Search results for: MD simulation
2463 A Numerical Model for Simulation of Blood Flow in Vascular Networks
Authors: Houman Tamaddon, Mehrdad Behnia, Masud Behnia
Abstract:
An accurate study of blood flow is associated with an accurate vascular pattern and geometrical properties of the organ of interest. Due to the complexity of vascular networks and poor accessibility in vivo, it is challenging to reconstruct the entire vasculature of any organ experimentally. The objective of this study is to introduce an innovative approach for the reconstruction of a full vascular tree from available morphometric data. Our method consists of implementing morphometric data on those parts of the vascular tree that are smaller than the resolution of medical imaging methods. This technique reconstructs the entire arterial tree down to the capillaries. Vessels greater than 2 mm are obtained from direct volume and surface analysis using contrast enhanced computed tomography (CT). Vessels smaller than 2mm are reconstructed from available morphometric and distensibility data and rearranged by applying Murray’s Laws. Implementation of morphometric data to reconstruct the branching pattern and applying Murray’s Laws to every vessel bifurcation simultaneously, lead to an accurate vascular tree reconstruction. The reconstruction algorithm generates full arterial tree topography down to the first capillary bifurcation. Geometry of each order of the vascular tree is generated separately to minimize the construction and simulation time. The node-to-node connectivity along with the diameter and length of every vessel segment is established and order numbers, according to the diameter-defined Strahler system, are assigned. During the simulation, we used the averaged flow rate for each order to predict the pressure drop and once the pressure drop is predicted, the flow rate is corrected to match the computed pressure drop for each vessel. The final results for 3 cardiac cycles is presented and compared to the clinical data.
Keywords: Blood flow, Morphometric data, Vascular tree, Strahler ordering system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21032462 MiSense Hierarchical Cluster-Based Routing Algorithm (MiCRA) for Wireless Sensor Networks
Authors: Kavi K. Khedo, R. K. Subramanian
Abstract:
Wireless sensor networks (WSN) are currently receiving significant attention due to their unlimited potential. These networks are used for various applications, such as habitat monitoring, automation, agriculture, and security. The efficient nodeenergy utilization is one of important performance factors in wireless sensor networks because sensor nodes operate with limited battery power. In this paper, we proposed the MiSense hierarchical cluster based routing algorithm (MiCRA) to extend the lifetime of sensor networks and to maintain a balanced energy consumption of nodes. MiCRA is an extension of the HEED algorithm with two levels of cluster heads. The performance of the proposed protocol has been examined and evaluated through a simulation study. The simulation results clearly show that MiCRA has a better performance in terms of lifetime than HEED. Indeed, MiCRA our proposed protocol can effectively extend the network lifetime without other critical overheads and performance degradation. It has been noted that there is about 35% of energy saving for MiCRA during the clustering process and 65% energy savings during the routing process compared to the HEED algorithm.Keywords: Clustering algorithm, energy consumption, hierarchical model, sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17832461 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs
Authors: Anna Costanza Russo, Daniele Landi, Michele Germani
Abstract:
Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.
Keywords: Ecodesign, induction hobs, virtual prototyping, energy efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12752460 Optimal Capacitor Placement in a Radial Distribution System using Plant Growth Simulation Algorithm
Authors: R. Srinivasa Rao, S. V. L. Narasimham
Abstract:
This paper presents a new and efficient approach for capacitor placement in radial distribution systems that determine the optimal locations and size of capacitor with an objective of improving the voltage profile and reduction of power loss. The solution methodology has two parts: in part one the loss sensitivity factors are used to select the candidate locations for the capacitor placement and in part two a new algorithm that employs Plant growth Simulation Algorithm (PGSA) is used to estimate the optimal size of capacitors at the optimal buses determined in part one. The main advantage of the proposed method is that it does not require any external control parameters. The other advantage is that it handles the objective function and the constraints separately, avoiding the trouble to determine the barrier factors. The proposed method is applied to 9, 34, and 85-bus radial distribution systems. The solutions obtained by the proposed method are compared with other methods. The proposed method has outperformed the other methods in terms of the quality of solution.
Keywords: Distribution systems, Capacitor placement, loss reduction, Loss sensitivity factors, PGSA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52852459 Alignment of a Combined Groin for Flow through a Straight Open Channel
Authors: M. Alauddin, M. A. Ullah, M. Alom, M. N. Islam
Abstract:
The rivers in Bangladesh are highly unstable having loose boundaries, mild slope of water surface and bed, irregular siltation of huge sediment coming from upstream, among others. The groins are installed in the river bank to deflect the flowing water away from the vulnerable zones. The conventional groins are found to be unstable and ineffective. The combined groin having both impermeable and permeable components in the same structure improves the flow field to function better over others. The main goal of this study is to analyze the hydraulic characteristics induced by the combined groins of different alignments by using a 2D numerical model, iRIC Nays2DH. In this numerical simulation, the K-ε model for turbulence and Cubic Interpolation Pseudo-particle (CIP) method for advective terms are utilized. A particular flow condition is applied in the channel for all sets of groins with different alignments. The simulation results reveal that the combined groins alter the flow patterns considerably, with no significant recirculation of flow in the groin field. The effect of different alignments of groins is found somewhat different. Based on hydraulic features caused by the groins, the combined groin that aligns the permeable component towards slightly downstream performs better over others.
Keywords: Combined groin, alignment, hydraulic characteristics, numerical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4122458 InAlGaN Quaternary Multi-Quantum Wells UVLaser Diode Performance and Characterization
Authors: S. M. Thahab, H. Abu Hassan, Z. Hassan
Abstract:
The InAlGaN alloy has only recently began receiving serious attention into its growth and application. High quality InGaN films have led to the development of light emitting diodes (LEDs) and blue laser diodes (LDs). The quaternary InAlGaN however, represents a more versatile material since the bandgap and lattice constant can be independently varied. We report an ultraviolet (UV) quaternary InAlGaN multi-quantum wells (MQWs) LD study by using the simulation program of Integrated System Engineering (ISE TCAD). Advanced physical models of semiconductor properties were used in order to obtain an optimized structure. The device performance which is affected by piezoelectric and thermal effects was studied via drift-diffusion model for carrier transport, optical gain and loss. The optical performance of the UV LD with different numbers of quantum wells was numerically investigated. The main peak of the emission wavelength for double quantum wells (DQWs) was shifted from 358 to 355.8 nm when the forward current was increased. Preliminary simulated results indicated that better output performance and lower threshold current could be obtained when the quantum number is four, with output power of 130 mW and threshold current of 140 mA.Keywords: Nitride semiconductors, InAlGaN quaternary, UVLD, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19432457 Estimation of Vertical Handover Probability in an Integrated UMTS and WLAN Networks
Authors: Diganta Kumar Pathak, Manashjyoti Bhuyan, Vaskar Deka
Abstract:
Vertical Handover(VHO) among different communication technologies ensuring uninterruption and service continuity is one of the most important performance parameter in Heterogenous networks environment. In an integrated Universal Mobile Telecommunicatin System(UMTS) and Wireless Local Area Network(WLAN), WLAN is given an inherent priority over UMTS because of its high data rates with low cost. Therefore mobile users want to be associated with WLAN maximum of the time while roaming, to enjoy best possible services with low cost. That encourages reduction of number of VHO. In this work the reduction of number of VHO with respect to varying number of WLAN Access Points(APs) in an integrated UMTS and WLAN network is investigated through simulation to provide best possible cost effective service to the users. The simulation has been carried out for an area (7800 × 9006)m2 where COST-231 Hata model and 3GPP (TR 101 112 V 3.1.0) specified models are used for WLAN and UMTS path loss models respectively. The handover decision is triggered based on the received signal level as compared to the fade margin. Fade margin gives a probabilistic measure of the reliability of the communication link. A relationship between number of WLAN APs and the number of VHO is also established in this work.
Keywords: VHO, UMTS, WLAN, MT, AP, BS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20382456 Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou
Authors: Hankun Lin, Yiqiang Xiao, Qiaosheng Zhan
Abstract:
Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2nd-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs.
Keywords: Outdoor shading devices, hot-humid area, temperature, ventilation, measurement, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10312455 Tracking Performance Evaluation of Robust Back-Stepping Control Design for a Nonlinear Electrohydraulic Servo System
Authors: M. Ahmadnezhad, M. Soltanpour
Abstract:
Electrohydraulic servo system have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this paper, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of disturbances and system uncertainties effectively and to improve the tracking performance of EHS systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the Lyapunov control function (LCF). To verify the performance and robustness of the proposed control system, computer simulation of the proposed control system using Matlab/Simulink Software is executed. From the computer simulation, it was found that the RBSC system produces the desired tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.
Keywords: Electro hydraulic servo system, back-stepping control, robust back-stepping control, Lyapunov redesign
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20272454 Tracking Performance Evaluation of Robust Back-Stepping Control Design for a Nonlinear Electrohydraulic Servo System
Authors: M. Ahmadnezhad, M. Soltanpour
Abstract:
Electrohydraulic servo system have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this paper, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of disturbances and system uncertainties effectively and to improve the tracking performance of EHS systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the Lyapunov control function (LCF). To verify the performance and robustness of the proposed control system, computer simulation of the proposed control system using Matlab/Simulink Software is executed. From the computer simulation, it was found that the RBSC system produces the desired tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.Keywords: Electro hydraulic servo system, back-stepping control, robust back-stepping control, Lyapunov redesign.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14872453 Study on Optimization of Air Infiltration at Entrance of a Commercial Complex in Zhejiang Province
Authors: Yujie Zhao, Jiantao Weng
Abstract:
In the past decade, with the rapid development of China's economy, the purchasing power and physical demand of residents have been improved, which results in the vast emergence of public buildings like large shopping malls. However, the architects usually focus on the internal functions and streamlines of these buildings, ignoring the impact of the environment on the subjective feelings of building users. Only in Zhejiang province, the infiltration of cold air in winter frequently occurs at the entrance of sizeable commercial complex buildings that have been in operation, which will affect the environmental comfort of the building lobby and internal public spaces. At present, to reduce these adverse effects, it is usually adopted to add active equipment, such as setting air curtains to block air exchange or adding heating air conditioners. From the perspective of energy consumption, the infiltration of cold air into the entrance will increase the heat consumption of indoor heating equipment, which will indirectly cause considerable economic losses during the whole winter heating stage. Therefore, it is of considerable significance to explore the suitable entrance forms for improving the environmental comfort of commercial buildings and saving energy. In this paper, a commercial complex with apparent cold air infiltration problem in Hangzhou is selected as the research object to establish a model. The environmental parameters of the building entrance, including temperature, wind speed, and infiltration air volume, are obtained by Computational Fluid Dynamics (CFD) simulation, from which the heat consumption caused by the natural air infiltration in the winter and its potential economic loss is estimated as the objective metric. This study finally obtains the optimization direction of the building entrance form of the commercial complex by comparing the simulation results of other local commercial complex projects with different entrance forms. The conclusions will guide the entrance design of the same type of commercial complex in this area.
Keywords: Air infiltration, commercial complex, heat consumption, CFD simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7702452 Artificial Neural Networks Application to Improve Shunt Active Power Filter
Authors: Rachid.Dehini, Abdesselam.Bassou, Brahim.Ferdi
Abstract:
Active Power Filters (APFs) are today the most widely used systems to eliminate harmonics compensate power factor and correct unbalanced problems in industrial power plants. We propose to improve the performances of conventional APFs by using artificial neural networks (ANNs) for harmonics estimation. This new method combines both the strategies for extracting the three-phase reference currents for active power filters and DC link voltage control method. The ANNs learning capabilities to adaptively choose the power system parameters for both to compute the reference currents and to recharge the capacitor value requested by VDC voltage in order to ensure suitable transit of powers to supply the inverter. To investigate the performance of this identification method, the study has been accomplished using simulation with the MATLAB Simulink Power System Toolbox. The simulation study results of the new (SAPF) identification technique compared to other similar methods are found quite satisfactory by assuring good filtering characteristics and high system stability.Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total Harmonic Distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20382451 Using the Monte Carlo Simulation to Predict the Assembly Yield
Authors: C. Chahin, M. C. Hsu, Y. H. Lin, C. Y. Huang
Abstract:
Electronics Products that achieve high levels of integrated communications, computing and entertainment, multimedia features in small, stylish and robust new form factors are winning in the market place. Due to the high costs that an industry may undergo and how a high yield is directly proportional to high profits, IC (Integrated Circuit) manufacturers struggle to maximize yield, but today-s customers demand miniaturization, low costs, high performance and excellent reliability making the yield maximization a never ending research of an enhanced assembly process. With factors such as minimum tolerances, tighter parameter variations a systematic approach is needed in order to predict the assembly process. In order to evaluate the quality of upcoming circuits, yield models are used which not only predict manufacturing costs but also provide vital information in order to ease the process of correction when the yields fall below expectations. For an IC manufacturer to obtain higher assembly yields all factors such as boards, placement, components, the material from which the components are made of and processes must be taken into consideration. Effective placement yield depends heavily on machine accuracy and the vision of the system which needs the ability to recognize the features on the board and component to place the device accurately on the pads and bumps of the PCB. There are currently two methods for accurate positioning, using the edge of the package and using solder ball locations also called footprints. The only assumption that a yield model makes is that all boards and devices are completely functional. This paper will focus on the Monte Carlo method which consists in a class of computational algorithms (information processed algorithms) which depends on repeated random samplings in order to compute the results. This method utilized in order to recreate the simulation of placement and assembly processes within a production line.
Keywords: Monte Carlo simulation, placement yield, PCBcharacterization, electronics assembly
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21682450 A Simulation for Estimation of the Blood Pressure using Arterial Pressure-volume Model
Authors: Gye-rok Jeon, Jae-hee Jung, In-cheol Kim, Ah-young Jeon, Sang-hwa Yoon, Jung-man Son, Jae-hyung Kim, Soo-young Ye, Jung-hoon Ro, Dong-hyun Kim, Chul-han Kim
Abstract:
A analysis on the conventional the blood pressure estimation method using an oscillometric sphygmomanometer was performed through a computer simulation using an arterial pressure-volume (APV) model. Traditionally, the maximum amplitude algorithm (MAP) was applied on the oscillation waveforms of the APV model to obtain the mean arterial pressure and the characteristic ratio. The estimation of mean arterial pressure and characteristic ratio was significantly affected with the shape of the blood pressure waveforms and the cutoff frequency of high-pass filter (HPL) circuitry. Experimental errors are due to these effects when estimating blood pressure. To find out an algorithm independent from the influence of waveform shapes and parameters of HPL, the volume oscillation of the APV model and the phase shift of the oscillation with fast fourier transform (FFT) were testified while increasing the cuff pressure from 1 mmHg to 200 mmHg (1 mmHg per second). The phase shift between the ranges of volume oscillation was then only observed between the systolic and the diastolic blood pressures. The same results were also obtained from the simulations performed on two different the arterial blood pressure waveforms and one hyperthermia waveform.Keywords: Arterial blood pressure, oscillometric method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33402449 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model
Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl
Abstract:
Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the workpiece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.Keywords: Dexel, process stability, material removal, milling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22622448 Modeling the Saltatory Conduction in Myelinated Axons by Order Reduction
Authors: Ruxandra Barbulescu, Daniel Ioan, Gabriela Ciuprina
Abstract:
The saltatory conduction is the way the action potential is transmitted along a myelinated axon. The potential diffuses along the myelinated compartments and it is regenerated in the Ranvier nodes due to the ion channels allowing the flow across the membrane. For an efficient simulation of populations of neurons, it is important to use reduced order models both for myelinated compartments and for Ranvier nodes and to have control over their accuracy and inner parameters. The paper presents a reduced order model of this neural system which allows an efficient simulation method for the saltatory conduction in myelinated axons. This model is obtained by concatenating reduced order linear models of 1D myelinated compartments and nonlinear 0D models of Ranvier nodes. The models for the myelinated compartments are selected from a series of spatially distributed models developed and hierarchized according to their modeling errors. The extracted model described by a nonlinear PDE of hyperbolic type is able to reproduce the saltatory conduction with acceptable accuracy and takes into account the finite propagation speed of potential. Finally, this model is again reduced in order to make it suitable for the inclusion in large-scale neural circuits.Keywords: Saltatory conduction, action potential, myelinated compartments, nonlinear, Ranvier nodes, reduced order models, POD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8492447 Conceptual Design and Characterization of Contractile Water Jet Thruster Using IPMC Actuator
Authors: Muhammad Farid Shaari, Zahurin Samad
Abstract:
This paper presents the design, development and characterization of contractile water jet thruster (CWJT) for mini underwater robot. Instead of electric motor, this CWJT utilizes the Ionic Polymer Metal Composite (IPMC) as the actuator to generate the water jet. The main focus of this paper is to analyze the conceptual design of the proposed CWJT which would determine the thrust force value, jet flow behavior and actuator’s stress. Those thrust force and jet flow studies were carried out using Matlab/Simscape simulation software. The actuator stress had been analyzed using COSMOS simulation software. The results showed that there was no significant change for jet velocity at variable cross sectional nozzle area. However, a significant change was detected for jet velocity at different nozzle cross sectional area ratio which was up to 37%. The generated thrust force has proportional relation to the nozzle cross sectional area.
Keywords: Contractile water jet thruster, IPMC actuator, Thrust force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22272446 Cooperative Energy Efficient Routing for Wireless Sensor Networks in Smart Grid Communications
Authors: Ghazi AL-Sukkar, Iyad Jafar, Khalid Darabkh, Raed Al-Zubi, Mohammed Hawa
Abstract:
Smart Grids employ wireless sensor networks for their control and monitoring. Sensors are characterized by limitations in the processing power, energy supply and memory spaces, which require a particular attention on the design of routing and data management algorithms. Since most routing algorithms for sensor networks, focus on finding energy efficient paths to prolong the lifetime of sensor networks, the power of sensors on efficient paths depletes quickly, and consequently sensor networks become incapable of monitoring events from some parts of their target areas. In consequence, the design of routing protocols should consider not only energy efficiency paths, but also energy efficient algorithms in general. In this paper we propose an energy efficient routing protocol for wireless sensor networks without the support of any location information system. The reliability and the efficiency of this protocol have been demonstrated by simulation studies where we compare them to the legacy protocols. Our simulation results show that these algorithms scale well with network size and density.Keywords: Data-centric storage, Dynamic Address Allocation, Sensor networks, Smart Grid Communications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18552445 Adaptive Early Packet Discarding Policy Based on Two Traffic Classes
Authors: Rawya Rizk, Rehab Abdel-Kader, Rabab Ramadan
Abstract:
Unlike the best effort service provided by the internet today, next-generation wireless networks will support real-time applications. This paper proposes an adaptive early packet discard (AEPD) policy to improve the performance of the real time TCP traffic over ATM networks and avoid the fragmentation problem. Three main aspects are incorporated in the proposed policy. First, providing quality-of-service (QoS) guaranteed for real-time applications by implementing a priority scheduling. Second, resolving the partially corrupted packets problem by differentiating the buffered cells of one packet from another. Third, adapting a threshold dynamically using Fuzzy logic based on the traffic behavior to maintain a high throughput under a variety of load conditions. The simulation is run for two priority classes of the input traffic: real time and non-real time classes. Simulation results show that the proposed AEPD policy improves throughput and fairness over that using static threshold under the same traffic conditions.Keywords: Early packet discard, Fuzzy logic, packet dropping policies, quality-of-service (QoS), TCP over ATM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14302444 Wind Diesel Hybrid System without Battery Energy Storage Using Imperialist Competitive Algorithm
Authors: H. Rezvani, A. Hekmati
Abstract:
Nowadays, the use of renewable energy sources has been increasingly great because of the cost increase and public demand for clean energy sources. One of the fastest growing sources is wind energy. In this paper, Wind Diesel Hybrid System (WDHS) comprising a Diesel Generator (DG), a Wind Turbine Generator (WTG), the Consumer Load, a Battery-based Energy Storage System (BESS), and a Dump Load (DL) is used. Voltage is controlled by Diesel Generator; the frequency is controlled by BESS and DL. The BESS elimination is an efficient way to reduce maintenance cost and increase the dynamic response. Simulation results with graphs for the frequency of Power System, active power, and the battery power are presented for load changes. The controlling parameters are optimized by using Imperialist Competitive Algorithm (ICA). The simulation results for the BESS/no BESS cases are compared. Results show that in no BESS case, the frequency control is more optimal than the BESS case by using ICA.
Keywords: Renewable Energy, Wind Diesel System, Induction Generator, Energy Storage, Imperialist Competitive Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25152443 Estimated Production Potential Types of Wind Turbines Connected to the Network Using Random Numbers Simulation
Authors: Saeid Nahi, Seyed Mohammad Hossein Nabavi
Abstract:
Nowadays, power systems, energy generation by wind has been very important. Noting that the production of electrical energy by wind turbines on site to several factors (such as wind speed and profile site for the turbines, especially off the wind input speed, wind rated speed and wind output speed disconnect) is dependent. On the other hand, several different types of turbines in the market there. Therefore, selecting a turbine that its capacity could also answer the need for electric consumers the efficiency is high something is important and necessary. In this context, calculating the amount of wind power to help optimize overall network, system operation, in determining the parameters of wind power is very important. In this article, to help calculate the amount of wind power plant, connected to the national network in the region Manjil wind, selecting the best type of turbine and power delivery profile appropriate to the network using Monte Carlo method has been. In this paper, wind speed data from the wind site in Manjil, as minute and during the year has been. Necessary simulations based on Random Numbers Simulation method and repeat, using the software MATLAB and Excel has been done.Keywords: wind turbine, efficiency, wind turbine work points, Random Numbers, reliability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14132442 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25002441 Genetic Algorithm Based Design of Fuzzy Logic Power System Stabilizers in Multimachine Power System
Authors: Manisha Dubey, Aalok Dubey
Abstract:
This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic algorithm. Incorporation of GA in the design of fuzzy logic power system stabilizer will add an intelligent dimension to the stabilizer and significantly reduces computational time in the design process. It is shown in this paper that the system dynamic performance can be improved significantly by incorporating a genetic-based searching mechanism. To demonstrate the robustness of the genetic based fuzzy logic power system stabilizer (GFLPSS), simulation studies on multimachine system subjected to small perturbation and three-phase fault have been carried out. Simulation results show the superiority and robustness of GA based power system stabilizer as compare to conventionally tuned controller to enhance system dynamic performance over a wide range of operating conditions.Keywords: Dynamic stability, Fuzzy logic power systemstabilizer, Genetic Algorithms, Genetic based power systemstabilizer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27382440 Economic Evaluation Offshore Wind Project under Uncertainly and Risk Circumstances
Authors: Sayed Amir Hamzeh Mirkheshti
Abstract:
Offshore wind energy as a strategic renewable energy, has been growing rapidly due to availability, abundance and clean nature of it. On the other hand, budget of this project is incredibly higher in comparison with other renewable energies and it takes more duration. Accordingly, precise estimation of time and cost is needed in order to promote awareness in the developers and society and to convince them to develop this kind of energy despite its difficulties. Occurrence risks during on project would cause its duration and cost constantly changed. Therefore, to develop offshore wind power, it is critical to consider all potential risks which impacted project and to simulate their impact. Hence, knowing about these risks could be useful for the selection of most influencing strategies such as avoidance, transition, and act in order to decrease their probability and impact. This paper presents an evaluation of the feasibility of 500 MV offshore wind project in the Persian Gulf and compares its situation with uncertainty resources and risk. The purpose of this study is to evaluate time and cost of offshore wind project under risk circumstances and uncertain resources by using Monte Carlo simulation. We analyzed each risk and activity along with their distribution function and their effect on the project.
Keywords: Wind energy project; uncertain resources; risks; Monte Carlo simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8012439 PUMA 560 Optimal Trajectory Control using Genetic Algorithm, Simulated Annealing and Generalized Pattern Search Techniques
Authors: Sufian Ashraf Mazhari, Surendra Kumar
Abstract:
Robot manipulators are highly coupled nonlinear systems, therefore real system and mathematical model of dynamics used for control system design are not same. Hence, fine-tuning of controller is always needed. For better tuning fast simulation speed is desired. Since, Matlab incorporates LAPACK to increase the speed and complexity of matrix computation, dynamics, forward and inverse kinematics of PUMA 560 is modeled on Matlab/Simulink in such a way that all operations are matrix based which give very less simulation time. This paper compares PID parameter tuning using Genetic Algorithm, Simulated Annealing, Generalized Pattern Search (GPS) and Hybrid Search techniques. Controller performances for all these methods are compared in terms of joint space ITSE and cartesian space ISE for tracking circular and butterfly trajectories. Disturbance signal is added to check robustness of controller. GAGPS hybrid search technique is showing best results for tuning PID controller parameters in terms of ITSE and robustness.Keywords: Controller Tuning, Genetic Algorithm, Pattern Search, Robotic Controller, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37212438 3D Numerical Investigation of Asphalt Pavements Behaviour Using Infinite Elements
Authors: K. Sandjak, B. Tiliouine
Abstract:
This article presents the main results of three-dimensional (3-D) numerical investigation of asphalt pavement structures behaviour using a coupled Finite Element-Mapped Infinite Element (FE-MIE) model. The validation and numerical performance of this model are assessed by confronting critical pavement responses with Burmister’s solution and FEM simulation results for multi-layered elastic structures. The coupled model is then efficiently utilised to perform 3-D simulations of a typical asphalt pavement structure in order to investigate the impact of two tire configurations (conventional dual and new generation wide-base tires) on critical pavement response parameters. The numerical results obtained show the effectiveness and the accuracy of the coupled (FE-MIE) model. In addition, the simulation results indicate that, compared with conventional dual tire assembly, single wide base tire caused slightly greater fatigue asphalt cracking and subgrade rutting potentials and can thus be utilised in view of its potential to provide numerous mechanical, economic, and environmental benefits.
Keywords: Infinite elements, 3-D numerical investigation, asphalt pavements, dual and wide base tires.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7202437 Numerical Investigation of Flow Patterns and Thermal Comfort in Air-Conditioned Lecture Rooms
Authors: Taher M. Abou-deif, Mahmoud A. Fouad, Essam E. Khalil
Abstract:
The present paper was concerned primarily with the analysis, simulation of the air flow and thermal patterns in a lecture room. The paper is devoted to numerically investigate the influence of location and number of ventilation and air conditioning supply and extracts openings on air flow properties in a lecture room. The work focuses on air flow patterns, thermal behaviour in lecture room where large number of students. The effectiveness of an air flow system is commonly assessed by the successful removal of sensible and latent loads from occupants with additional of attaining air pollutant at a prescribed level to attain the human thermal comfort conditions and to improve the indoor air quality; this is the main target during the present paper. The study is carried out using computational fluid dynamics (CFD) simulation techniques as embedded in the commercially available CFD code (FLUENT 6.2). The CFD modelling techniques solved the continuity, momentum and energy conservation equations in addition to standard k – ε model equations for turbulence closure. Throughout the investigations, numerical validation is carried out by way of comparisons of numerical and experimental results. Good agreement is found among both predictions.Keywords: Air Conditioning, CFD, Lecture Rooms, Thermal Comfort
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22282436 Study on Planning of Smart GRID using Landscape Ecology
Authors: Sunglim Lee, Susumu Fujii, Koji Okamura
Abstract:
Smart grid is a new approach for electric power grid that uses information and communications technology to control the electric power grid. Smart grid provides real-time control of the electric power grid, controlling the direction of power flow or time of the flow. Control devices are installed on the power lines of the electric power grid to implement smart grid. The number of the control devices should be determined, in relation with the area one control device covers and the cost associated with the control devices. One approach to determine the number of the control devices is to use the data on the surplus power generated by home solar generators. In current implementations, the surplus power is sent all the way to the power plant, which may cause power loss. To reduce the power loss, the surplus power may be sent to a control device and sent to where the power is needed from the control device. Under assumption that the control devices are installed on a lattice of equal size squares, our goal is to figure out the optimal spacing between the control devices, where the power sharing area (the area covered by one control device) is kept small to avoid power loss, and at the same time the power sharing area is big enough to have no surplus power wasted. To achieve this goal, a simulation using landscape ecology method is conducted on a sample area. First an aerial photograph of the land of interest is turned into a mosaic map where each area is colored according to the ratio of the amount of power production to the amount of power consumption in the area. The amount of power consumption is estimated according to the characteristics of the buildings in the area. The power production is calculated by the sum of the area of the roofs shown in the aerial photograph and assuming that solar panels are installed on all the roofs. The mosaic map is colored in three colors, each color representing producer, consumer, and neither. We started with a mosaic map with 100 m grid size, and the grid size is grown until there is no red grid. One control device is installed on each grid, so that the grid is the area which the control device covers. As the result of this simulation we got 350m as the optimal spacing between the control devices that makes effective use of the surplus power for the sample area.
Keywords: Landscape ecology, IT, smart grid, aerial photograph, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19682435 A Study for the Effect of Fire Initiated Location on Evacuation Success Rate
Authors: Jin A Ryu, Ga Ye Kim, Hee Sun Kim
Abstract:
As the number of fire accidents is gradually raising, many studies have been reported on evacuation. Previous studies have mostly focused on evaluating the safety of evacuation and the risk of fire in particular buildings. However, studies on effects of various parameters on evacuation have not been nearly done. Therefore, this paper aims at observing evacuation time under the effect of fire initiated location. In this study, evacuation simulations are performed on a 5-floor building located in Seoul, South Korea using the commercial program, Fire Dynamics Simulator with Evacuation (FDS+EVAC). Only the fourth and fifth floors are modeled with an assumption that fire starts in a room located on the fourth floor. The parameter for evacuation simulations is location of fire initiation to observe the evacuation time and safety. Results show that the location of fire initiation is closer to exit, the more time is taken to evacuate. The case having the nearest location of fire initiation to exit has the lowest ratio of successful occupants to the total occupants. In addition, for safety evaluation, the evacuation time calculated from computer simulation model is compared with the tolerable evacuation time according to code in Japan. As a result, all cases are completed within the tolerable evacuation time. This study allows predicting evacuation time under various conditions of fire and can be used to evaluate evacuation appropriateness and fire safety of building.Keywords: Evacuation safety, Evacuation simulation, FDS+Evac, Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15132434 Modeling Sustainable Truck Rental Operations Using Closed-Loop Supply Chain Network
Authors: Khaled S. Abdallah, Abdel-Aziz M. Mohamed
Abstract:
Moving industries consume numerous resources and dispose masses of used packaging materials. Proper sorting, recycling and disposing the packaging materials is necessary to avoid a sever pollution disaster. This research paper presents a conceptual model to propose sustainable truck rental operations instead of the regular one. An optimization model was developed to select the locations of truck rental centers, collection sites, maintenance and repair sites, and identify the rental fees to be charged for all routes that maximize the total closed supply chain profits. Fixed costs of vehicle purchasing, costs of constructing collection centers and repair centers, as well as the fixed costs paid to use disposal and recycling centers are considered. Operating costs include the truck maintenance, repair costs as well as the cost of recycling and disposing the packing materials, and the costs of relocating the truck are presented in the model. A mixed integer model is developed followed by a simulation model to examine the factors affecting the operation of the model.Keywords: Modeling, truck rental, supply chains management, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823