Search results for: network centrality
1783 Adaptive Sampling Algorithm for ANN-based Performance Modeling of Nano-scale CMOS Inverter
Authors: Dipankar Dhabak, Soumya Pandit
Abstract:
This paper presents an adaptive technique for generation of data required for construction of artificial neural network-based performance model of nano-scale CMOS inverter circuit. The training data are generated from the samples through SPICE simulation. The proposed algorithm has been compared to standard progressive sampling algorithms like arithmetic sampling and geometric sampling. The advantages of the present approach over the others have been demonstrated. The ANN predicted results have been compared with actual SPICE results. A very good accuracy has been obtained.Keywords: CMOS Inverter, Nano-scale, Adaptive Sampling, ArtificialNeural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16081782 Pose Normalization Network for Object Classification
Authors: Bingquan Shen
Abstract:
Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.Keywords: Convolutional neural networks, object classification, pose normalization, viewpoint invariant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11181781 Access Control System: Monitoring Tool for Fiber to the Home Passive Optical Network
Authors: Aswir Premadi, Mohammad Syuhaimi Ab. Rahman, Mohamad Najib Moh. Saupe, KasmiranJumari
Abstract:
An optical fault monitoring in FTTH-PON using ACS is demonstrated. This device can achieve real-time fault monitoring for protection feeder fiber. In addition, the ACS can distinguish optical fiber fault from the transmission services to other customers in the FTTH-PON. It is essential to use a wavelength different from the triple-play services operating wavelengths for failure detection. ACS is using the operating wavelength 1625 nm for monitoring and failure detection control. Our solution works on a standard local area network (LAN) using a specially designed hardware interfaced with a microcontroller integrated Ethernet.Keywords: ACS, monitoring tool, FTTH-PON.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26981780 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered as a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.
Keywords: Text detection, CNN, PZM, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601779 Comparative Analysis of Transient-Fault Tolerant Schemes for Network on Chips
Authors: Muhammad Ali, Awais Adnan
Abstract:
Network on a chip (NoC) has been proposed as a viable solution to counter the inefficiency of buses in the current VLSI on-chip interconnects. However, as the silicon chip accommodates more transistors, the probability of transient faults is increasing, making fault tolerance a key concern in scaling chips. In packet based communication on a chip, transient failures can corrupt the data packet and hence, undermine the accuracy of data communication. In this paper, we present a comparative analysis of transient fault tolerant techniques including end-to-end, node-by-node, and stochastic communication based on flooding principle.
Keywords: NoC, fault-tolerance, transient faults.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13621778 A Web Services based Architecture for NGN Services Delivery
Authors: K. Rezabeigi, A. Vafaei, N. Movahhedinia
Abstract:
The notion of Next Generation Network (NGN) is based on the Network Convergence concept which refers to integration of services (such as IT and communication services) over IP layer. As the most popular implementation of Service Oriented Architecture (SOA), Web Services technology is known to be the base for service integration. In this paper, we present a platform to deliver communication services as web services. We also implement a sample service to show the simplicity of making composite web and communication services using this platform. A Service Logic Execution Environment (SLEE) is used to implement the communication services. The proposed architecture is in agreement with Service Oriented Architecture (SOA) and also can be integrated to an Enterprise Service Bus to make a base for NGN Service Delivery Platform (SDP).Keywords: Communication Services, SOA, Web Services, NGN, SLEE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18171777 Non-destructive Watermelon Ripeness Determination Using Image Processing and Artificial Neural Network (ANN)
Authors: Shah Rizam M. S. B., Farah Yasmin A.R., Ahmad Ihsan M. Y., Shazana K.
Abstract:
Agriculture products are being more demanding in market today. To increase its productivity, automation to produce these products will be very helpful. The purpose of this work is to measure and determine the ripeness and quality of watermelon. The textures on watermelon skin will be captured using digital camera. These images will be filtered using image processing technique. All these information gathered will be trained using ANN to determine the watermelon ripeness accuracy. Initial results showed that the best model has produced percentage accuracy of 86.51%, when measured at 32 hidden units with a balanced percentage rate of training dataset.Keywords: Artificial Neural Network (ANN), Digital ImageProcessing, YCbCr Colour Space, Watermelon Ripeness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29511776 Prediction of Slump in Concrete using Artificial Neural Networks
Authors: V. Agrawal, A. Sharma
Abstract:
High Strength Concrete (HSC) is defined as concrete that meets special combination of performance and uniformity requirements that cannot be achieved routinely using conventional constituents and normal mixing, placing, and curing procedures. It is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed to show possible applicability of Neural Networks (NN) to predict the slump in High Strength Concrete (HSC). Neural Network models is constructed, trained and tested using the available test data of 349 different concrete mix designs of High Strength Concrete (HSC) gathered from a particular Ready Mix Concrete (RMC) batching plant. The most versatile Neural Network model is selected to predict the slump in concrete. The data used in the Neural Network models are arranged in a format of eight input parameters that cover the Cement, Fly Ash, Sand, Coarse Aggregate (10 mm), Coarse Aggregate (20 mm), Water, Super-Plasticizer and Water/Binder ratio. Furthermore, to test the accuracy for predicting slump in concrete, the final selected model is further used to test the data of 40 different concrete mix designs of High Strength Concrete (HSC) taken from the other batching plant. The results are compared on the basis of error function (or performance function).Keywords: Artificial Neural Networks, Concrete, prediction ofslump, slump in concrete
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35951775 Applications of Prediction and Identification Using Adaptive DCMAC Neural Networks
Authors: Yu-Lin Liao, Ya-Fu Peng
Abstract:
An adaptive dynamic cerebellar model articulation controller (DCMAC) neural network used for solving the prediction and identification problem is proposed in this paper. The proposed DCMAC has superior capability to the conventional cerebellar model articulation controller (CMAC) neural network in efficient learning mechanism, guaranteed system stability and dynamic response. The recurrent network is embedded in the DCMAC by adding feedback connections in the association memory space so that the DCMAC captures the dynamic response, where the feedback units act as memory elements. The dynamic gradient descent method is adopted to adjust DCMAC parameters on-line. Moreover, the analytical method based on a Lyapunov function is proposed to determine the learning-rates of DCMAC so that the variable optimal learning-rates are derived to achieve most rapid convergence of identifying error. Finally, the adaptive DCMAC is applied in two computer simulations. Simulation results show that accurate identifying response and superior dynamic performance can be obtained because of the powerful on-line learning capability of the proposed DCMAC.Keywords: adaptive, cerebellar model articulation controller, CMAC, prediction, identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14001774 Unknown Environment Representation for Mobile Robot Using Spiking Neural Networks
Authors: Amir Reza Saffari Azar Alamdari
Abstract:
In this paper, a model of self-organizing spiking neural networks is introduced and applied to mobile robot environment representation and path planning problem. A network of spike-response-model neurons with a recurrent architecture is used to create robot-s internal representation from surrounding environment. The overall activity of network simulates a self-organizing system with unsupervised learning. A modified A* algorithm is used to find the best path using this internal representation between starting and goal points. This method can be used with good performance for both known and unknown environments.
Keywords: Mobile Robot, Path Planning, Self-organization, Spiking Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14911773 Estimation of Broadcast Probability in Wireless Adhoc Networks
Authors: Bharadwaj Kadiyala, Sunitha V
Abstract:
Most routing protocols (DSR, AODV etc.) that have been designed for wireless adhoc networks incorporate the broadcasting operation in their route discovery scheme. Probabilistic broadcasting techniques have been developed to optimize the broadcast operation which is otherwise very expensive in terms of the redundancy and the traffic it generates. In this paper we have explored percolation theory to gain a different perspective on probabilistic broadcasting schemes which have been actively researched in the recent years. This theory has helped us estimate the value of broadcast probability in a wireless adhoc network as a function of the size of the network. We also show that, operating at those optimal values of broadcast probability there is at least 25-30% reduction in packet regeneration during successful broadcasting.Keywords: Crossover length, Percolation, Probabilistic broadcast, Wireless adhoc networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15901772 Succesful Companies- Immunization to Global Economic Crisis: Understanding Strategic Role of NGOs
Authors: Suleyman Gokhan Gunay, Gulsevim Yumuk Gunay
Abstract:
One of the most important secrets of succesful companies is the fact that cooperation with NGOs will create a good reputation for them so that they can be immunized to economic crisis. The performance of the most admired companies in the world based on the ratings of Forbes and Fortune show us that most of these firms also have close relationships with their NGOs. Today, if companies do something wrong this information spreads very quickly to do the society. If people do not like the activities of a company, it can find itself in public relations nightmare that can threaten its repuation. Since the cost of communication has dropped dramatically due to the vast use of internet, the increase in communication among stakeholders via internet makes companies more visible. These multiple and interdependent interactions among the network of stakeholders is called as the network relationships. NGOs play the role of catalyst among the stakeholders of a firm to enhance the awareness. Succesful firms are aware of this fact that NGOs have a central role in today-s business world. Firms are also aware of the fact that they can enhance their corporate reputation via cooperation with the NGOs. This fact will be illustrated in this paper by examining some of the actions of the most succesful companies in terms of their cooperations with the NGOs.
Keywords: Network relationships, cooperative behaviors, corporate reputation, immunization to crisis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671771 Neural Networks-Based Acoustic Annoyance Model for Laptop Hard Disk Drive
Authors: Yi Chao Ma, Cheng Siong Chin, Wai Lok Woo
Abstract:
Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and threedimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who are the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system, which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.Keywords: Hard disk drive noise, jury test, neural network model, psychoacoustic annoyance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15321770 Analyzing the Impact of DCF and PCF on WLAN Network Standards 802.11a, 802.11b and 802.11g
Authors: Amandeep Singh Dhaliwal
Abstract:
Networking solutions, particularly wireless local area networks have revolutionized the technological advancement. Wireless Local Area Networks (WLANs) have gained a lot of popularity as they provide location-independent network access between computing devices. There are a number of access methods used in Wireless Networks among which DCF and PCF are the fundamental access methods. This paper emphasizes on the impact of DCF and PCF access mechanisms on the performance of the IEEE 802.11a, 802.11b and 802.11g standards. On the basis of various parameters viz. throughput, delay, load etc performance is evaluated between these three standards using above mentioned access mechanisms. Analysis revealed a superior throughput performance with low delays for 802.11g standard as compared to 802.11 a/b standard using both DCF and PCF access methods.
Keywords: DCF, IEEE, PCF, WLAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53731769 Enhancement of Capacity in a MC-CDMA based Cognitive Radio Network Using Non-Cooperative Game Model
Authors: Kalyani J. Kulkarni, Bharat S. Chaudhari
Abstract:
This paper addresses the issue of resource allocation in the emerging cognitive technology. Focusing the Quality of Service (QoS) of Primary Users (PU), a novel method is proposed for the resource allocation of Secondary Users (SU). In this paper, we propose the unique Utility Function in the game theoretic model of Cognitive Radio which can be maximized to increase the capacity of the Cognitive Radio Network (CRN) and to minimize the interference scenario. Utility function is formulated to cater the need of PUs by observing Signal to Noise ratio. Existence of Nash Equilibrium for the postulated game is established.Keywords: Cognitive Networks, Game Theory, Nash Equilibrium, Resource Allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17471768 Artificial Neural Network based Web Application Firewall for SQL Injection
Authors: Asaad Moosa
Abstract:
In recent years with the rapid development of Internet and the Web, more and more web applications have been deployed in many fields and organizations such as finance, military, and government. Together with that, hackers have found more subtle ways to attack web applications. According to international statistics, SQL Injection is one of the most popular vulnerabilities of web applications. The consequences of this type of attacks are quite dangerous, such as sensitive information could be stolen or authentication systems might be by-passed. To mitigate the situation, several techniques have been adopted. In this research, a security solution is proposed using Artificial Neural Network to protect web applications against this type of attacks. The solution has been experimented on sample datasets and has given promising result. The solution has also been developed in a prototypic web application firewall called ANNbWAF.
Keywords: Artificial Neural Networks ANN, SQL Injection, Web Application Firewall WAF, Web Application Scanner WAS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56601767 Determining Fire Resistance of Wooden Construction Elements through Experimental Studies and Artificial Neural Network
Authors: Sakir Tasdemir, Mustafa Altin, Gamze Fahriye Pehlivan, Ismail Saritas, Sadiye Didem Boztepe Erkis, Selma Tasdemir
Abstract:
Artificial intelligence applications are commonly used in industry in many fields in parallel with the developments in the computer technology. In this study, a fire room was prepared for the resistance of wooden construction elements and with the mechanism here, the experiments of polished materials were carried out. By utilizing from the experimental data, an artificial neural network (ANN) was modelled in order to evaluate the final cross sections of the wooden samples remaining from the fire. In modelling, experimental data obtained from the fire room were used. In the developed system, the first weight of samples (ws-gr), preliminary cross-section (pcs-mm2), fire time (ft-minute), and fire temperature (t-oC) as input parameters and final cross-section (fcs-mm2) as output parameter were taken. When the results obtained from ANN and experimental data are compared after making statistical analyses, the data of two groups are determined to be coherent and seen to have no meaning difference between them. As a result, it is seen that ANN can be safely used in determining cross sections of wooden materials after fire and it prevents many disadvantages.
Keywords: Artificial neural network, final cross-section, fire retardant polishes, fire safety, wood resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19581766 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds
Authors: Samit Ari, Goutam Saha
Abstract:
Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20691765 Using Artificial Neural Network to Predict Collisions on Horizontal Tangents of 3D Two-Lane Highways
Authors: Omer F. Cansiz, Said M. Easa
Abstract:
The purpose of this study is mainly to predict collision frequency on the horizontal tangents combined with vertical curves using artificial neural network methods. The proposed ANN models are compared with existing regression models. First, the variables that affect collision frequency were investigated. It was found that only the annual average daily traffic, section length, access density, the rate of vertical curvature, smaller curve radius before and after the tangent were statistically significant according to related combinations. Second, three statistical models (negative binomial, zero inflated Poisson and zero inflated negative binomial) were developed using the significant variables for three alignment combinations. Third, ANN models are developed by applying the same variables for each combination. The results clearly show that the ANN models have the lowest mean square error value than those of the statistical models. Similarly, the AIC values of the ANN models are smaller to those of the regression models for all the combinations. Consequently, the ANN models have better statistical performances than statistical models for estimating collision frequency. The ANN models presented in this paper are recommended for evaluating the safety impacts 3D alignment elements on horizontal tangents.Keywords: Collision frequency, horizontal tangent, 3D two-lane highway, negative binomial, zero inflated Poisson, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331764 Internal and External Influences on the Firm Objective
Authors: A. Briseno, A, Zorrilla
Abstract:
Firms are increasingly responding to social and environmental claims from society. Practices oriented to attend issues such as poverty, work equality, or renewable energy, are being implemented more frequently by firms to address impacts on sustainability. However, questions remain on how the responses of firms vary across industries and regions between the social and the economic objectives. Using concepts from organizational theory and social network theory, this paper aims to create a theoretical framework that explains the internal and external influences that make a firm establish its objective. The framework explains why firms might have a different objective orientation in terms of its economic and social prioritization.Keywords: Organizational identity, social network analysis, firm objective, value maximization, social responsibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9261763 Artificial Neural Network Approach for Short Term Load Forecasting for Illam Region
Authors: Mohsen Hayati, Yazdan Shirvany
Abstract:
In this paper, the application of neural networks to study the design of short-term load forecasting (STLF) Systems for Illam state located in west of Iran was explored. One important architecture of neural networks named Multi-Layer Perceptron (MLP) to model STLF systems was used. Our study based on MLP was trained and tested using three years (2004-2006) data. The results show that MLP network has the minimum forecasting error and can be considered as a good method to model the STLF systems.Keywords: Artificial neural networks, Forecasting, Multi-layer perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27741762 Development and Range Testing of a LoRaWAN System in an Urban Environment
Authors: N. R. Harris, J. Curry
Abstract:
This paper describes the construction and operation of an experimental LoRaWAN network surrounding the University of Southampton in the United Kingdom. Following successful installation, an experimental node design is built and characterised, with particular emphasis on radio range. Several configurations are investigated, including different data rates, and varying heights of node. It is concluded that although range can be great (over 8 km in this case), environmental topology is critical. However, shorter range implementations, up to about 2 km in an urban environment, are relatively insensitive although care is still needed. The example node and the relatively simple base station reported demonstrate that LoraWan can be a very low cost and practical solution to Internet of Things type applications for distributed monitoring systems with sensors spread over distances of several km.Keywords: Wireless sensor network, LoRa, internet of things, propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15221761 STLF Based on Optimized Neural Network Using PSO
Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi
Abstract:
The quality of short term load forecasting can improve the efficiency of planning and operation of electric utilities. Artificial Neural Networks (ANNs) are employed for nonlinear short term load forecasting owing to their powerful nonlinear mapping capabilities. At present, there is no systematic methodology for optimal design and training of an artificial neural network. One has often to resort to the trial and error approach. This paper describes the process of developing three layer feed-forward large neural networks for short-term load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. Particle Swarm Optimization (PSO) is used to develop the optimum large neural network structure and connecting weights for one-day ahead electric load forecasting problem. PSO is a novel random optimization method based on swarm intelligence, which has more powerful ability of global optimization. Employing PSO algorithms on the design and training of ANNs allows the ANN architecture and parameters to be easily optimized. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. The experimental results show that the proposed method optimized by PSO can quicken the learning speed of the network and improve the forecasting precision compared with the conventional Back Propagation (BP) method. Moreover, it is not only simple to calculate, but also practical and effective. Also, it provides a greater degree of accuracy in many cases and gives lower percent errors all the time for STLF problem compared to BP method. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.
Keywords: Large Neural Network, Short-Term Load Forecasting, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22231760 Application of Cite Space Software in Visual Analysis of Land Use Coupling Research Progress
Authors: Jing Zhou, Weiqun Su, Naying Luo, Min Shang, Li Wu
Abstract:
The coupling of land use system in geographical research is mainly the coupling of pattern and process, which is essentially the human-land coupling, and is an important part of the research and discussion of human-land relationship. Based on the Web of Science database, the paper titles, authors, keywords, and references from 1997-2020 related to land use coupling were used as data sources to explore the research progress of land use coupling. Cite Space bibliometric tool was used for co-occurrence analysis of the issuing country, issuing institution, co-cited author, disciplinary institution, and keywords. The results are shown as follows: (1) From 1997 to 2020, the United States, China, and Germany rank the top, with more than 250 published papers. Although China ranks second in the number of published papers on foreign literature, it has less centrality and less influence. (2) The top 10 institutions (universities) in the number of published papers (more than 300 articles) are mainly from the United States and China, and the University of Chinese Academy of Sciences has the highest output of papers. At the same time, the phenomenon of multi-institutional cooperation has increased in the field of land use coupling research. (3) From 1997 to 2020, land sensitivity research and the impact of climate change on land use patterns are the main directions of land use coupling research. However, in the past five years, scholars have mainly focused on the coupling research methods of land use and the coupling relationship between ecological and environmental factors and land use.
Keywords: Land use coupling, cite space, knowledge graph, visual analysis, research progress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3811759 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches
Authors: H. Bonakdari, I. Ebtehaj
Abstract:
The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.
Keywords: Adaptive neuro-fuzzy inference system, ANFIS, artificial neural network, ANN, bridge pier, scour depth, nonlinear regression, NLR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9281758 Experimental and Theoretical Investigation of Rough Rice Drying in Infrared-assisted Hot Air Dryer Using Artificial Neural Network
Authors: D. Zare, H. Naderi, A. A. Jafari
Abstract:
Drying characteristics of rough rice (variety of lenjan) with an initial moisture content of 25% dry basis (db) was studied in a hot air dryer assisted by infrared heating. Three arrival air temperatures (30, 40 and 500C) and four infrared radiation intensities (0, 0.2 , 0.4 and 0.6 W/cm2) and three arrival air speeds (0.1, 0.15 and 0.2 m.s-1) were studied. Bending strength of brown rice kernel, percentage of cracked kernels and time of drying were measured and evaluated. The results showed that increasing the drying arrival air temperature and radiation intensity of infrared resulted decrease in drying time. High bending strength and low percentage of cracked kernel was obtained when paddy was dried by hot air assisted infrared dryer. Between this factors and their interactive effect were a significant difference (p<0.01). An intensity level of 0.2 W/cm2 was found to be optimum for radiation drying. Furthermore, in the present study, the application of Artificial Neural Network (ANN) for predicting the moisture content during drying (output parameter for ANN modeling) was investigated. Infrared Radiation intensity, drying air temperature, arrival air speed and drying time were considered as input parameters for the model. An ANN model with two hidden layers with 8 and 14 neurons were selected for studying the influence of transfer functions and training algorithms. The results revealed that a network with the Tansig (hyperbolic tangent sigmoid) transfer function and trainlm (Levenberg-Marquardt) back propagation algorithm made the most accurate predictions for the paddy drying system. Mean square error (MSE) was calculated and found that the random errors were within and acceptable range of ±5% with coefficient of determination (R2) of 99%.
Keywords: Rough rice, Infrared-hot air, Artificial Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18241757 Enhance Performance of Secure Image Using Wavelet Compression
Authors: Goh Han Keat, Azman Samsudin Zurinahni Zainol
Abstract:
The increase popularity of multimedia application especially in image processing places a great demand on efficient data storage and transmission techniques. Network communication such as wireless network can easily be intercepted and cause of confidential information leaked. Unfortunately, conventional compression and encryption methods are too slow; it is impossible to carry out real time secure image processing. In this research, Embedded Zerotree Wavelet (EZW) encoder which specially designs for wavelet compression is examined. With this algorithm, three methods are proposed to reduce the processing time, space and security protection that will be secured enough to protect the data.
Keywords: Embedded Zerotree Wavelet (EZW), Imagecompression, Wavelet encoder, Entropy encoder, Encryption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16701756 Software Maintenance Severity Prediction for Object Oriented Systems
Authors: Parvinder S. Sandhu, Roma Jaswal, Sandeep Khimta, Shailendra Singh
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.Keywords: Neural Network, Software faults, Software Metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15731755 A Competitive Replica Placement Methodology for Ad Hoc Networks
Authors: Samee Ullah Khan, C. Ardil
Abstract:
In this paper, a mathematical model for data object replication in ad hoc networks is formulated. The derived model is general, flexible and adaptable to cater for various applications in ad hoc networks. We propose a game theoretical technique in which players (mobile hosts) continuously compete in a non-cooperative environment to improve data accessibility by replicating data objects. The technique incorporates the access frequency from mobile hosts to each data object, the status of the network connectivity, and communication costs. The proposed technique is extensively evaluated against four well-known ad hoc network replica allocation methods. The experimental results reveal that the proposed approach outperforms the four techniques in both the execution time and solution qualityKeywords: Data replication, auctions, static allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14001754 Delay Preserving Substructures in Wireless Networks Using Edge Difference between a Graph and its Square Graph
Authors: T. N. Janakiraman, J. Janet Lourds Rani
Abstract:
In practice, wireless networks has the property that the signal strength attenuates with respect to the distance from the base station, it could be better if the nodes at two hop away are considered for better quality of service. In this paper, we propose a procedure to identify delay preserving substructures for a given wireless ad-hoc network using a new graph operation G 2 – E (G) = G* (Edge difference of square graph of a given graph and the original graph). This operation helps to analyze some induced substructures, which preserve delay in communication among them. This operation G* on a given graph will induce a graph, in which 1- hop neighbors of any node are at 2-hop distance in the original network. In this paper, we also identify some delay preserving substructures in G*, which are (i) set of all nodes, which are mutually at 2-hop distance in G that will form a clique in G*, (ii) set of nodes which forms an odd cycle C2k+1 in G, will form an odd cycle in G* and the set of nodes which form a even cycle C2k in G that will form two disjoint companion cycles ( of same parity odd/even) of length k in G*, (iii) every path of length 2k+1 or 2k in G will induce two disjoint paths of length k in G*, and (iv) set of nodes in G*, which induces a maximal connected sub graph with radius 1 (which identifies a substructure with radius equal 2 and diameter at most 4 in G). The above delay preserving sub structures will behave as good clusters in the original network.Keywords: Clique, cycles, delay preserving substructures, maximal connected sub graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252