as electrical conductivity, total dissolved solids and chloride concentrations which have increased during ten continuous years. Fourteen groundwater sources including deep as well as semi-deep wells were sampled and were analyzed using standard methods. The trends of obtained data were analyzed during these years and the effects of different factors on the changes in electrical conductivity, concentration of chloride and total dissolved solids were clarified. The results showed that the amounts of some qualitative parameters have been increased during 10 years time which has led to decrease in water quality. The results also showed that increased in urban populations as well as extensive industrialization in the studied area are the most important reasons to influence underground water quality. Furthermore decrease in water quantity is also evident due to more water utilization and occurrence of recent droughts in the region during recent years.

Keywords: Chloride, Electrical Conductivity, Shirvan, Total Dissolved Solids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
389 Removal of Pb (II) from Aqueous Solutions using Fuller's Earth

Authors: Tarun Kumar Naiya, Biswajit Singha, Ashim Kumar Bhattacharya, Sudip Kumar Das

Abstract:

Fuller’s earth is a fine-grained, naturally occurring substance that has a substantial ability to adsorb impurities. In the present study Fuller’s earth has been characterized and used for the removal of Pb(II) from aqueous solution. The effect of various physicochemical parameters such as pH, adsorbent dosage and shaking time on adsorption were studied. The result of the equilibrium studies showed that the solution pH was the key factor affecting the adsorption. The optimum pH for adsorption was 5. Kinetics data for the adsorption of Pb(II) was best described by pseudo-second order model. The effective diffusion co-efficient for Pb(II) adsorption was of the order of 10-8 m2/s. The adsorption data for metal adsorption can be well described by Langmuir adsorption isotherm. The maximum uptake of metal was 103.3 mg/g of adsorbent. Mass transfer analysis was also carried out for the adsorption process. The values of mass transfer coefficients obtained from the study indicate that the velocity of the adsorbate transport from bulk to the solid phase was quite fast. The mean sorption energy calculated from Dubinin-Radushkevich isotherm indicated that the metal adsorption process was chemical in nature. 

Keywords: Fuller's earth, Pseudo second order, Mass Transfer co-efficient, Langmuir

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
388 Enhancing IoT Security: A Blockchain-Based Approach for Preventing Spoofing Attacks

Authors: Salha Alshamrani, Maha Aljohni, Eman Aldhaheri

Abstract:

With the proliferation of Internet of Things (IoT) devices in various industries, there has been a concurrent rise in security vulnerabilities, particularly spoofing attacks. This study explores the potential of blockchain technology in enhancing the security of IoT systems and mitigating these attacks. Blockchain's decentralized and immutable ledger offers significant promise for improving data integrity, transaction transparency, and tamper-proofing. This research develops and implements a blockchain-based IoT architecture and a reference network to simulate real-world scenarios and evaluate a blockchain-integrated intrusion detection system. Performance measures including time delay, security, and resource utilization are used to assess the system's effectiveness, comparing it to conventional IoT networks without blockchain. The results provide valuable insights into the practicality and efficacy of employing blockchain as a security mechanism, shedding light on the trade-offs between speed and security in blockchain deployment for IoT. The study concludes that despite minor increases in time consumption, the security benefits of incorporating blockchain technology into IoT systems outweigh potential drawbacks, demonstrating a significant potential for blockchain in bolstering IoT security.

Keywords: Internet of Thing, Spoofing, IoT, Access control, Blockchain, Raspberry pi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117
387 Advantages of Vibration in the GMAW Process for Improving the Quality and Mechanical Properties

Authors: C. A. C. Castro, D. C. Urashima, E. P. Silva, P. M. L.Silva

Abstract:

Since 1920, the industry has almost completely changed the rivets production techniques for the manufacture of permanent welding join production of structures and manufacture of other products. The welding arc is the process more widely used in industries. This is accomplished by the heat of an electric arc which melts the base metal while the molten metal droplets are transferred through the arc to the welding pool, protected from the atmosphere by a gas curtain. The GMAW (Gas metal arc welding) process is influenced by variables such as: current, polarity, welding speed, electrode: extension, position, moving direction; type of joint, welder's ability, among others. It is remarkable that the knowledge and control of these variables are essential for obtaining satisfactory quality welds, knowing that are interconnected so that changes in one of them requiring changes in one or more of the other to produce the desired results. The optimum values are affected by the type of base metal, the electrode composition, the welding position and the quality requirements. Thus, this paper proposes a new methodology, adding the variable vibration through a mechanism developed for GMAW welding, in order to improve the mechanical and metallurgical properties which does not affect the ability of the welder and enables repeatability of the welds made. For confirmation metallographic analysis and mechanical tests were made.

Keywords: HAZ, GMAW, vibration, welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
386 Separation of Polyphenolics and Sugar by Ultrafiltration: Effects of Operating Conditions on Fouling and Diafiltration

Authors: Diqiao S. Wei, M. Hossain, Zaid S. Saleh

Abstract:

Polyphenolics and sugar are the components of many fruit juices. In this work, the performance of ultra-filtration (UF) for separating phenolic compounds from apple juice was studied by performing batch experiments in a membrane module with an area of 0.1 m2 and fitted with a regenerated cellulose membrane of 1 kDa MWCO. The effects of various operating conditions: transmembrane pressure (3, 4, 5 bar), temperature (30, 35, 40 ºC), pH (2, 3, 4, 5), feed concentration (3, 5, 7, 10, 15 ºBrix for apple juice) and feed flow rate (1, 1.5, 1.8 L/min) on the performance were determined. The optimum operating conditions were: transmembrane pressure 4 bar, temperature 30 ºC, feed flow rate 1 – 1.8 L/min, pH 3 and 10 Brix (apple juice). After performing ultrafiltration under these conditions, the concentration of polyphenolics in retentate was increased by a factor of up to 2.7 with up to 70% recovered in the permeate and with approx. 20% of the sugar in that stream.. Application of diafiltration (addition of water to the concentrate) can regain the flux by a factor of 1.5, which has been decreased due to fouling. The material balance performed on the process has shown the amount of deposits on the membrane and the extent of fouling in the system. In conclusion, ultrafiltration has been demonstrated as a potential technology to separate the polyphenolics and sugars from their mixtures and can be applied to remove sugars from fruit juice.

Keywords: Fouling, membrane, polyphenols, ultrafiltration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3387
385 Identification of Cellulose-Hydrolytic Thermophiles Isolated from Sg. Klah Hot Spring Based On 16S rDNA Gene Sequence

Authors: M. J. Norashirene, Y. Zakiah, S. Nurdiana, I. Nur Hilwani, M. H. Siti Khairiyah, M. J. Muhamad Arif

Abstract:

In this study, six bacterial isolates of a slightly thermophilic organism from the Sg. Klah hot spring, Malaysia were successfully isolated and designated as M7T55D1, M7T55D2, M7T55D3, M7T53D1, M7T53D2 and M7T53D3 respectively. The bacterial isolates were screened for their cellulose hydrolytic ability on Carboxymethlycellulose agar medium. The isolated bacterial strains were identified morphologically, biochemically and molecularly with the aid of 16S rDNA sequencing. All of the bacteria showed their optimum growth at a slightly alkaline pH of 7.5 with a temperature of 55°C. All strains were Gram-negative, non-spore forming type, strictly aerobic, catalase-positive and oxidase-positive with the ability to produce thermostable cellulase. Based on BLASTn results, bacterial isolates of M7T55D2 and M7T53D1 gave the highest homology (97%) with similarity to Tepidimonas ignava while isolates M7T55D1, M7T55D3, M7T53D2 and M7T53D3 showed their closest homology (97%-98%) with Tepidimonas thermarum. These cellulolytic thermophiles might have a commercial potential to produce valuable thermostable cellulase.

Keywords: Cellulase, Cellulolytic, Thermophiles, 16S rDNA Gene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
384 Experimental Study on the Effects of Water-in-Oil Emulsions to the Pressure Drop in Pipeline Flow

Authors: S. S. Dol, M. S. Chan, S. F. Wong, J. S. Lim

Abstract:

Emulsion formation is unavoidable and can be detrimental to an oil field production. The presence of stable emulsions also reduces the quality of crude oil and causes more problems in the downstream refinery operations, such as corrosion and pipeline pressure drop. Hence, it is important to know the effects of emulsions in the pipeline. Light crude oil was used for the continuous phase in the W/O emulsions where the emulsions pass through a flow loop to test the pressure drop across the pipeline. The results obtained shows that pressure drop increases as water cut is increased until it peaks at the phase inversion of the W/O emulsion between 30% to 40% water cut. Emulsions produced by gradual constrictions show a lower stability as compared to sudden constrictions. Lower stability of emulsions in gradual constriction has the higher influence of pressure drop compared to a sudden sharp decrease in diameter in sudden constriction. Generally, sudden constriction experiences pressure drop of 0.013% to 0.067% higher than gradual constriction of the same ratio. Lower constriction ratio cases cause larger pressure drop ranging from 0.061% to 0.241%. Considering the higher profitability in lower emulsion stability and lower pressure drop at the developed flow region of different constrictions, an optimum design of constriction is found to be gradual constriction with a ratio of 0.5.

Keywords: Constriction, pressure drop, turbulence, water cut, water-in-oil emulsions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1106
383 Optimization of Strategies and Models Review for Optimal Technologies - Based On Fuzzy Schemes for Green Architecture

Authors: Ghada Elshafei, Abdelazim Negm

Abstract:

Recently, the green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives in green buildings should be designed to minimize the overall impact of the built environment that effect on ecosystems in general and in particularly human health and natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state- ofart- review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.

Keywords: Green architecture/building, technologies, optimization, strategies, fuzzy techniques and models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523