Search results for: Similarity Estimate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1141

Search results for: Similarity Estimate

151 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study

Authors: Raja Das, M. K. Pradhan

Abstract:

This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.

Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3115
150 Stature Prediction Model Based On Hand Anthropometry

Authors: Arunesh Chandra, Pankaj Chandna, Surinder Deswal, Rajesh Kumar Mishra, Rajender Kumar

Abstract:

The arm length, hand length, hand breadth and middle finger length of 1540 right-handed industrial workers of Haryana state was used to assess the relationship between the upper limb dimensions and stature. Initially, the data were analyzed using basic univariate analysis and independent t-tests; then simple and multiple linear regression models were used to estimate stature using SPSS (version 17). There was a positive correlation between upper limb measurements (hand length, hand breadth, arm length and middle finger length) and stature (p < 0.01), which was highest for hand length. The accuracy of stature prediction ranged from ± 54.897 mm to ± 58.307 mm. The use of multiple regression equations gave better results than simple regression equations. This study provides new forensic standards for stature estimation from the upper limb measurements of male industrial workers of Haryana (India). The results of this research indicate that stature can be determined using hand dimensions with accuracy, when only upper limb is available due to any reasons likewise explosions, train/plane crashes, mutilated bodies, etc. The regression formula derived in this study will be useful for anatomists, archaeologists, anthropologists, design engineers and forensic scientists for fairly prediction of stature using regression equations.

Keywords: Anthropometric dimensions, Forensic identification, Industrial workers, Stature prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2961
149 Design of an Intelligent Location Identification Scheme Based On LANDMARC and BPNs

Authors: S. Chaisit, H.Y. Kung, N.T. Phuong

Abstract:

Radio frequency identification (RFID) applications have grown rapidly in many industries, especially in indoor location identification. The advantage of using received signal strength indicator (RSSI) values as an indoor location measurement method is a cost-effective approach without installing extra hardware. Because the accuracy of many positioning schemes using RSSI values is limited by interference factors and the environment, thus it is challenging to use RFID location techniques based on integrating positioning algorithm design. This study proposes the location estimation approach and analyzes a scheme relying on RSSI values to minimize location errors. In addition, this paper examines different factors that affect location accuracy by integrating the backpropagation neural network (BPN) with the LANDMARC algorithm in a training phase and an online phase. First, the training phase computes coordinates obtained from the LANDMARC algorithm, which uses RSSI values and the real coordinates of reference tags as training data for constructing an appropriate BPN architecture and training length. Second, in the online phase, the LANDMARC algorithm calculates the coordinates of tracking tags, which are then used as BPN inputs to obtain location estimates. The results show that the proposed scheme can estimate locations more accurately compared to LANDMARC without extra devices.

Keywords: BPNs, indoor location, location estimation, intelligent location identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
148 3D Finite Element Analysis for Mechanics of Soil-Tool Interaction

Authors: A. Armin, R. Fotouhi, W. Szyszkowski

Abstract:

This paper is part of a study to develop robots for farming. As such power requirement to operate equipment attach to such robots become an important factor. Soil-tool interaction plays major role in power consumption, thus predicting accurately the forces which act on the blade during the farming is very important for optimal designing of farm equipment. In this paper, a finite element investigation for tillage tools and soil interaction is described by using an inelastic constitutive material law for agriculture application. A 3-dimensional (3D) nonlinear finite element analysis (FEA) is developed to examine behavior of a blade with different rake angles moving in a block of soil, and to estimate the blade force. The soil model considered is an elastic-plastic with non-associated Drucker-Prager material model. Special use of contact elements are employed to consider connection between soil-blade and soil-soil surfaces. The FEA results are compared with experimental ones, which show good agreement in accurately predicting draft forces developed on the blade when it moves through the soil. Also a very good correlation was obtained between FEA results and analytical results from classical soil mechanics theories for straight blades. These comparisons verified the FEA model developed. For analyzing complicated soil-tool interactions and for optimum design of blades, this method will be useful.

Keywords: Finite element analysis, soil-blade contact modeling, blade force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3000
147 Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops: Statistical Evaluation of the Potential Herbicide Savings

Authors: Morten Stigaard Laursen, Rasmus Nyholm Jørgensen, Henrik Skov Midtiby, Anders Krogh Mortensen, Sanmohan Baby

Abstract:

This work contributes a statistical model and simulation framework yielding the best estimate possible for the potential herbicide reduction when using the MoDiCoVi algorithm all the while requiring a efficacy comparable to conventional spraying. In June 2013 a maize field located in Denmark were seeded. The field was divided into parcels which was assigned to one of two main groups: 1) Control, consisting of subgroups of no spray and full dose spraty; 2) MoDiCoVi algorithm subdivided into five different leaf cover thresholds for spray activation. In addition approximately 25% of the parcels were seeded with additional weeds perpendicular to the maize rows. In total 299 parcels were randomly assigned with the 28 different treatment combinations. In the statistical analysis, bootstrapping was used for balancing the number of replicates. The achieved potential herbicide savings was found to be 70% to 95% depending on the initial weed coverage. However additional field trials covering more seasons and locations are needed to verify the generalisation of these results. There is a potential for further herbicide savings as the time interval between the first and second spraying session was not long enough for the weeds to turn yellow, instead they only stagnated in growth.

Keywords: Weed crop discrimination, macrosprayer, herbicide reduction, site-specific, sprayer-boom.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
146 A Combined Approach of a Sequential Life Testing and an Accelerated Life Testing Applied to a Low-Alloy High Strength Steel Component

Authors: D. I. De Souza, D. R. Fonseca, G. P. Azevedo

Abstract:

Sometimes the amount of time available for testing could be considerably less than the expected lifetime of the component. To overcome such a problem, there is the accelerated life-testing alternative aimed at forcing components to fail by testing them at much higher-than-intended application conditions. These models are known as acceleration models. One possible way to translate test results obtained under accelerated conditions to normal using conditions could be through the application of the “Maxwell Distribution Law.” In this paper we will apply a combined approach of a sequential life testing and an accelerated life testing to a low alloy high-strength steel component used in the construction of overpasses in Brazil. The underlying sampling distribution will be three-parameter Inverse Weibull model. To estimate the three parameters of the Inverse Weibull model we will use a maximum likelihood approach for censored failure data. We will be assuming a linear acceleration condition. To evaluate the accuracy (significance) of the parameter values obtained under normal conditions for the underlying Inverse Weibull model we will apply to the expected normal failure times a sequential life testing using a truncation mechanism. An example will illustrate the application of this procedure.

Keywords: Sequential Life Testing, Accelerated Life Testing, Underlying Three-Parameter Weibull Model, Maximum Likelihood Approach, Hypothesis Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
145 A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand

Authors: A. Nasiri Pour, B. Rostami Tabar, A.Rahimzadeh

Abstract:

Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.

Keywords: Lumpy Demand, Neural Network, Forecasting, Hybrid Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2679
144 Design and Development of iLON Smart Server Based Remote Monitoring System for Induction Motors

Authors: G. S. Ayyappan, M. Raja Raghavan, R. Poonthalir, Kota Srinivas, B. Ramesh Babu

Abstract:

Electrical energy demand in the World and particularly in India, is increasing drastically more than its production over a period of time. In order to reduce the demand-supply gap, conserving energy becomes mandatory. Induction motors are the main driving force in the industries and contributes to about half of the total plant energy consumption. By effective monitoring and control of induction motors, huge electricity can be saved. This paper deals about the design and development of such a system, which employs iLON Smart Server and motor performance monitoring nodes. These nodes will monitor the performance of induction motors on-line, on-site and in-situ in the industries. The node monitors the performance of motors by simply measuring the electrical power input and motor shaft speed; coupled to genetic algorithm to estimate motor efficiency. The nodes are connected to the iLON Server through RS485 network. The web server collects the motor performance data from nodes, displays online, logs periodically, analyzes, alerts, and generates reports. The system could be effectively used to operate the motor around its Best Operating Point (BOP) as well as to perform the Life Cycle Assessment of Induction motors used in the industries in continuous operation.

Keywords: Best operating point, iLON smart server, motor asset management, LONWORKS, Modbus RTU, motor performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719
143 Neural Network Implementation Using FPGA: Issues and Application

Authors: A. Muthuramalingam, S. Himavathi, E. Srinivasan

Abstract:

.Hardware realization of a Neural Network (NN), to a large extent depends on the efficient implementation of a single neuron. FPGA-based reconfigurable computing architectures are suitable for hardware implementation of neural networks. FPGA realization of ANNs with a large number of neurons is still a challenging task. This paper discusses the issues involved in implementation of a multi-input neuron with linear/nonlinear excitation functions using FPGA. Implementation method with resource/speed tradeoff is proposed to handle signed decimal numbers. The VHDL coding developed is tested using Xilinx XC V50hq240 Chip. To improve the speed of operation a lookup table method is used. The problems involved in using a lookup table (LUT) for a nonlinear function is discussed. The percentage saving in resource and the improvement in speed with an LUT for a neuron is reported. An attempt is also made to derive a generalized formula for a multi-input neuron that facilitates to estimate approximately the total resource requirement and speed achievable for a given multilayer neural network. This facilitates the designer to choose the FPGA capacity for a given application. Using the proposed method of implementation a neural network based application, namely, a Space vector modulator for a vector-controlled drive is presented

Keywords: FPGA implementation, multi-input neuron, neural network, nn based space vector modulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4422
142 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel

Authors: Pankaj Chandna, Dinesh Kumar

Abstract:

The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.

Keywords: D2 Steel, Orthogonal Array, Optimization, Surface Roughness, Taguchi Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2768
141 The Development of a Teachers- Self-Efficacy Instrument for High School Physical Education Teacher

Authors: Yi-Hsiang Pan

Abstract:

The purpose of this study was to develop a “teachers’ self-efficacy scale for high school physical education teachers (TSES-HSPET)” in Taiwan. This scale is based on the self-efficacy theory of Bandura [1], [2]. This study used exploratory and confirmatory factor analyses to test the reliability and validity. The participants were high school physical education teachers in Taiwan. Both stratified random sampling and cluster sampling were used to sample participants for the study. 350 teachers were sampled in the first stage and 234 valid scales (male 133, female 101) returned. During the second stage, 350 teachers were sampled and 257 valid scales (male 143, female 110, 4 did not indicate gender) returned. The exploratory factor analysis was used in the first stage, and it got 60.77% of total variance for construct validity. The Cronbach’s alpha coefficient of internal consistency was 0.91 for sumscale, and subscales were 0.84 and 0.90. In the second stage, confirmatory factor analysis was used to test construct validity. The result showed that the fit index could be accepted (χ2 (75) =167.94, p <.05, RMSEA =0.07, SRMR=0.05, GFI=0.92, NNFI=0.97, CFI=0.98, PNFI=0.79). Average variance extracted of latent variables were 0.43 and 0.53, which composite reliability are 0.78 and 0.90. It is concluded that the TSES-HSPET is a well-considered measurement instrument with acceptable validity and reliability. It may be used to estimate teachers’ self-efficacy for high school physical education teachers.

Keywords: teaching in physical education, teacher's self-efficacy, teacher's belief

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3180
140 Determination of Lithology, Porosity and Water Saturation for Mishrif Carbonate Formation

Authors: F. S. Kadhim, A. Samsuri, H. Alwan

Abstract:

Well logging records can help to answer many questions from a wide range of special interested information and basic petrophysical properties to formation evaluation of oil and gas reservoirs. The accurate calculations of porosity in carbonate reservoirs are the most challenging aspects of the well logging analysis. Many equations have been developed over the years based on known physical principles or on empirically derived relationships, which are used to calculate porosity, estimate lithology, and water saturation; however these parameters are calculated from well logs by using modern technique in a current study. Nasiriya oil field is one of the giant oilfields in the Middle East, and the formation under study is the Mishrif carbonate formation which is the shallowest hydrocarbon bearing zone in this oilfield. Neurolog software was used to digitize the scanned copies of the available logs. Environmental corrections had been made as per Schlumberger charts 2005, which supplied in the Interactive Petrophysics software. Three saturation models have been used to calculate water saturation of carbonate formations, which are simple Archie equation, Dual water model, and Indonesia model. Results indicate that the Mishrif formation consists mainly of limestone, some dolomite, and shale. The porosity interpretation shows that the logging tools have a good quality after making the environmental corrections. The average formation water saturation for Mishrif formation is around 0.4- 0.6.This study is provided accurate behavior of petrophysical properties with depth for this formation by using modern software.

Keywords: Lithology, Porosity, Water Saturation, Carbonate Formation, Mishrif Formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4070
139 Modeling Spatial Distributions of Point and Nonpoint Source Pollution Loadings in the Great Lakes Watersheds

Authors: Chansheng He, Carlo DeMarchi

Abstract:

A physically based, spatially-distributed water quality model is being developed to simulate spatial and temporal distributions of material transport in the Great Lakes Watersheds of the U.S. Multiple databases of meteorology, land use, topography, hydrography, soils, agricultural statistics, and water quality were used to estimate nonpoint source loading potential in the study watersheds. Animal manure production was computed from tabulations of animals by zip code area for the census years of 1987, 1992, 1997, and 2002. Relative chemical loadings for agricultural land use were calculated from fertilizer and pesticide estimates by crop for the same periods. Comparison of these estimates to the monitored total phosphorous load indicates that both point and nonpoint sources are major contributors to the total nutrient loads in the study watersheds, with nonpoint sources being the largest contributor, particularly in the rural watersheds. These estimates are used as the input to the distributed water quality model for simulating pollutant transport through surface and subsurface processes to Great Lakes waters. Visualization and GIS interfaces are developed to visualize the spatial and temporal distribution of the pollutant transport in support of water management programs.

Keywords: Distributed Large Basin Runoff Model, Great LakesWatersheds, nonpoint source pollution, and point sources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
138 The Effect of the Hourly Compensation on the Unemployment Rate: Comparative Analysis of United States, Canada and the United Kingdom Using Panel Data Regression Analysis

Authors: Ashiquer Rahman, Hares Mohammad, Ummey Salma

Abstract:

A country’s hourly compensation and unemployment rates are two of its most crucial components. They are not merely statistics but they have profound effects on individual, families, country, and the economy. They are inversely related to one another. The increased hourly compensation in the manufacturing sector can have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, in order to determine the effect of hourly compensation on unemployment rate, we use the panel data regression models and evaluate the expected link between hourly compensation and unemployment rate. We estimate the fixed effects model (FEM), evaluate the error components model (ECM), and determine which model (the FEM or ECM) is better through pooling all 60 observations. We then analyze and review the data by comparing countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of this extensive research on how the hourly compensation affects unemployment rate. Additionally, this paper offers relevant and useful guideline for the government and academic community to use an econometrics and social approach for the hourly compensation on unemployment rate to eliminate the problem.

Keywords: Hourly compensation, unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65
137 Development of a Software about Calculating the Production Parameters in Knitted Garment Plants

Authors: Ender Bulgun, Arzu Vuruskan

Abstract:

Apparel product development is an important stage in the life cycle of a product. Shortening this stage will help to reduce the costs of a garment. The aim of this study is to examine the production parameters in knitwear apparel companies by defining the unit costs, and developing a software to calculate the unit costs of garments and make the cost estimates. In this study, with the help of a questionnaire, different companies- systems of unit cost estimating and cost calculating were tried to be analyzed. Within the scope of the questionnaire, the importance of cost estimating process for apparel companies and the expectations from a new cost estimating program were investigated. According to the results of the questionnaire, it was seen that the majority of companies which participated to the questionnaire use manual cost calculating methods or simple Microsoft Excel spreadsheets to make cost estimates. Furthermore, it was discovered that many companies meet with difficulties in archiving the cost data for future use and as a solution to that problem, it is thought that prior to making a cost estimate, sub units of garment costs which are fabric, accessory and the labor costs should be analyzed and added to the database of the programme beforehand. Another specification of the cost estimating unit prepared in this study is that the programme was designed to consist of two main units, one of which makes the product specification and the other makes the cost calculation. The programme is prepared as a web-based application in order that the supplier, the manufacturer and the customer can have the opportunity to communicate through the same platform.

Keywords: Apparel, cost estimating, design archive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2981
136 Video Matting based on Background Estimation

Authors: J.-H. Moon, D.-O Kim, R.-H. Park

Abstract:

This paper presents a video matting method, which extracts the foreground and alpha matte from a video sequence. The objective of video matting is finding the foreground and compositing it with the background that is different from the one in the original image. By finding the motion vectors (MVs) using a sliced block matching algorithm (SBMA), we can extract moving regions from the video sequence under the assumption that the foreground is moving and the background is stationary. In practice, foreground areas are not moving through all frames in an image sequence, thus we accumulate moving regions through the image sequence. The boundaries of moving regions are found by Canny edge detector and the foreground region is separated in each frame of the sequence. Remaining regions are defined as background regions. Extracted backgrounds in each frame are combined and reframed as an integrated single background. Based on the estimated background, we compute the frame difference (FD) of each frame. Regions with the FD larger than the threshold are defined as foreground regions, boundaries of foreground regions are defined as unknown regions and the rest of regions are defined as backgrounds. Segmentation information that classifies an image into foreground, background, and unknown regions is called a trimap. Matting process can extract an alpha matte in the unknown region using pixel information in foreground and background regions, and estimate the values of foreground and background pixels in unknown regions. The proposed video matting approach is adaptive and convenient to extract a foreground automatically and to composite a foreground with a background that is different from the original background.

Keywords: Background estimation, Object segmentation, Blockmatching algorithm, Video matting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
135 A Case Study on the Value of Corporate Social Responsibility Systems

Authors: José M. Brotons, Manuel E. Sansalvador

Abstract:

The relationship between Corporate Social Responsibility (CSR) and financial performance (FP) is a subject of great interest that has not yet been resolved. In this work, we have developed a new and original tool to measure this relation. The tool quantifies the value contributed to companies that are committed to CSR. The theoretical model used is the fuzzy discounted cash flow method. Two assumptions have been considered, the first, the company has implemented the IQNet SR10 certification, and the second, the company has not implemented that certification. For the first one, the growth rate used for the time horizon is the rate maintained by the company after obtaining the IQNet SR10 certificate. For the second one, both, the growth rates company prior to the implementation of the certification, and the evolution of the sector will be taken into account. By using triangular fuzzy numbers, it is possible to deal adequately with each company’s forecasts as well as the information corresponding to the sector. Once the annual growth rate of the sales is obtained, the profit and loss accounts are generated from the annual estimate sales. For the remaining elements of this account, their regression with the nets sales has been considered. The difference between these two valuations, made in a fuzzy environment, allows obtaining the value of the IQNet SR10 certification. Although this study presents an innovative methodology to quantify the relation between CSR and FP, the authors are aware that only one company has been analyzed. This is precisely the main limitation of this study which in turn opens up an interesting line for future research: to broaden the sample of companies.

Keywords: Corporate social responsibility, case study, financial performance, company valuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
134 Inferring User Preference Using Distance Dependent Chinese Restaurant Process and Weighted Distribution for a Content Based Recommender System

Authors: Bagher Rahimpour Cami, Hamid Hassanpour, Hoda Mashayekhi

Abstract:

Nowadays websites provide a vast number of resources for users. Recommender systems have been developed as an essential element of these websites to provide a personalized environment for users. They help users to retrieve interested resources from large sets of available resources. Due to the dynamic feature of user preference, constructing an appropriate model to estimate the user preference is the major task of recommender systems. Profile matching and latent factors are two main approaches to identify user preference. In this paper, we employed the latent factor and profile matching to cluster the user profile and identify user preference, respectively. The method uses the Distance Dependent Chines Restaurant Process as a Bayesian nonparametric framework to extract the latent factors from the user profile. These latent factors are mapped to user interests and a weighted distribution is used to identify user preferences. We evaluate the proposed method using a real-world data-set that contains news tweets of a news agency (BBC). The experimental results and comparisons show the superior recommendation accuracy of the proposed approach related to existing methods, and its ability to effectively evolve over time.

Keywords: Content-based recommender systems, dynamic user modeling, extracting user interests, predicting user preference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
133 Multiple Subcarrier Indoor Geolocation System in MIMO-OFDM WLAN APs Structure

Authors: Abdul Hafiizh, Shigeki Obote, Kenichi Kagoshima

Abstract:

This report aims to utilize existing and future Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing Wireless Local Area Network (MIMO-OFDM WLAN) systems characteristics–such as multiple subcarriers, multiple antennas, and channel estimation characteristics–for indoor location estimation systems based on the Direction of Arrival (DOA) and Radio Signal Strength Indication (RSSI) methods. Hybrid of DOA-RSSI methods also evaluated. In the experimental data result, we show that location estimation accuracy performances can be increased by minimizing the multipath fading effect. This is done using multiple subcarrier frequencies over wideband frequencies to estimate one location. The proposed methods are analyzed in both a wide indoor environment and a typical room-sized office. In the experiments, WLAN terminal locations are estimated by measuring multiple subcarriers from arrays of three dipole antennas of access points (AP). This research demonstrates highly accurate, robust and hardware-free add-on software for indoor location estimations based on a MIMO-OFDM WLAN system.

Keywords: Direction of Arrival (DOA), Indoor location estimation method, Multipath Fading, MIMO-OFDM, Received Signal Strength Indication (RSSI), WLAN, Hybrid DOA-RSSI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
132 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG

Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan

Abstract:

Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.

Keywords: EEG, functional connectivity, graph theory, TFCMI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
131 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
130 Complex Wavelet Transform Based Image Denoising and Zooming Under the LMMSE Framework

Authors: T. P. Athira, Gibin Chacko George

Abstract:

This paper proposes a dual tree complex wavelet transform (DT-CWT) based directional interpolation scheme for noisy images. The problems of denoising and interpolation are modelled as to estimate the noiseless and missing samples under the same framework of optimal estimation. Initially, DT-CWT is used to decompose an input low-resolution noisy image into low and high frequency subbands. The high-frequency subband images are interpolated by linear minimum mean square estimation (LMMSE) based interpolation, which preserves the edges of the interpolated images. For each noisy LR image sample, we compute multiple estimates of it along different directions and then fuse those directional estimates for a more accurate denoised LR image. The estimation parameters calculated in the denoising processing can be readily used to interpolate the missing samples. The inverse DT-CWT is applied on the denoised input and interpolated high frequency subband images to obtain the high resolution image. Compared with the conventional schemes that perform denoising and interpolation in tandem, the proposed DT-CWT based noisy image interpolation method can reduce many noise-caused interpolation artifacts and preserve well the image edge structures. The visual and quantitative results show that the proposed technique outperforms many of the existing denoising and interpolation methods.

Keywords: Dual-tree complex wavelet transform (DT-CWT), denoising, interpolation, optimal estimation, super resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
129 Two Lessons Learnt in Defining Intersections and Interfaces in Numerical Modeling with Plaxis

Authors: Mahdi Sadeghian, Somaye Sadeghian, Reza Dinarvand

Abstract:

This paper is going to discuss two issues encountered in using PLAXIS. Both issues were monitored during application of PLAXIS to estimate the excavation-induced displacement. Column Soil Mixing (CSM) was applied to stabilise the excavation. It was understood that the estimated excavation induced deformation at the top of the CSM blocks highly depends on the material type defining pavement material adjacent to the CSM blocks. Cohesive material for pavement will result in the unrealistic connection between pavement and CSM even by defining an interface element. To find the most realistic approach, the interface defined in three different manners (1) no interface elements were applied (2) a non-cohesive soil layer was defined between pavement and CSM block to represent the friction between these materials (3) built-in interface elements in PLAXIS was used to define the boundary between the pavement and the CSM block. The result showed that the option 2 would result in more realistic results. The second issue was in the modelling of the contact line between the CSM block and an inclined layer underneath. The analysis result showed that the excavation-induced deformation highly depends on how the PLAXIS user defines the contact area. It was understood that if the contact area had defined as a point in which CSM block had intersected the layer underneath the estimated lateral displacement of CSM block would be unrealistically lower than the model in which the contact area was defined as a line.

Keywords: PLAXIS, FEM, CSM, excavation-induced deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 636
128 Reasons for the Slow Uptake of Embodied Carbon Estimation in the Sri Lankan Building Sector

Authors: Amalka Nawarathna, Nirodha Fernando, Zaid Alwan

Abstract:

Global carbon reduction is not merely a responsibility of environmentally advanced developed countries, but also a responsibility of developing countries regardless of their less impact on global carbon emissions. In recognition of that, Sri Lanka as a developing country has initiated promoting green building construction as one reduction strategy. However, notwithstanding the increasing attention on Embodied Carbon (EC) reduction in the global building sector, they still mostly focus on Operational Carbon (OC) reduction (through improving operational energy). An adequate attention has not yet been given on EC estimation and reduction. Therefore, this study aims to identify the reasons for the slow uptake of EC estimation in the Sri Lankan building sector. To achieve this aim, 16 numbers of global barriers to estimate EC were identified through existing literature. They were then subjected to a pilot survey to identify the significant reasons for the slow uptake of EC estimation in the Sri Lankan building sector. A questionnaire with a three-point Likert scale was used to this end. The collected data were analysed using descriptive statistics. The findings revealed that 11 out of 16 challenges/ barriers are highly relevant as reasons for the slow uptake in estimating EC in buildings in Sri Lanka while the other five challenges/ barriers remain as moderately relevant reasons. Further, the findings revealed that there are no low relevant reasons. Eventually, the paper concluded that all the known reasons are significant to the Sri Lankan building sector and it is necessary to address them in order to upturn the attention on EC reduction.

Keywords: Embodied carbon emissions, embodied carbon estimation, global carbon reduction, Sri Lankan building sector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825
127 Smart Energy Consumers: An Empirical Investigation on the Intention to Adopt Innovative Consumption Behaviour

Authors: Cecilia Perri, Vincenzo Corvello

Abstract:

The aim of the present study is to investigate consumers' determinants of intention toward the adoption of Smart Grid solutions and technologies. Ajzen's Theory of Planned Behaviour (TPB) model is applied and tested to explain the formation of such adoption intention. An exogenous variable, taking into account the resistance to change of individuals, was added to the basic model. The elicitation study allowed obtaining salient modal beliefs, which were used, with the support of literature, to design the questionnaire. After the screening phase, data collected from the main survey were analysed for evaluating measurement model's reliability and validity. Consistent with the theory, the results of structural equation analysis revealed that attitude, subjective norm, and perceived behavioural control positively, which affected the adoption intention. Specifically, the variable with the highest estimate loading factor was found to be the perceived behavioural control, and, the most important belief related to each construct was determined (e.g., energy saving was observed to be the most significant belief linked with attitude). Further investigation indicated that the added exogenous variable has a negative influence on intention; this finding confirmed partially the hypothesis, since this influence was indirect: such relationship was mediated by attitude. Implications and suggestions for future research are discussed.

Keywords: Adoption of innovation, consumers behaviour, energy management, smart grid, theory of planned behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
126 Correlates of Peer Influence and Resistance to HIV/AIDS Counselling and Testing among Students in Tertiary Institutions in Kano State, Nigeria

Authors: A. S. Haruna, M. U. Tambawal, A. A. Salawu

Abstract:

The psychological impact of peer influence on its individual group members, can make them resist HIV/AIDS counselling and testing. This study investigated the correlate of peer influence and resistance to HIV/AIDS counselling and testing among students in tertiary institutions in Kano state, Nigeria. To achieve this, three null hypotheses were postulated and tested. Cross- Sectional Survey Design was employed in which 1512 sample was selected from a student population of 104,841.Simple Random Sampling was used in the selection. A self-developed 20-item scale called Peer Influence and Psychological Resistance Inventory (PIPRI) was used for data collection. Pearson Product Moment Correlation (PPMCC) via test-retest method was applied to estimate a reliability coefficient of 0.86 for the scale. Data obtained was analyzed using t-test and PPMCC at 0.05 level of confidence. Results reveal 26.3% (397) of the respondents being influenced by their peer group, while 39.8% showed resistance. Also, the t-tests and PPMCC statistics were greater than their respective critical values. This shows that there was a significant gender difference in peer influence and a difference between peer influence and resistance to HIV/AIDS counselling and testing. However, a positive relationship between peer influence and resistance to HIV/AIDS counselling and testing was shown. A major recommendation offered suggests the use of reinforcement and social support for positive attitudes and maintenance of safe behaviour among students who patronize HIV/AIDS counselling.

Keywords: Peer influence, HIV/AIDS counselling and testing, Resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3357
125 Further Development in Predicting Post-Earthquake Fire Ignition Hazard

Authors: Pegah Farshadmanesh, Jamshid Mohammadi, Mehdi Modares

Abstract:

In nearly all earthquakes of the past century that resulted in moderate to significant damage, the occurrence of postearthquake fire ignition (PEFI) has imposed a serious hazard and caused severe damage, especially in urban areas. In order to reduce the loss of life and property caused by post-earthquake fires, there is a crucial need for predictive models to estimate the PEFI risk. The parameters affecting PEFI risk can be categorized as: 1) factors influencing fire ignition in normal (non-earthquake) condition, including floor area, building category, ignitability, type of appliance, and prevention devices, and 2) earthquake related factors contributing to the PEFI risk, including building vulnerability and earthquake characteristics such as intensity, peak ground acceleration, and peak ground velocity. State-of-the-art statistical PEFI risk models are solely based on limited available earthquake data, and therefore they cannot predict the PEFI risk for areas with insufficient earthquake records since such records are needed in estimating the PEFI model parameters. In this paper, the correlation between normal condition ignition risk, peak ground acceleration, and PEFI risk is examined in an effort to offer a means for predicting post-earthquake ignition events. An illustrative example is presented to demonstrate how such correlation can be employed in a seismic area to predict PEFI hazard.

Keywords: Fire risk, post-earthquake fire ignition (PEFI), risk management, seismicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
124 Using Field Indices of Rill and Gully in order to Erosion Estimating and Sediment Analysis (Case Study: Menderjan Watershed in Isfahan Province, Iran)

Authors: Masoud Nasri, Sadat Feiznia, Mohammad Jafari, Hasan Ahmadi

Abstract:

Today, incorrect use of lands and land use changes, excessive grazing, no suitable using of agricultural farms, plowing on steep slopes, road construct, building construct, mine excavation etc have been caused increasing of soil erosion and sediment yield. For erosion and sediment estimation one can use statistical and empirical methods. This needs to identify land unit map and the map of effective factors. However, these empirical methods are usually time consuming and do not give accurate estimation of erosion. In this study, we applied GIS techniques to estimate erosion and sediment of Menderjan watershed at upstream Zayandehrud river in center of Iran. Erosion faces at each land unit were defined on the basis of land use, geology and land unit map using GIS. The UTM coordinates of each erosion type that showed more erosion amounts such as rills and gullies were inserted in GIS using GPS data. The frequency of erosion indicators at each land unit, land use and their sediment yield of these indices were calculated. Also using tendency analysis of sediment yield changes in watershed outlet (Menderjan hydrometric gauge station), was calculated related parameters and estimation errors. The results of this study according to implemented watershed management projects can be used for more rapid and more accurate estimation of erosion than traditional methods. These results can also be used for regional erosion assessment and can be used for remote sensing image processing.

Keywords: Erosion and sedimentation, Gully, Rill, GIS, GPS, Menderjan Watershed

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
123 Acoustic Detection of the Red Date Palm Weevil

Authors: Mohammed A. Al-Manie, Mohammed I. Alkanhal

Abstract:

In this paper, acoustic techniques are used to detect hidden insect infestations of date palm tress (Phoenix dactylifera L.). In particular, we use an acoustic instrument for early discovery of the presence of a destructive insect pest commonly known as the Red Date Palm Weevil (RDPW) and scientifically as Rhynchophorus ferrugineus (Olivier). This type of insect attacks date palm tress and causes irreversible damages at late stages. As a result, the infected trees must be destroyed. Therefore, early presence detection is a major part in controlling the spread and economic damage caused by this type of infestation. Furthermore monitoring and early detection of the disease can asses in taking appropriate measures such as isolating or treating the infected trees. The acoustic system is evaluated in terms of its ability for early discovery of hidden bests inside the tested tree. When signal acquisitions is completed for a number of date palms, a signal processing technique known as time-frequency analysis is evaluated in terms of providing an estimate that can be visually used to recognize the acoustic signature of the RDPW. The testing instrument was tested in the laboratory first then; it was used on suspected or infested tress in the field. The final results indicate that the acoustic monitoring approach along with signal processing techniques are very promising for the early detection of presence of the larva as well as the adult pest in the date palms.

Keywords: Acoustic emissions, acoustic sensors, nondestructivetests, Red Date Palm Weevil, signal processing..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2619
122 New Wavelet Indices to Assess Muscle Fatigue during Dynamic Contractions

Authors: González-Izal M., Rodríguez-Carreño I, Mallor-Giménez F, Malanda A, Izquierdo M

Abstract:

The purpose of this study was to evaluate and compare new indices based on the discrete wavelet transform with another spectral parameters proposed in the literature as mean average voltage, median frequency and ratios between spectral moments applied to estimate acute exercise-induced changes in power output, i.e., to assess peripheral muscle fatigue during a dynamic fatiguing protocol. 15 trained subjects performed 5 sets consisting of 10 leg press, with 2 minutes rest between sets. Surface electromyography was recorded from vastus medialis (VM) muscle. Several surface electromyographic parameters were compared to detect peripheral muscle fatigue. These were: mean average voltage (MAV), median spectral frequency (Fmed), Dimitrov spectral index of muscle fatigue (FInsm5), as well as other five parameters obtained from the discrete wavelet transform (DWT) as ratios between different scales. The new wavelet indices achieved the best results in Pearson correlation coefficients with power output changes during acute dynamic contractions. Their regressions were significantly different from MAV and Fmed. On the other hand, they showed the highest robustness in presence of additive white gaussian noise for different signal to noise ratios (SNRs). Therefore, peripheral impairments assessed by sEMG wavelet indices may be a relevant factor involved in the loss of power output after dynamic high-loading fatiguing task.

Keywords: Median Frequency, EMG, wavelet transform, muscle fatigue

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866