Search results for: feature selection methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5485

Search results for: feature selection methods

4495 The Causation and Solution of Ringing Effect in DCT-based Video Coding

Authors: Yu Yuan, David Feng, Yu-Zhuo Zhong

Abstract:

Ringing effect is one of the most annoying visual artifacts in digital video. It is a significant factor of subjective quality deterioration. However, there is a widely-accepted misunderstanding of its cause. In this paper, we propose a reasonable interpretation of the cause of ringing effect. Based on the interpretation, we suggest further two methods to reduce ringing effect in DCT-based video coding. The methods adaptively adjust quantizers according to video features. Our experiments proved that the methods could efficiently improve subjective quality with acceptable additional computing costs.

Keywords: ringing effect, video coding, subjective quality, DCT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
4494 Corporate Social Responsibility and Corporate Reputation: A Bibliometric Analysis

Authors: Songdi Li, Louise Spry, Tony Woodall

Abstract:

Nowadays, Corporate Social responsibility (CSR) is becoming a buzz word, and more and more academics are putting efforts on CSR studies. It is believed that CSR could influence Corporate Reputation (CR), and they hold a favourable view that CSR leads to a positive CR. To be specific, the CSR related activities in the reputational context have been regarded as ways that associate to excellent financial performance, value creation, etc. Also, it is argued that CSR and CR are two sides of one coin; hence, to some extent, doing CSR is equal to establishing a good reputation. Still, there is no consensus of the CSR-CR relationship in the literature; thus, a systematic literature review is highly in need. This research conducts a systematic literature review with both bibliometric and content analysis. Data are selected from English language sources, and academic journal articles only, then, keyword combinations are applied to identify relevant sources. Data from Scopus and WoS are gathered for bibliometric analysis. Scopus search results were saved in RIS and CSV formats, and Web of Science (WoS) data were saved in TXT format and CSV formats in order to process data in the Bibexcel software for further analysis which later will be visualised by the software VOSviewer. Also, content analysis was applied to analyse the data clusters and the key articles. In terms of the topic of CSR-CR, this literature review with bibliometric analysis has made four achievements. First, this paper has developed a systematic study which quantitatively depicts the knowledge structure of CSR and CR by identifying terms closely related to CSR-CR (such as ‘corporate governance’) and clustering subtopics emerged in co-citation analysis. Second, content analysis is performed to acquire insight on the findings of bibliometric analysis in the discussion section. And it highlights some insightful implications for the future research agenda, for example, a psychological link between CSR-CR is identified from the result; also, emerging economies and qualitative research methods are new elements emerged in the CSR-CR big picture. Third, a multidisciplinary perspective presents through the whole bibliometric analysis mapping and co-word and co-citation analysis; hence, this work builds a structure of interdisciplinary perspective which potentially leads to an integrated conceptual framework in the future. Finally, Scopus and WoS are compared and contrasted in this paper; as a result, Scopus which has more depth and comprehensive data is suggested as a tool for future bibliometric analysis studies. Overall, this paper has fulfilled its initial purposes and contributed to the literature. To the author’s best knowledge, this paper conducted the first literature review of CSR-CR researches that applied both bibliometric analysis and content analysis; therefore, this paper achieves its methodological originality. And this dual approach brings advantages of carrying out a comprehensive and semantic exploration in the area of CSR-CR in a scientific and realistic method. Admittedly, its work might exist subjective bias in terms of search terms selection and paper selection; hence triangulation could reduce the subjective bias to some degree.

Keywords: Corporate social responsibility, corporate reputation, bibliometric analysis, software data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
4493 Survey of Potato Viral Infection Using Das-Elisa Method in Georgia

Authors: Maia Kukhaleishvili, Ekaterine Bulauri, Iveta Megrelishvili, Tamar Shamatava, Tamar Chipashvili

Abstract:

Plant viruses can cause loss of yield and quality in a lot of important crops. Symptoms of pathogens are variable depending on the cultivars and virus strain. Selection of resistant potato varieties would reduce the risk of virus transmission and significant economic impact. Other way to avoid reduced harvest yields is regular potato seed production sampling and testing for viral infection. The aim of this study was to determine the occurrence and distribution of viral diseases according potato cultivars for further selection of virus-free material in Georgia. During the summer 2015- 2016, 5 potato cultivars (Sante, Laura, Jelly, Red Sonia, Anushka) at 5 different farms located in Akhalkalaki were tested for 6 different potato viruses: Potato virus A (PVA), Potato virus M (PVM), Potato virus S (PVS), Potato virus X (PVX), Potato virus Y (PVY) and potato leaf roll virus (PLRV). A serological method, Double Antibody Sandwich-Enzyme linked Immunosorbent Assay (DASELISA) was used at the laboratory to analyze the results. The result showed that PVY (21.4%) and PLRV (19.7%) virus presence in collected samples was relatively high compared to others. Researched potato cultivars except Jelly and Laura were infected by PVY with different concentrations. PLRV was found only in three potato cultivars (Sante, Jelly, Red Sonia) and PVM virus (3.12%) was characterized with low prevalence. PVX, PVA and PVS virus infection was not reported. It would be noted that 7.9% of samples were containing PVY/PLRV mix infection. Based on the results it can be concluded that PVY and PLRV infections are dominant in all research cultivars. Therefore significant yield losses are expected. Systematic, long-term control of potato viral infection, especially seed-potatoes, must be regarded as the most important factor to increase seed productivity.

Keywords: Diseases, infection, potato, virus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
4492 Improving Security by Using Secure Servers Communicating via Internet with Standalone Secure Software

Authors: Carlos Gonzalez

Abstract:

This paper describes the use of the Internet as a feature to enhance the security of our software that is going to be distributed/sold to users potentially all over the world. By placing in a secure server some of the features of the secure software, we increase the security of such software. The communication between the protected software and the secure server is done by a double lock algorithm. This paper also includes an analysis of intruders and describes possible responses to detect threats.

Keywords: Internet, secure software, threats, cryptography process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
4491 Customer Churn Prediction: A Cognitive Approach

Authors: Damith Senanayake, Lakmal Muthugama, Laksheen Mendis, Tiroshan Madushanka

Abstract:

Customer churn prediction is one of the most useful areas of study in customer analytics. Due to the enormous amount of data available for such predictions, machine learning and data mining have been heavily used in this domain. There exist many machine learning algorithms directly applicable for the problem of customer churn prediction, and here, we attempt to experiment on a novel approach by using a cognitive learning based technique in an attempt to improve the results obtained by using a combination of supervised learning methods, with cognitive unsupervised learning methods.

Keywords: Growing Self Organizing Maps, Kernel Methods, Churn Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
4490 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations

Authors: H. D. Ibrahim, H. C. Chinwenyi, H. N. Ude

Abstract:

In this paper, efforts were made to examine and compare the algorithmic iterative solutions of conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax = b, where A is a real n x n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3 x 3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi and Conjugate Gradient methods) respectively. From the results obtained, we discovered that the Conjugate Gradient method converges faster to exact solutions in fewer iterative steps than the two other methods which took much iteration, much time and kept tending to the exact solutions.

Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, Gauss-Seidel, Jacobi, algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474
4489 Driving Behaviors at Intersections (Case Study- Tehran-Zone 3-Region 3)

Authors: A. Mansour Khaki, A. E. Forouhid, S. Hemmati, M. Rahnamay-Naeini

Abstract:

In this article we research on the drivers’ behavior at intersections. Some significant behaviors are chosen and designed a questionnaire which was about 2 pages. In this questionnaire, samples were being asked to answer by checking the box. The answers have been from always to never. This questionnaire related to our selection’s behaviors. Finally it has been resulted that most of aggressive behaviors were being common in them. Also it has been suggested some solutions for each of them.

Keywords: Driver, behavior, intersection, study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
4488 Comparison of Newton Raphson and Gauss Seidel Methods for Power Flow Analysis

Authors: H. Abaali, T. Talbi, R.Skouri

Abstract:

This paper presents a comparative study of the Gauss Seidel and Newton-Raphson polar coordinates methods for power flow analysis. The effectiveness of these methods are evaluated and tested through a different IEEE bus test system on the basis of number of iteration, computational time, tolerance value and convergence.

Keywords: Convergence time, Gauss-Seidel Method, Newton-Raphson Method, number of iteration, power flow analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542
4487 Two Different Computing Methods of the Smith Arithmetic Determinant

Authors: Xing-Jian Li, Shen Qu

Abstract:

The Smith arithmetic determinant is investigated in this paper. By using two different methods, we derive the explicit formula for the Smith arithmetic determinant.

Keywords: Elementary row transformation, Euler function, Matrix decomposition, Smith arithmetic determinant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
4486 Simulation of Organic Matter Variability on a Sugarbeet Field Using the Computer Based Geostatistical Methods

Authors: M. Rüstü Karaman, Tekin Susam, Fatih Er, Servet Yaprak, Osman Karkacıer

Abstract:

Computer based geostatistical methods can offer effective data analysis possibilities for agricultural areas by using vectorial data and their objective informations. These methods will help to detect the spatial changes on different locations of the large agricultural lands, which will lead to effective fertilization for optimal yield with reduced environmental pollution. In this study, topsoil (0-20 cm) and subsoil (20-40 cm) samples were taken from a sugar beet field by 20 x 20 m grids. Plant samples were also collected from the same plots. Some physical and chemical analyses for these samples were made by routine methods. According to derived variation coefficients, topsoil organic matter (OM) distribution was more than subsoil OM distribution. The highest C.V. value of 17.79% was found for topsoil OM. The data were analyzed comparatively according to kriging methods which are also used widely in geostatistic. Several interpolation methods (Ordinary,Simple and Universal) and semivariogram models (Spherical, Exponential and Gaussian) were tested in order to choose the suitable methods. Average standard deviations of values estimated by simple kriging interpolation method were less than average standard deviations (topsoil OM ± 0.48, N ± 0.37, subsoil OM ± 0.18) of measured values. The most suitable interpolation method was simple kriging method and exponantial semivariogram model for topsoil, whereas the best optimal interpolation method was simple kriging method and spherical semivariogram model for subsoil. The results also showed that these computer based geostatistical methods should be tested and calibrated for different experimental conditions and semivariogram models.

Keywords: Geostatistic, kriging, organic matter, sugarbeet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
4485 Analysis of Sonographic Images of Breast

Authors: M. Bastanfard, S. Jafari, B.Jalaeian

Abstract:

Ultrasound images are very useful diagnostic tool to distinguish benignant from malignant masses of the breast. However, there is a considerable overlap between benignancy and malignancy in ultrasonic images which makes it difficult to interpret. In this paper, a new noise removal algorithm was used to improve the images and classification process. The masses are classified by wavelet transform's coefficients, morphological and textural features as a novel feature set for this goal. The Bayesian estimation theory is used to classify the tissues in three classes according to their features.

Keywords: Bayesian estimation theory, breast, ultrasound, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
4484 Interoperable CNC System for Turning Operations

Authors: Yusri Yusof, Stephen Newman, Aydin Nassehi, Keith Case

Abstract:

The changing economic climate has made global manufacturing a growing reality over the last decade, forcing companies from east and west and all over the world to collaborate beyond geographic boundaries in the design, manufacture and assemble of products. The ISO10303 and ISO14649 Standards (STEP and STEP-NC) have been developed to introduce interoperability into manufacturing enterprises so as to meet the challenge of responding to production on demand. This paper describes and illustrates a STEP compliant CAD/CAPP/CAM System for the manufacture of rotational parts on CNC turning centers. The information models to support the proposed system together with the data models defined in the ISO14649 standard used to create the NC programs are also described. A structured view of a STEP compliant CAD/CAPP/CAM system framework supporting the next generation of intelligent CNC controllers for turn/mill component manufacture is provided. Finally a proposed computational environment for a STEP-NC compliant system for turning operations (SCSTO) is described. SCSTO is the experimental part of the research supported by the specification of information models and constructed using a structured methodology and object-oriented methods. SCSTO was developed to generate a Part 21 file based on machining features to support the interactive generation of process plans utilizing feature extraction. A case study component has been developed to prove the concept for using the milling and turning parts of ISO14649 to provide a turn-mill CAD/CAPP/CAM environment.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
4483 Comparison of Phylogenetic Trees of Multiple Protein Sequence Alignment Methods

Authors: Khaddouja Boujenfa, Nadia Essoussi, Mohamed Limam

Abstract:

Multiple sequence alignment is a fundamental part in many bioinformatics applications such as phylogenetic analysis. Many alignment methods have been proposed. Each method gives a different result for the same data set, and consequently generates a different phylogenetic tree. Hence, the chosen alignment method affects the resulting tree. However in the literature, there is no evaluation of multiple alignment methods based on the comparison of their phylogenetic trees. This work evaluates the following eight aligners: ClustalX, T-Coffee, SAGA, MUSCLE, MAFFT, DIALIGN, ProbCons and Align-m, based on their phylogenetic trees (test trees) produced on a given data set. The Neighbor-Joining method is used to estimate trees. Three criteria, namely, the dNNI, the dRF and the Id_Tree are established to test the ability of different alignment methods to produce closer test tree compared to the reference one (true tree). Results show that the method which produces the most accurate alignment gives the nearest test tree to the reference tree. MUSCLE outperforms all aligners with respect to the three criteria and for all datasets, performing particularly better when sequence identities are within 10-20%. It is followed by T-Coffee at lower sequence identity (<10%), Align-m at 20-30% identity, and ClustalX and ProbCons at 30-50% identity. Also, it is noticed that when sequence identities are higher (>30%), trees scores of all methods become similar.

Keywords: Multiple alignment methods, phylogenetic trees, Neighbor-Joining method, Robinson-Foulds distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
4482 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis

Authors: Isao Taguchi, Yasuo Sugai

Abstract:

This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.

Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
4481 Modeling and Simulating of Gas Turbine Cooled Blades

Authors: А. Pashayev, D. Askerov, R. Sadiqov, A. Samedov, C. Ardil

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Modeling, Simulating, Gas Turbine, Cooled Blades.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
4480 Robust Artificial Neural Network Architectures

Authors: A. Schuster

Abstract:

Many artificial intelligence (AI) techniques are inspired by problem-solving strategies found in nature. Robustness is a key feature in many natural systems. This paper studies robustness in artificial neural networks (ANNs) and proposes several novel, nature inspired ANN architectures. The paper includes encouraging results from experimental studies on these networks showing increased robustness.

Keywords: robustness, robust artificial neural networks architectures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
4479 Simulated Annealing Application for Structural Optimization

Authors: Farhad Kolahan, M. Hossein Abolbashari, Samaeddin Mohitzadeh

Abstract:

Several methods are available for weight and shape optimization of structures, among which Evolutionary Structural Optimization (ESO) is one of the most widely used methods. In ESO, however, the optimization criterion is completely case-dependent. Moreover, only the improving solutions are accepted during the search. In this paper a Simulated Annealing (SA) algorithm is used for structural optimization problem. This algorithm differs from other random search methods by accepting non-improving solutions. The implementation of SA algorithm is done through reducing the number of finite element analyses (function evaluations). Computational results show that SA can efficiently and effectively solve such optimization problems within short search time.

Keywords: Simulated annealing, Structural optimization, Compliance, C.V. product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
4478 Comparison of Frequency Estimation Methods for Reflected Signals in Mobile Platforms

Authors: Kathrin Reinhold

Abstract:

Precise frequency estimation methods for pulseshaped echoes are a prerequisite to determine the relative velocity between sensor and reflector. Signal frequencies are analysed using three different methods: Fourier Transform, Chirp ZTransform and the MUSIC algorithm. Simulations of echoes are performed varying both the noise level and the number of reflecting points. The superposition of echoes with a random initial phase is found to influence the precision of frequency estimation severely for FFT and MUSIC. The standard deviation of the frequency using FFT is larger than for MUSIC. However, MUSIC is more noise-sensitive. The distorting effect of superpositions is less pronounced in experimental data.

Keywords: Frequency estimation, pulse-echo-method, superposition, echoes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
4477 Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks

Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz

Abstract:

Small cell deployment in 5G networks is a promising technology to enhance the capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision problem using Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), and propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting policy, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method show better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.

Keywords: Handover, HetNets, interference, MADM, small cells, TOPSIS, weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
4476 Development System for Emotion Detection Based on Brain Signals and Facial Images

Authors: Suprijanto, Linda Sari, Vebi Nadhira , IGN. Merthayasa. Farida I.M

Abstract:

Detection of human emotions has many potential applications. One of application is to quantify attentiveness audience in order evaluate acoustic quality in concern hall. The subjective audio preference that based on from audience is used. To obtain fairness evaluation of acoustic quality, the research proposed system for multimodal emotion detection; one modality based on brain signals that measured using electroencephalogram (EEG) and the second modality is sequences of facial images. In the experiment, an audio signal was customized which consist of normal and disorder sounds. Furthermore, an audio signal was played in order to stimulate positive/negative emotion feedback of volunteers. EEG signal from temporal lobes, i.e. T3 and T4 was used to measured brain response and sequence of facial image was used to monitoring facial expression during volunteer hearing audio signal. On EEG signal, feature was extracted from change information in brain wave, particularly in alpha and beta wave. Feature of facial expression was extracted based on analysis of motion images. We implement an advance optical flow method to detect the most active facial muscle form normal to other emotion expression that represented in vector flow maps. The reduce problem on detection of emotion state, vector flow maps are transformed into compass mapping that represents major directions and velocities of facial movement. The results showed that the power of beta wave is increasing when disorder sound stimulation was given, however for each volunteer was giving different emotion feedback. Based on features derived from facial face images, an optical flow compass mapping was promising to use as additional information to make decision about emotion feedback.

Keywords: Multimodal Emotion Detection, EEG, Facial Image, Optical Flow, compass mapping, Brain Wave

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
4475 Fast Dummy Sequence Insertion Method for PAPR Reduction in WiMAX Systems

Authors: Peerapong Uthansakul, Sakkarin Chaokuntod, Monthippa Uthansakul

Abstract:

In literatures, many researches proposed various methods to reduce PAPR (Peak to Average Power Ratio). Among those, DSI (Dummy Sequence Insertion) is one of the most attractive methods for WiMAX systems because it does not require side information transmitted along with user data. However, the conventional DSI methods find dummy sequence by performing an iterative procedure until achieving PAPR under a desired threshold. This causes a significant delay on finding dummy sequence and also effects to the overall performances in WiMAX systems. In this paper, the new method based on DSI is proposed by finding dummy sequence without the need of iterative procedure. The fast DSI method can reduce PAPR without either delays or required side information. The simulation results confirm that the proposed method is able to carry out PAPR performances as similar to the other methods without any delays. In addition, the simulations of WiMAX system with adaptive modulations are also investigated to realize the use of proposed methods on various fading schemes. The results suggest the WiMAX designers to modify a new Signal to Noise Ratio (SNR) criteria for adaptation.

Keywords: WiMAX, OFDM, PAPR, Dummy SequenceInsertion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
4474 Video Quality Assessment Methods: A Bird’s-Eye View

Authors: P. M. Arun Kumar, S. Chandramathi

Abstract:

The proliferation of multimedia technology and services in today’s world provide ample research scope in the frontiers of visual signal processing. Wide spread usage of video based applications in heterogeneous environment needs viable methods of Video Quality Assessment (VQA). The evaluation of video quality not only depends on high QoS requirements but also emphasis the need of novel term ‘QoE’ (Quality of Experience) that perceive video quality as user centric. This paper discusses two vital video quality assessment methods namely, subjective and objective assessment methods. The evolution of various video quality metrics, their classification models and applications are reviewed in this work. The Mean Opinion Score (MOS) based subjective measurements and algorithm based objective metrics are discussed and their challenges are outlined. Further, this paper explores the recent progress of VQA in emerging technologies such as mobile video and 3D video.

Keywords: 3D-Video, no reference metric, quality of experience, video quality assessment, video quality metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4053
4473 Islamic Education System: Implementation of Curriculum Kuttab Al-Fatih Semarang

Authors: Basyir Yaman, Fades Br. Gultom

Abstract:

The picture and pattern of Islamic education in the Prophet's period in Mecca and Medina is the history of the past that we need to bring back. The Basic Education Institute called Kuttab. Kuttab or Maktab comes from the word kataba which means to write. The popular Kuttab in the Prophet’s period aims to resolve the illiteracy in the Arab community. In Indonesia, this Institution has 25 branches; one of them is located in Semarang (i.e. Kuttab Al-Fatih). Kuttab Al-Fatih as a non-formal institution of Islamic education is reserved for children aged 5-12 years. The independently designed curriculum is a distinctive feature that distinguishes between Kuttab Al-Fatih curriculum and the formal institutional curriculum in Indonesia. The curriculum includes the faith and the Qur’an. Kuttab Al-Fatih has been licensed as a Community Activity Learning Center under the direct supervision and guidance of the National Education Department. Here, we focus to describe the implementation of curriculum Kuttab Al-Fatih Semarang (i.e. faith and al-Qur’an). After that, we determine the relevance between the implementation of the Kuttab Al-Fatih education system with the formal education system in Indonesia. This research uses literature review and field research qualitative methods. We obtained the data from the head of Kuttab Al-Fatih Semarang, vice curriculum, faith coordinator, al-Qur’an coordinator, as well as the guardians of learners and the learners. The result of this research is the relevance of education system in Kuttab Al-Fatih Semarang about education system in Indonesia. Kuttab Al-Fatih Semarang emphasizes character building through a curriculum designed in such a way and combines thematic learning models in modules.

Keywords: Islamic education system, implementation of curriculum, Kuttab Al-Fatih semarang, formal education system in Indonesia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
4472 Integral Methods in the Determination of Temperature Fields of Cooled Blades of Gas Turbines

Authors: C. Ardil

Abstract:

A mathematical model and an effective numerical method for calculating the temperature field of the profile part of convection cooled blades have been developed. The theoretical substantiation of the method is proved by corresponding theorems. To this end, convergent quadrature processes were developed and error estimates were obtained in terms of the Zygmund continuity moduli.The boundary conditions for heat exchange are determined from the solution of the corresponding integral equations and empirical relations.The reliability of the developed methods is confirmed by the calculation-experimental studies of the thermohydraulic characteristics of the nozzle apparatus of the first stage of a gas turbine.

Keywords: Integral methods, determination of temperature fields, cooled blades, gas turbines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757
4471 Selection of Best Band Combination for Soil Salinity Studies using ETM+ Satellite Images (A Case study: Nyshaboor Region,Iran)

Authors: Sanaeinejad, S. H.; A. Astaraei, . P. Mirhoseini.Mousavi, M. Ghaemi,

Abstract:

One of the main environmental problems which affect extensive areas in the world is soil salinity. Traditional data collection methods are neither enough for considering this important environmental problem nor accurate for soil studies. Remote sensing data could overcome most of these problems. Although satellite images are commonly used for these studies, however there are still needs to find the best calibration between the data and real situations in each specified area. Neyshaboor area, North East of Iran was selected as a field study of this research. Landsat satellite images for this area were used in order to prepare suitable learning samples for processing and classifying the images. 300 locations were selected randomly in the area to collect soil samples and finally 273 locations were reselected for further laboratory works and image processing analysis. Electrical conductivity of all samples was measured. Six reflective bands of ETM+ satellite images taken from the study area in 2002 were used for soil salinity classification. The classification was carried out using common algorithms based on the best composition bands. The results showed that the reflective bands 7, 3, 4 and 1 are the best band composition for preparing the color composite images. We also found out, that hybrid classification is a suitable method for identifying and delineation of different salinity classes in the area.

Keywords: Soil salinity, Remote sensing, Image processing, ETM+, Nyshaboor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
4470 Evaluation of Manual and Automatic Calibration Methods for Digital Tachographs

Authors: Sarp Erturk, Levent Eyigel, Cihat Celik, Muhammet Sahinoglu, Serdar Ay, Yasin Kaya, Hasan Kaya

Abstract:

This paper presents a quantitative analysis on the need for automotive calibration methods for digital tachographs. Digital tachographs are mandatory for vehicles used in people and goods transport and they are an important aspect for road safety and inspection. Digital tachographs need to be calibrated for workshops in order for the digital tachograph to display and record speed and odometer values correctly. Calibration of digital tachographs can be performed either manual or automatic. It is shown in this paper that manual calibration of digital tachographs is prone to errors and there can be differences between manual and automatic calibration parameters. Therefore automatic calibration methods are imperative for digital tachograph calibration. The presented experimental results and error analysis clearly support the claims of the paper by evaluating and statistically comparing manual and automatic calibration methods.

Keywords: Digital tachograph, road safety, tachograph calibration, tachograph workshops.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
4469 Bioactive Compounds Content of Citrus Peel as Affected by Drying Processes

Authors: Azza A. Abou-Arab, Marwa H. Mahmoud, Ferial M. Abu-Salem

Abstract:

The present investigation studied the content of bioactive compounds as ascorbic acid, β-carotene, and flavonoids, and the effect of drying methods (microwave, solar, and air oven drying) on its level in citrus peel. These levels were decreased significantly (p <0.05) due to the dried methods. The percentage of ascorbic acid content loss of orange C. Valencia were 46.64, 52.95 and 68.83% with microwave, solar and air oven methods, respectively comparing to fresh samples. Also, the percentages of β- carotene loss of orange C. Valencia were 38.89, 52.42 and 87.14% with microwave, solar and air oven methods, respectively. Total flavonoid content recorded 453.33, 396.67 and 327.50 mg QE/100g dw, with dried by microwave, solar and oven methods, respectively compared with control in orange, C. valencia. These results revealed that microwave drying procedure was the most effective method which maintained citrus bioactive compounds content (ascorbic acid, β-carotene and flavonoid) followed by solar. On the other hand, air oven drying came in the last order due to direct heat treatment.

Keywords: Ascorbic acid, β-carotene, flavonoids, microwave, solar, air oven drying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
4468 New Adaptive Linear Discriminante Analysis for Face Recognition with SVM

Authors: Mehdi Ghayoumi

Abstract:

We have applied new accelerated algorithm for linear discriminate analysis (LDA) in face recognition with support vector machine. The new algorithm has the advantage of optimal selection of the step size. The gradient descent method and new algorithm has been implemented in software and evaluated on the Yale face database B. The eigenfaces of these approaches have been used to training a KNN. Recognition rate with new algorithm is compared with gradient.

Keywords: lda, adaptive, svm, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
4467 Possibilities of Delimitation of City Centers Using GIS

Authors: Jaroslav Burian, Kateřina Sorbiová, Pavel Tuček, Michaela Tučková

Abstract:

The article describes problems of city centers with regard to possibilities of their delimitation in a GIS environment. First the definitions and delimitations of a city centre which are in use are mentioned, furthermore a chosen case study (the historical centre of Olomouc city in the Czech Republic) is employed to describe the methods of delimitation in use. In addition to describing the current state, the article also deals with possibilities of delimitation of a city centre in GIS environment by means of several chosen approaches. The authors describe, compare and discuss the chosen methods and assess the achieved results and also applicability of the designed methods for other cities.

Keywords: analysis, city center, GIS, spatial structures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
4466 A Comprehensive Review on Different Mixed Data Clustering Ensemble Methods

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila

Abstract:

An extensive amount of work has been done in data clustering research under the unsupervised learning technique in Data Mining during the past two decades. Moreover, several approaches and methods have been emerged focusing on clustering diverse data types, features of cluster models and similarity rates of clusters. However, none of the single clustering algorithm exemplifies its best nature in extracting efficient clusters. Consequently, in order to rectify this issue, a new challenging technique called Cluster Ensemble method was bloomed. This new approach tends to be the alternative method for the cluster analysis problem. The main objective of the Cluster Ensemble is to aggregate the diverse clustering solutions in such a way to attain accuracy and also to improve the eminence the individual clustering algorithms. Due to the massive and rapid development of new methods in the globe of data mining, it is highly mandatory to scrutinize a vital analysis of existing techniques and the future novelty. This paper shows the comparative analysis of different cluster ensemble methods along with their methodologies and salient features. Henceforth this unambiguous analysis will be very useful for the society of clustering experts and also helps in deciding the most appropriate one to resolve the problem in hand.

Keywords: Clustering, Cluster Ensemble Methods, Coassociation matrix, Consensus Function, Median Partition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104