Search results for: heat transport
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1758

Search results for: heat transport

738 A Performance Evaluation of Cellular Network Suitability for VANET

Authors: Ho-Yeon Kim, Dong-Min Kang, Jun-Ho Lee, Tai-Myoung Chung

Abstract:

Recently, a vehicular ad-hoc networks(VANETs) for Intelligent Transport System(ITS) have become able safety and convenience services surpassing the simple services such as an electronic toll collection system. To provide the proper services, VANET needs infrastructure over the country infrastructure. Thus, we have to spend a huge sum of human resources. In this reason, several studies have been made on the usage of cellular networks instead of new protocols this study is to assess a performance evaluation of the cellular network for VANET. In this paper, the result of a for the suitability of cellular networks for VANET experiment, The LTE(Long Term Evolution) of cellular networks found to be most suitable among the others cellular networks

Keywords: Vehicle communication, VANET, Cellular network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695
737 An Experimental Investigation of Petrodiesel and Cotton Seed Biodiesel (CSOME) in Diesel Engine

Authors: P. V. Rao, Jaedaa Abdulhamid

Abstract:

Biodiesel is widely investigated to solve the twin problem of depletion of fossil fuel and environmental degradation. The main objective of the present work is to compare performance, emissions, and combustion characteristics of biodiesel derived from cotton seed oil in a diesel engine with the baseline results of petrodiesel fuel. Tests have been conducted on a single cylinder, four stroke CIDI diesel engine with a speed of 1500 rpm and a fixed compression ratio of 17.5 at different load conditions. The performance parameters evaluated include brake thermal efficiency, brake specific fuel consumption, brake power, indicated mean effective pressure, mechanical efficiency, and exhaust gas temperature. Regarding combustion study, cylinder pressure, rate of pressure rise, net heat release rate, cumulative heat release, mean gas temperature, mass fraction burned, and fuel line pressure were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen, and smoke opacity were also measured by a smoke meter and an exhaust gas analyzer and compared with baseline results. The brake thermal efficiency of cotton seed oil methyl ester (CSOME) was lower than that of petrodiesel and brake specific fuel consumption was found to be higher. However, biodiesel resulted in the reduction of carbon dioxide, un-burnt hydrocarbon, and smoke opacity at the expense of nitrogen oxides. Carbon monoxide emissions for biodiesel was higher at maximum output power. It has been found that the combustion characteristics of cotton seed oil methyl ester closely followed those of standard petrodiesel. The experimental results suggested that biodiesel derived from cotton seed oil could be used as a good substitute to petrodiesel fuel in a conventional diesel without any modification.

Keywords: Diesel engine, Cotton seed, Biodiesel, performance, combustion, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
736 Analyzing Defects with Failure Assessment Diagrams of Gas Pipelines

Authors: Alfred Hasanaj, Ardit Gjeta, Miranda Kullolli

Abstract:

The approach in analyzing defects on different pipe lines is conducted through Failure Assessment Diagram (FAD). These methods of analyses have further extended in recent years. This approach is used to identify and stress out a solution for the defects which randomly occur with gas pipes such are corrosion defects, gauge defects, and combination of defects where gauge and dents are included. Few of the defects are to be analyzed in this paper where our main focus will be the fracture of cast Iron pipes, elastic-plastic failure and plastic collapse of X52 steel pipes for gas transport. We need to conduct a calculation of probability of the defects in order to predict and avoid such costly defects.

Keywords: Defects, Failure Assessment Diagrams, Safety Factor Steel Pipes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2927
735 Depth-Averaged Modelling of Erosion and Sediment Transport in Free-Surface Flows

Authors: Thomas Rowan, Mohammed Seaid

Abstract:

A fast finite volume solver for multi-layered shallow water flows with mass exchange and an erodible bed is developed. This enables the user to solve a number of complex sediment-based problems including (but not limited to), dam-break over an erodible bed, recirculation currents and bed evolution as well as levy and dyke failure. This research develops methodologies crucial to the under-standing of multi-sediment fluvial mechanics and waterway design. In this model mass exchange between the layers is allowed and, in contrast to previous models, sediment and fluid are able to transfer between layers. In the current study we use a two-step finite volume method to avoid the solution of the Riemann problem. Entrainment and deposition rates are calculated for the first time in a model of this nature. In the first step the governing equations are rewritten in a non-conservative form and the intermediate solutions are calculated using the method of characteristics. In the second stage, the numerical fluxes are reconstructed in conservative form and are used to calculate a solution that satisfies the conservation property. This method is found to be considerably faster than other comparative finite volume methods, it also exhibits good shock capturing. For most entrainment and deposition equations a bed level concentration factor is used. This leads to inaccuracies in both near bed level concentration and total scour. To account for diffusion, as no vertical velocities are calculated, a capacity limited diffusion coefficient is used. The additional advantage of this multilayer approach is that there is a variation (from single layer models) in bottom layer fluid velocity: this dramatically reduces erosion, which is often overestimated in simulations of this nature using single layer flows. The model is used to simulate a standard dam break. In the dam break simulation, as expected, the number of fluid layers utilised creates variation in the resultant bed profile, with more layers offering a higher deviation in fluid velocity . These results showed a marked variation in erosion profiles from standard models. The overall the model provides new insight into the problems presented at minimal computational cost.

Keywords: Erosion, finite volume method, sediment transport, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
734 Seawater Desalination for Production of Highly Pure Water Using a Hydrophobic PTFE Membrane and Direct Contact Membrane Distillation (DCMD)

Authors: Ahmad Kayvani Fard, Yehia Manawi

Abstract:

Qatar’s primary source of fresh water is through seawater desalination. Amongst the major processes that are commercially available on the market, the most common large scale techniques are Multi-Stage Flash distillation (MSF), Multi Effect distillation (MED), and Reverse Osmosis (RO). Although commonly used, these three processes are highly expensive down to high energy input requirements and high operating costs allied with maintenance and stress induced on the systems in harsh alkaline media. Beside that cost, environmental footprint of these desalination techniques are significant; from damaging marine eco-system, to huge land use, to discharge of tons of GHG and huge carbon footprint. Other less energy consuming techniques based on membrane separation are being sought to reduce both the carbon footprint and operating costs is membrane distillation (MD). Emerged in 1960s, MD is an alternative technology for water desalination attracting more attention since 1980s. MD process involves the evaporation of a hot feed, typically below boiling point of brine at standard conditions, by creating a water vapor pressure difference across the porous, hydrophobic membrane. Main advantages of MD compared to other commercially available technologies (MSF and MED) and specially RO are reduction of membrane and module stress due to absence of trans-membrane pressure, less impact of contaminant fouling on distillate due to transfer of only water vapor, utilization of low grade or waste heat from oil and gas industries to heat up the feed up to required temperature difference across the membrane, superior water quality, and relatively lower capital and operating cost. To achieve the objective of this study, state of the art flat-sheet cross-flow DCMD bench scale unit was designed, commissioned, and tested. The objective of this study is to analyze the characteristics and morphology of the membrane suitable for DCMD through SEM imaging and contact angle measurement and to study the water quality of distillate produced by DCMD bench scale unit. Comparison with available literature data is undertaken where appropriate and laboratory data is used to compare a DCMD distillate quality with that of other desalination techniques and standards. Membrane SEM analysis showed that the PTFE membrane used for the study has contact angle of 127º with highly porous surface supported with less porous and bigger pore size PP membrane. Study on the effect of feed solution (salinity) and temperature on water quality of distillate produced from ICP and IC analysis showed that with any salinity and different feed temperature (up to 70ºC) the electric conductivity of distillate is less than 5 μS/cm with 99.99% salt rejection and proved to be feasible and effective process capable of consistently producing high quality distillate from very high feed salinity solution (i.e. 100000 mg/L TDS) even with substantial quality difference compared to other desalination methods such as RO and MSF.

Keywords: Membrane Distillation, Waste Heat, Seawater Desalination, Membrane, Freshwater, Direct Contact Membrane Distillation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4127
733 A New Scheduling Algorithm Based on Traffic Classification Using Imprecise Computation

Authors: Farzad Abtahi, Sahar Khanmohamadi, Bahram Sadeghi Bigham

Abstract:

Wireless channels are characterized by more serious bursty and location-dependent errors. Many packet scheduling algorithms have been proposed for wireless networks to guarantee fairness and delay bounds. However, most existing schemes do not consider the difference of traffic natures among packet flows. This will cause the delay-weight coupling problem. In particular, serious queuing delays may be incurred for real-time flows. In this paper, it is proposed a scheduling algorithm that takes traffic types of flows into consideration when scheduling packets and also it is provided scheduling flexibility by trading off video quality to meet the playback deadline.

Keywords: Data communication, Real-time, Scheduling, Video transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
732 Alternative Key Exchange Algorithm Based on Elliptic Curve Digital Signature Algorithm Certificate and Usage in Applications

Authors: A. Andreasyan, C. Connors

Abstract:

The Elliptic Curve Digital Signature algorithm-based X509v3 certificates are becoming more popular due to their short public and private key sizes. Moreover, these certificates can be stored in Internet of Things (IoT) devices, with limited resources, using less memory and transmitted in network security protocols, such as Internet Key Exchange (IKE), Transport Layer Security (TLS) and Secure Shell (SSH) with less bandwidth. The proposed method gives another advantage, in that it increases the performance of the above-mentioned protocols in terms of key exchange by saving one scalar multiplication operation.

Keywords: Cryptography, elliptic curve digital signature algorithm, key exchange, network security protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550
731 Successful Straw Combustion Technology in Zluticka Heating Plant

Authors: P. Volakova, M. Mika, V. Verner, B. Klapste, O. Jankovsky

Abstract:

We successfully developed and tested a new separation layer solving problems with unmanageable deposits inside the boilers of Zluticka Heating Plant. The deposits are mainly created by glass-forming melts. We plotted straw ash compositions in K2OCaO- SiO2 phase diagram and illustrated that they are in the area of low-melting eutectic points. To prevent the melting of ash and the formation of deposits, we modified ash compositions by injecting additives into biomass fuel, and thus effectively suppressed deposits in a burner.

Keywords: Biomass, straw, combustion, deposit, heat, additives

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
730 Development of User Interface for Path Planning System for Bus Network and On-demand Bus Reservation System

Authors: Seiichi Tamagawa, Takao Kawamura, Toshihiko Sasama, Kazunori Sugahara

Abstract:

Route bus system is one of fundamental transportation device for aged people and students, and has an important role in every province. However, passengers decrease year by year, therefore the authors have developed the system called "Bus-Net" as a web application to sustain the public transport. But there are two problems in Bus-Net. One is the user interface that does not consider the variety of the device, and the other is the path planning system that dose not correspond to the on-demand bus. Then, Bus-Net was improved to be able to utilize the variety of the device, and a new function corresponding to the on-demand bus was developed.

Keywords: Route Bus, Path Planning System, User Interface, Ondemandbus, Reservation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
729 A New Algorithm for Solving Isothermal Carbonization of Wood Particle

Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri

Abstract:

A new algorithm based on the lattice Boltzmann method (LBM) is proposed as a potential solver for one-dimensional heat and mass transfer for isothermal carbonization of wood particles. To check the validity of this algorithm, the LBM results have been compared with the published data and a good agreement is obtained. Then, the model is used to study the effect of reactor temperature and particle size on the evolution of the local temperature and mass loss inside the wood particle.

Keywords: Lattice Boltzmann Method, pyrolysis, conduction, carbonization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
728 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: Electric propulsion, mass gauging, propellant, PVT, xenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
727 Thermodynamic Study of Hot Potassium Carbonate Solution Using Aspen Plus

Authors: O. Eisa, M. Shuhaimi

Abstract:

This paper presents a study on the thermodynamics and transport properties of hot potassium carbonate aqueous system (HPC) using electrolyte non-random two liquid, (ELECNRTL) model. The operation conditions are varied to determine the system liquid phase stability range at the standard and critical conditions. A case study involving 30 wt% K2CO3, H2O standard system at pressure of 1 bar and temperature range from 280.15 to 366.15 K has been studied. The estimated solubility index, viscosity, water activity, and density which obtained from the simulation showed a good agreement with the experimental work. Furthermore, the saturation temperature of the solution has been estimated.

Keywords: Viscosity, Saturation index, Activity coefficient, Density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5354
726 Haar wavelet Method for Solving Initial and Boundary Value Problems of Bratu-type

Authors: S.G.Venkatesh, S.K.Ayyaswamy, G.Hariharan

Abstract:

In this paper, we present a framework to determine Haar solutions of Bratu-type equations that are widely applicable in fuel ignition of the combustion theory and heat transfer. The method is proposed by applying Haar series for the highest derivatives and integrate the series. Several examples are given to confirm the efficiency and the accuracy of the proposed algorithm. The results show that the proposed way is quite reasonable when compared to exact solution.

Keywords: Haar wavelet method, Bratu's problem, boundary value problems, initial value problems, adomain decomposition method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2946
725 Streamwise Vorticity in the Wake of a Sliding Bubble

Authors: R. O’Reilly Meehan, D. B. Murray

Abstract:

In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.

Keywords: Bubbly flow, particle image velocimetry, two-phase flow, wake structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
724 Predicting Residence Time of Pollutants in Transient Storage Zones of Rivers by Genetic Programming

Authors: Rajeev R. Sahay

Abstract:

Rivers have transient storage or dead zones where injected pollutants or solutes are entrapped for considerable period of time, known as residence time, before being released into the main flowing zones of rivers. In this study, a new empirical expression for residence time, implementing genetic programming on published dispersion data, has been derived. The proposed expression uses few hydraulic and geometric characteristics of rivers which are normally known to the authorities. When compared with some reported expressions, based on various statistical indices, it can be concluded that the proposed expression predicts the residence time of pollutants in natural rivers more accurately.

Keywords: Parameter estimation, pollutant transport, residence time, rivers, transient storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
723 Take Me to the Bus Stop: AR Based Assistance System for Public Transit Users

Authors: Naoki Kanatani, Masaki Ito, Takao Kawamura, Kazunori Sugahara

Abstract:

Route bus system is the fundamental public transportation system and has an important role in every province. To improve the usability of it greatly, we develop an AR application for "Bus- Net". The Bus-Net system is the shortest path planning system. Bus-Net supports bus users to make a plan to change buses by providing them with information about the direction. However, with Bus-Net, these information are provided in text-base. It is difficult to understand them for the person who does not know the place. We developed the AR application for Bus-Net. It supports the action of a bus user in an innovative way by putting information on a camera picture and leading the way to a bus stop. The application also inform the user the correct bus to get, the direction the bus takes and the fare, which ease many anxieties and worries people tend to feel when they take buses.

Keywords: AR, navigation, Bus-Net, transport

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
722 The Influence of the Fin Set-up to the Cooling Output of the Floor Heating Convector

Authors: F. Lemfeld, K. Frana

Abstract:

This article deals with the numerical simulation of the floor heating convector in 3D. Presented convector can operate in two modes – cooling mode and heating mode. This initial numerical simulation is focused on cooling mode of the convector. Models with different temperature of the fins are compared and three various shapes of the fins are examined as well. The objective of the work is to predict air flow and heat transfer inside convector for further optimalization of these devices. For the numerical simulation was used commercial software Ansys Fluent.

Keywords: Cooling output, floor heating convector, numericalsimulation, optimalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
721 Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet

Authors: N. Bachok, N. L. Aleng, N. M. Arifin, A. Ishak, N. Senu

Abstract:

The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter S, Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It was found that the reduced Nusselt number is decreasing function of each dimensionless number.

Keywords: Boundary layer, Nanofluid, Shrinking sheet, Brownian motion, Thermophoresis, Similarity solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2777
720 Direct Numerical Simulation of Oxygen Transfer at the Air-Water Interface in a Convective Flow Environment and Comparison to Experiments

Authors: B. Kubrak J. Wissink H. Herlina

Abstract:

Two-dimensional Direct Numerical Simulation (DNS) of high Schmidt number mass transfer in a convective flow environment (Rayleigh-B'enard) is carried out and results are compared to experimental data. A fourth-order accurate WENO-scheme has been used for scalar transport in order to aim for a high accuracy in areas of high concentration gradients. It was found that the typical spatial distance between downward plumes of cold high concentration water and the eddy size are in good agreement with experiments using a combined PIV-LIF technique for simultaneous and spatially synoptic measurements of 2D velocity and concentration fields.

Keywords: Air-Water Interface, DNS, Gas Transfer, LIF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
719 Public Transport: Punctuality Index for Bus Operation

Authors: Noorfakhriah Yaakub, Madzlan Napiah

Abstract:

Public bus service plays a significant role in our society as people movers and to facilitate travels within towns and districts. The quality of service of public bus is always being regarded as poor, or rather, underestimated as second class means of transportation. Reliability of service, or the ability to deliver service as planned, is one key element in perceiving the quality of bus service and the punctuality index is one of the performance parameters in determining the service reliability. This study concentrates on evaluating the reliability performance of bus operation using punctuality index assessment. A week data for each of six city bus routes is recorded using the on-board methodology to calculate the punctuality index for city bus service in Kota Bharu. The results revealed that the punctuality index for the whole city bus network is 94.25% (LOS B).

Keywords: Punctuality Index, Reliability Performance, Service Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3823
718 Harmonic Comparison between Fluorescent and WOLED (White Organic LED) Lamps

Authors: Hari Maghfiroh, Fadhila Tresna Nugraha, Harry Prabowo

Abstract:

Fluorescent and WOLED are widely used because it consumes less energy. However, both lamps cause a harmonics because it has semiconductors components. Harmonic is a distorted sinusoidal electric wave and cause excess heat. This study compares the amount of harmonics generated by both lamps. The test shows that both lamps have THDv(Total Harmonics Distortion of Voltage) almost the same with average 2.5% while the average of WOLED's THDi(Total Harmonics Distortion of Current) is lower than fluorescent has. The average WOLED's THDi is 29.10 % and fluorescent's 'THDi is 87. 23 %.

Keywords: Fluorescent, harmonic, power factor, WOLED

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
717 Analysis for MHD Flow of a Maxwell Fluid past a Vertical Stretching Sheet in the Presence of Thermophoresis and Chemical Reaction

Authors: Noor Fadiya Mohd Noor

Abstract:

The hydromagnetic flow of a Maxwell fluid past a vertical stretching sheet with thermophoresis is considered. The impact of chemical reaction species to the flow is analyzed for the first time by using the homotopy analysis method (HAM). The h-curves for the flow boundary layer equations are presented graphically. Several values of wall skin friction, heat and mass transfer are obtained and discussed.

Keywords: homotopy, MHD, thermophoresis, chemical reaction, Maxwell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
716 The Experimental and Numerical Analysis of the Joining Processes for Air Conditioning Systems

Authors: M.St. Węglowski, D. Miara, S. Błacha, J. Dworak, J. Rykała, K. Kwieciński, J. Pikuła, G. Ziobro, A. Szafron, P. Zimierska-Nowak, M. Richert, P. Noga

Abstract:

In the paper the results of welding of car’s air-conditioning elements are presented. These systems based on, mainly, the environmental unfriendly refrigerants. Thus, the producers of cars will have to stop using traditional refrigerant and to change it to carbon dioxide (R744). This refrigerant is environmental friendly. However, it should be noted that the air condition system working with R744 refrigerant operates at high temperature (up to 150 °C) and high pressure (up to 130 bar). These two parameters are much higher than for other refrigerants. Thus new materials, design as well as joining technologies are strongly needed for these systems. AISI 304 and 316L steels as well as aluminium alloys 5xxx are ranked among the prospective materials. As a joining process laser welding, plasma welding, electron beam welding as well as high rotary friction welding can be applied. In the study, the metallographic examination based on light microscopy as well as SEM was applied to estimate the quality of welded joints. The analysis of welding was supported by numerical modelling based on Sysweld software. The results indicated that using laser, plasma and electron beam welding, it is possible to obtain proper quality of welds in stainless steel. Moreover, high rotary friction welding allows to guarantee the metallic continuity in the aluminium welded area. The metallographic examination revealed that the grain growth in the heat affected zone (HAZ) in laser and electron beam welded joints were not observed. It is due to low heat input and short welding time. The grain growth and subgrains can be observed at room temperature when the solidification mode is austenitic. This caused low microstructural changes during solidification. The columnar grain structure was found in the weld metal. Meanwhile, the equiaxed grains were detected in the interface. The numerical modelling of laser welding process allowed to estimate the temperature profile in the welded joint as well as predicts the dimensions of welds. The agreement between FEM analysis and experimental data was achieved.  

Keywords: Car’s air–conditioning, microstructure, numerical modelling, welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
715 Analysis of Conduction-Radiation Heat Transfer in a Planar Medium: Application of the Lattice Boltzmann Method

Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri

Abstract:

In this paper, the 1-D conduction-radiation problem is solved by the lattice Boltzmann method. The effects of various parameters such as the scattering albedo, the conduction–radiation parameter and the wall emissivity are studied. In order to check on the accuracy of the numerical technique employed for the solution of the considered problem, the present numerical code was validated with the published study. The found results are in good agreement with those published

Keywords: Conduction, lattice Boltzmann method, planar medium, radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
714 Using Daily Light Integral Concept to Construct the Ecological Plant Design Strategy of Urban Landscape

Authors: Chuang-Hung Lin, Cheng-Yuan Hsu, Jia-Yan Lin

Abstract:

It is an indispensible strategy to adopt greenery approach on architectural bases so as to improve ecological habitats, decrease heat-island effect, purify air quality, and relieve surface runoff as well as noise pollution, all of which are done in an attempt to achieve sustainable environment. How we can do with plant design to attain the best visual quality and ideal carbon dioxide fixation depends on whether or not we can appropriately make use of greenery according to the nature of architectural bases. To achieve the goal, it is a need that architects and landscape architects should be provided with sufficient local references. Current greenery studies focus mainly on the heat-island effect of urban with large scale. Most of the architects still rely on people with years of expertise regarding the adoption and disposition of plantation in connection with microclimate scale. Therefore, environmental design, which integrates science and aesthetics, requires fundamental research on landscape environment technology divided from building environment technology. By doing so, we can create mutual benefits between green building and the environment. This issue is extremely important for the greening design of the bases of green buildings in cities and various open spaces. The purpose of this study is to establish plant selection and allocation strategies under different building sunshade levels. Initially, with the shading of sunshine on the greening bases as the starting point, the effects of the shades produced by different building types on the greening strategies were analyzed. Then, by measuring the PAR (photosynthetic active radiation), the relative DLI (daily light integral) was calculated, while the DLI Map was established in order to evaluate the effects of the building shading on the established environmental greening, thereby serving as a reference for plant selection and allocation. The discussion results were to be applied in the evaluation of environment greening of greening buildings and establish the “right plant, right place” design strategy of multi-level ecological greening for application in urban design and landscape design development, as well as the greening criteria to feedback to the eco-city greening buildings.

Keywords: Daily light integral, plant design, urban open space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
713 Numerical Study of Flow around Flat Tube between Parallel Walls

Authors: Hamidreza Bayat, Arash Mirabdolah Lavasani, Meysam Bolhasani, Sajad Moosavi

Abstract:

Flow around a flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube and it is varied in range of 100 to 300. Equations are solved by using finite volume method and results are presented in form of drag and lift coefficient. Results show that drag coefficient of flat tube is up to 66% lower than circular tube with equivalent diameter. In addition, by increasing l/D from 1 to 2, the drag coefficient of flat tube is decreased about 14-27%.

Keywords: Laminar flow, flat-tube, drag coefficient, cross-flow, heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
712 The Design of PIP Controller for a Thermal System with Large Time Delay

Authors: Seiyed Hamid Zareh, Atabak Sarrafan, Kambiz Ghaemi Osgouie

Abstract:

This paper will first describe predictor controllers when the proportional-integral-derivative (PID) controllers are inactive for procedures that have large delay time (LDT) in transfer stage. Therefore in those states, the predictor controllers are better than the PID controllers, then compares three types of predictor controllers. The value of these controller-s parameters are obtained by trial and error method, so here an effort has been made to obtain these parameters by Ziegler-Nichols method. Eventually in this paper Ziegler-Nichols method has been described and finally, a PIP controller has been designed for a thermal system, which circulates hot air to keep the temperature of a chamber constant.

Keywords: Proportional-integral-predictive controller, Transferfunction, Delay time, Transport-lag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
711 Analysis of Some Solutions to Protect the Tombolo of GIENS

Authors: Yves Lacroix, Van Van Than, Didier Leandri, Pierre Liardet

Abstract:

The tombolo of Giens is located in the town of Hyères (France). We recall the history of coastal erosion, and prominent factors affecting the evolution of the western tombolo. We then discuss the possibility of stabilizing the western tombolo. Our argumentation relies on a coupled model integrating swells, currents, water levels and sediment transport. We present the conclusions of the simulations of various scenarios, including pre-existing propositions from coastal engineering offices. We conclude that beach replenishment seems to be necessary but not sufficient for the stabilization of the beach. Breakwaters reveal effective particularly in the most exposed northern area. Some solutions fulfill conditions so as to be elected as satisfactory. We give a comparative analysis of the efficiency of 14 alternatives for the protection of the tombolo.

Keywords: Breakwaters, coupled models, replenishment, silting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
710 Multi-Criteria Nautical Ports Capacity and Services Planning

Authors: N. Perko, N. Kavran, M. Bukljaš, I. Berbić

Abstract:

This paper is a result of implemented research on proposed introduced methodology for nautical ports capacity planning by introducing a multi-criteria approach of defined criteria in the Adriatic Sea region. The purpose was analyzing the determinants - characteristics of infrastructure and services of nautical ports capacity allocated, especially nowadays due to COVID-19 pandemic, as crucial for successful operation of nautical ports. Giving the importance of the defined priorities for short-term and long-term planning is essential not only in terms of the development of nautical tourism, but also in terms of developing the maritime system, but unfortunately this is not always carried out. Evaluation of the use of resources should follow from a detailed analysis of all aspects of resources bearing in mind that nautical tourism used resources in a sustainable manner and generates effects in the tourism and maritime sectors. Consequently, identified multiplier effect of nautical tourism, which should be defined and quantified in detail, should be one of the major competitive products on the Croatian Adriatic and the Mediterranean. Research of nautical tourism is necessary to quantify the effects and required planning system development. In the future, the greatest threat to long-term sustainable development of nautical tourism can be its further uncontrolled or unlimited and undirected development, especially under pressure markedly higher demand than supply for new moorings in the Mediterranean. Results of this implemented research are applicable to nautical ports management and decision makers of maritime transport system development. This paper will present implemented research and obtained result - developed methodology for nautical port capacity planning - Port Capacity Planning Multi-criteria decision-making. A proposed methodological approach of multi-criteria capacity planning includes four criteria (spatial - transport, cost - infrastructure, ecological and organizational criteria, and additional services). The importance of the criteria and sub-criteria is evaluated and carried out the basis for a sensitivity analysis of the importance of the criteria and sub-criteria. Based on the analysis of the identified and quantified importance of certain criteria and sub-criteria as well as sensitivity analysis and analysis of changes of the quantified importance scientific and applicable results will be presented. These obtained results have practical applicability by management of nautical ports in the planning of increasing capacity and further development and for the adaptation of existing nautical ports. The obtained research is applicable and replicable in other seas and results are especially important and useful in this COVID-19 pandemic challenging maritime development framework.

Keywords: Adriatic Sea, capacity, infrastructures, maritime system, methodology, nautical ports, nautical tourism, service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 403
709 Pinch Analysis of Triple Pressure Reheat Supercritical Combined Cycle Power Plant

Authors: Sui Yan Wong, Keat Ping Yeoh, Chi Wai Hui

Abstract:

In this study, supercritical steam is introduced to Combined Cycle Power Plant (CCPP) in an attempt to further optimize energy recovery. Subcritical steam is commonly used in the CCPP, operating at maximum pressures around 150-160 bar. Supercritical steam is an alternative to increase heat recovery during vaporization period of water. The idea of improvement using supercritical steam is further examined with the use of exergy, pinch analysis and Aspen Plus simulation.

Keywords: Exergy, pinch, combined cycle power plant, CCPP, supercritical steam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 486