Search results for: neural network model
8606 A Study on the Cloud Simulation with a Network Topology Generator
Authors: Jun-Kwon Jung, Sung-Min Jung, Tae-Kyung Kim, Tai-Myoung Chung
Abstract:
CloudSim is a useful tool to simulate the cloud environment. It shows the service availability, the power consumption, and the network traffic of services on the cloud environment. Moreover, it supports to calculate a network communication delay through a network topology data easily. CloudSim allows inputting a file of topology data, but it does not provide any generating process. Thus, it needs the file of topology data generated from some other tools. The BRITE is typical network topology generator. Also, it supports various type of topology generating algorithms. If CloudSim can include the BRITE, network simulation for clouds is easier than existing version. This paper shows the potential of connection between BRITE and CloudSim. Also, it proposes the direction to link between them.Keywords: Cloud, simulation, topology, BRITE, network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37778605 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model
Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok
Abstract:
The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.Keywords: Functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8058604 A Neural Network Based Facial Expression Analysis using Gabor Wavelets
Authors: Praseeda Lekshmi.V, Dr.M.Sasikumar
Abstract:
Facial expression analysis is rapidly becoming an area of intense interest in computer science and human-computer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper we present a method to analyze facial expression from images by applying Gabor wavelet transform (GWT) and Discrete Cosine Transform (DCT) on face images. Radial Basis Function (RBF) Network is used to classify the facial expressions. As a second stage, the images are preprocessed to enhance the edge details and non uniform down sampling is done to reduce the computational complexity and processing time. Our method reliably works even with faces, which carry heavy expressions.Keywords: Face Expression, Radial Basis Function, GaborWavelet Transform, Human Computer Interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21058603 A Design of the Infrastructure and Computer Network for Distance Education, Online Learning via New Media, E-Learning and Blended Learning
Authors: Sumitra Nuanmeesri
Abstract:
The research focus on study, analyze and design the model of the infrastructure and computer networks for distance education, online learning via new media, e-learning and blended learning. The collected information from study and analyze process that information was evaluated by the index of item objective congruence (IOC) by 9 specialists to design model. The results of evaluate the model with the mean and standard deviation by the sample of 9 specialists value is 3.85. The results showed that the infrastructure and computer networks are designed to be appropriate to a great extent appropriate to a great extent.
Keywords: Blended Learning, New Media, Infrastructure and Computer Network, Tele-Education, Online Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20248602 Research on the Teaching Quality Evaluation of China’s Network Music Education APP
Authors: Guangzhuang Yu, Chun-Chu Liu
Abstract:
With the advent of the Internet era in recent years, social music education has gradually shifted from the original entity education mode to the mode of entity plus network teaching. No matter for school music education, professional music education or social music education, the teaching quality is the most important evaluation index. Regarding the research on teaching quality evaluation, scholars at home and abroad have contributed a lot of research results on the basis of multiple methods and evaluation subjects. However, to our best knowledge the complete evaluation model for the virtual teaching interaction mode of the emerging network music education Application (APP) has not been established. This research firstly found out the basic dimensions that accord with the teaching quality required by the three parties, constructing the quality evaluation index system; and then, on the basis of expounding the connotation of each index, it determined the weight of each index by using method of fuzzy analytic hierarchy process, providing ideas and methods for scientific, objective and comprehensive evaluation of the teaching quality of network education APP.
Keywords: Network music education APP, teaching quality evaluation, index, connotation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8438601 A Numerical Strategy to Design Maneuverable Micro-Biomedical Swimming Robots Based on Biomimetic Flagellar Propulsion
Authors: Arash Taheri, Meysam Mohammadi-Amin, Seyed Hossein Moosavy
Abstract:
Medical applications are among the most impactful areas of microrobotics. The ultimate goal of medical microrobots is to reach currently inaccessible areas of the human body and carry out a host of complex operations such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases at their very early stages. Miniature, safe and efficient propulsion systems hold the key to maturing this technology but they pose significant challenges. A new type of propulsion developed recently, uses multi-flagella architecture inspired by the motility mechanism of prokaryotic microorganisms. There is a lack of efficient methods for designing this type of propulsion system. The goal of this paper is to overcome the lack and this way, a numerical strategy is proposed to design multi-flagella propulsion systems. The strategy is based on the implementation of the regularized stokeslet and rotlet theory, RFT theory and new approach of “local corrected velocity". The effects of shape parameters and angular velocities of each flagellum on overall flow field and on the robot net forces and moments are considered. Then a multi-layer perceptron artificial neural network is designed and employed to adjust the angular velocities of the motors for propulsion control. The proposed method applied successfully on a sample configuration and useful demonstrative results is obtained.Keywords: Artificial Neural Network, Biomimetic Microrobots, Flagellar Propulsion, Swimming Robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19098600 Computer Aided Diagnosis of Polycystic Kidney Disease Using ANN
Authors: Anjan Babu G, Sumana G, Rajasekhar M
Abstract:
Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multilayered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Further, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.
Keywords: Dialysis, Hereditary, Transplantation, Polycystic, Pathogenesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20028599 An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks
Authors: N. M. Nawi, R. S. Ransing, M. R. Ransing
Abstract:
The conjugate gradient optimization algorithm is combined with the modified back propagation algorithm to yield a computationally efficient algorithm for training multilayer perceptron (MLP) networks (CGFR/AG). The computational efficiency is enhanced by adaptively modifying initial search direction as described in the following steps: (1) Modification on standard back propagation algorithm by introducing a gain variation term in the activation function, (2) Calculation of the gradient descent of error with respect to the weights and gains values and (3) the determination of a new search direction by using information calculated in step (2). The performance of the proposed method is demonstrated by comparing accuracy and computation time with the conjugate gradient algorithm used in MATLAB neural network toolbox. The results show that the computational efficiency of the proposed method was better than the standard conjugate gradient algorithm.
Keywords: Adaptive gain variation, back-propagation, activation function, conjugate gradient, search direction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15208598 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE
Abstract:
This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.Keywords: SiC MPS Diode, electro-thermal, SPICE Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19588597 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout
Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati
Abstract:
Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.Keywords: Metabolic network, gene knockout, flux balance analysis, microarray data, integration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9958596 Fast Forecasting of Stock Market Prices by using New High Speed Time Delay Neural Networks
Authors: Hazem M. El-Bakry, Nikos Mastorakis
Abstract:
Fast forecasting of stock market prices is very important for strategic planning. In this paper, a new approach for fast forecasting of stock market prices is presented. Such algorithm uses new high speed time delay neural networks (HSTDNNs). The operation of these networks relies on performing cross correlation in the frequency domain between the input data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented HSTDNNs is less than that needed by traditional time delay neural networks (TTDNNs). Simulation results using MATLAB confirm the theoretical computations.Keywords: Fast Forecasting, Stock Market Prices, Time Delay NeuralNetworks, Cross Correlation, Frequency Domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20678595 Improved Exponential Stability Analysis for Delayed Recurrent Neural Networks
Authors: Miaomiao Yang, Shouming Zhong
Abstract:
This paper studies the problem of exponential stability analysis for recurrent neural networks with time-varying delay.By establishing a suitable augmented LyapunovCKrasovskii function and a novel sufficient condition is obtained to guarantee the exponential stability of the considered system.In order to get a less conservative results of the condition,zero equalities and reciprocally convex approach are employed. The several exponential stability criterion proposed in this paper is simpler and effective. A numerical example is provided to demonstrate the feasibility and effectiveness of our results.
Keywords: Exponential stability , Neural networks, Linear matrix inequality, Lyapunov-Krasovskii, Time-varying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17658594 Software Effort Estimation Using Soft Computing Techniques
Authors: Parvinder S. Sandhu, Porush Bassi, Amanpreet Singh Brar
Abstract:
Various models have been derived by studying large number of completed software projects from various organizations and applications to explore how project sizes mapped into project effort. But, still there is a need to prediction accuracy of the models. As Neuro-fuzzy based system is able to approximate the non-linear function with more precision. So, Neuro-Fuzzy system is used as a soft computing approach to generate model by formulating the relationship based on its training. In this paper, Neuro-Fuzzy technique is used for software estimation modeling of on NASA software project data and performance of the developed models are compared with the Halstead, Walston-Felix, Bailey-Basili and Doty Models mentioned in the literature.
Keywords: Effort Estimation, Neural-Fuzzy Model, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20748593 Analysing of Indoor Radio Wave Propagation on Ad-hoc Network by Using TP-LINK Router
Authors: Khine Phyu, Aung Myint Aye
Abstract:
This paper presents results of measurements campaign carried out at a carrier frequency of 24GHz with the help of TPLINK router in indoor line-of-sight (LOS) scenarios. Firstly, the radio wave propagation strategies are analyzed in some rooms with router of point to point Ad hoc network. Then floor attenuation is defined for 3 floors in experimental region. The free space model and dual slope models are modified by considering the influence of corridor conditions on each floor. Using these models, indoor signal attenuation can be estimated in modeling of indoor radio wave propagation. These results and modified models can also be used in planning the networks of future personal communications services.Keywords: radio wave signal analyzing, LOS radio wavepropagation, indoor radio wave propagation, free space model, tworay model and indoor attenuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20168592 Stochastic Learning Algorithms for Modeling Human Category Learning
Authors: Toshihiko Matsuka, James E. Corter
Abstract:
Most neural network (NN) models of human category learning use a gradient-based learning method, which assumes that locally-optimal changes are made to model parameters on each learning trial. This method tends to under predict variability in individual-level cognitive processes. In addition many recent models of human category learning have been criticized for not being able to replicate rapid changes in categorization accuracy and attention processes observed in empirical studies. In this paper we introduce stochastic learning algorithms for NN models of human category learning and show that use of the algorithms can result in (a) rapid changes in accuracy and attention allocation, and (b) different learning trajectories and more realistic variability at the individual-level.Keywords: category learning, cognitive modeling, radial basis function, stochastic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16288591 Social Network Management Enhances Customer Relationship
Authors: Srisawas Siriporn, Rotchanakitumnuai Siriluck
Abstract:
The study aims to develop a framework of social network management to enhance customer relationship. Social network management of this research is derived from social network site management, individual and organization social network usage motivation. The survey was conducted with organization employees who have used social network to interact with customers. The results reveal that content, link, privacy and security, page design and interactivity are the major issues of social network site management. Content, link, privacy and security, individual and organization motivation have major impacts on encouraging business knowledge sharing among employees. Moreover, Page design and interactivity, content, organization motivation and knowledge sharing can improve customer relationships.Keywords: Social network management, social network site, motivation, knowledge sharing, customer relationship
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21528590 Fractal - Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan Lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for preprocessing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based preprocessing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.
Keywords: Wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20608589 Neuroplasticity: A Fresh Beginning for Life
Authors: Leila Maleki, Ezatollah Ahmadi
Abstract:
Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. This paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture.
Keywords: Neuroplasticity, Cognitive plasticity, Plasticity theories, Plasticity mechanisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25488588 Design of Distribution Network for Gas Cylinders in Jordan
Authors: Hazem J. Smadi
Abstract:
Performance of a supply chain is directly related to a distribution network that entails the location of storing materials or products and how products are delivered to the end customer through different stages in the supply chain. This study analyses the current distribution network used for delivering gas cylinders to end customer in Jordan. Evaluation of current distribution has been conducted across customer service components. A modification on the current distribution network in terms of central warehousing in each city in the country improves the response time and customer experience.
Keywords: Distribution network, gas cylinder, Jordan, supply chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16938587 OCR for Script Identification of Hindi (Devnagari) Numerals using Error Diffusion Halftoning Algorithm with Neural Classifier
Authors: Banashree N. P., Andhe Dharani, R. Vasanta, P. S. Satyanarayana
Abstract:
The applications on numbers are across-the-board that there is much scope for study. The chic of writing numbers is diverse and comes in a variety of form, size and fonts. Identification of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], machine printed or handwritten characters/numerals are recognized. There are plentiful approaches that deal with problem of detection of numerals/character depending on the sort of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent our work focused on a technique in feature extraction i.e. Local-based approach, a method using 16-segment display concept, which is extracted from halftoned images & Binary images of isolated numerals. These feature vectors are fed to neural classifier model that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. Experimentation result shows that recognition rate of halftoned images is 98 % compared to binary images (95%).
Keywords: OCR, Halftoning, Neural classifier, 16-segmentdisplay concept.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17158586 Enhanced Ant Colony Based Algorithm for Routing in Mobile Ad Hoc Network
Authors: Cauvery N. K., K. V. Viswanatha
Abstract:
Mobile Ad hoc network consists of a set of mobile nodes. It is a dynamic network which does not have fixed topology. This network does not have any infrastructure or central administration, hence it is called infrastructure-less network. The change in topology makes the route from source to destination as dynamic fixed and changes with respect to time. The nature of network requires the algorithm to perform route discovery, maintain route and detect failure along the path between two nodes [1]. This paper presents the enhancements of ARA [2] to improve the performance of routing algorithm. ARA [2] finds route between nodes in mobile ad-hoc network. The algorithm is on-demand source initiated routing algorithm. This is based on the principles of swarm intelligence. The algorithm is adaptive, scalable and favors load balancing. The improvements suggested in this paper are handling of loss ants and resource reservation.Keywords: Ad hoc networks, On-demand routing, Swarmintelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18338585 Hypergraph Models of Metabolism
Authors: Nicole Pearcy, Jonathan J. Crofts, Nadia Chuzhanova
Abstract:
In this paper, we employ a directed hypergraph model to investigate the extent to which environmental variability influences the set of available biochemical reactions within a living cell. Such an approach avoids the limitations of the usual complex network formalism by allowing for the multilateral relationships (i.e. connections involving more than two nodes) that naturally occur within many biological processes. More specifically, we extend the concept of network reciprocity to complex hyper-networks, thus enabling us to characterise a network in terms of the existence of mutual hyper-connections, which may be considered a proxy for metabolic network complexity. To demonstrate these ideas, we study 115 metabolic hyper-networks of bacteria, each of which can be classified into one of 6 increasingly varied habitats. In particular, we found that reciprocity increases significantly with increased environmental variability, supporting the view that organism adaptability leads to increased complexities in the resultant biochemical networks.
Keywords: Complexity, hypergraphs, reciprocity, metabolism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24518584 A New Self-Adaptive EP Approach for ANN Weights Training
Authors: Kristina Davoian, Wolfram-M. Lippe
Abstract:
Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.Keywords: Artificial Neural Networks (ANN), Learning Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18278583 Stability Criteria for Uncertainty Markovian Jumping Parameters of BAM Neural Networks with Leakage and Discrete Delays
Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong
Abstract:
In this paper, the problem of stability criteria for Markovian jumping BAM neural networks with leakage and discrete delays has been investigated. Some new sufficient condition are derived based on a novel Lyapunov-Krasovskii functional approach. These new criteria based on delay partitioning idea are proved to be less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, one numerical example is given to illustrate the the usefulness and feasibility of the proposed main results.
Keywords: Stability, Markovian jumping neural networks, Timevarying delays, Linear matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51398582 Artificial Neural Networks for Identification and Control of a Lab-Scale Distillation Column Using LABVIEW
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco
Abstract:
LABVIEW is a graphical programming language that has its roots in automation control and data acquisition. In this paper we have utilized this platform to provide a powerful toolset for process identification and control of nonlinear systems based on artificial neural networks (ANN). This tool has been applied to the monitoring and control of a lab-scale distillation column DELTALAB DC-SP. The proposed control scheme offers high speed of response for changes in set points and null stationary error for dual composition control and shows robustness in presence of externally imposed disturbance.
Keywords: Distillation, neural networks, LABVIEW, monitoring, identification, control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29188581 Delay-Dependent Stability Analysis for Neutral Type Neural Networks with Uncertain Parameters and Time-Varying Delay
Authors: Qingqing Wang, Shouming Zhong
Abstract:
In this paper, delay-dependent stability analysis for neutral type neural networks with uncertain paramters and time-varying delay is studied. By constructing new Lyapunov-Krasovskii functional and dividing the delay interval into multiple segments, a novel sufficient condition is established to guarantee the globally asymptotically stability of the considered system. Finally, a numerical example is provided to illustrate the usefulness of the proposed main results.
Keywords: Neutral type neural networks, Time-varying delay, Stability, Linear matrix inequality(LMI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18188580 Stability Analysis of Impulsive BAM Fuzzy Cellular Neural Networks with Distributed Delays and Reaction-diffusion Terms
Authors: Xinhua Zhang, Kelin Li
Abstract:
In this paper, a class of impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms is formulated and investigated. By employing the delay differential inequality and inequality technique developed by Xu et al., some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.
Keywords: Bi-directional associative memory, fuzzy cellular neuralnetworks, reaction-diffusion, delays, impulses, global exponentialstability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15428579 An Approach for Reducing the Computational Complexity of LAMSTAR Intrusion Detection System using Principal Component Analysis
Authors: V. Venkatachalam, S. Selvan
Abstract:
The security of computer networks plays a strategic role in modern computer systems. Intrusion Detection Systems (IDS) act as the 'second line of defense' placed inside a protected network, looking for known or potential threats in network traffic and/or audit data recorded by hosts. We developed an Intrusion Detection System using LAMSTAR neural network to learn patterns of normal and intrusive activities, to classify observed system activities and compared the performance of LAMSTAR IDS with other classification techniques using 5 classes of KDDCup99 data. LAMSAR IDS gives better performance at the cost of high Computational complexity, Training time and Testing time, when compared to other classification techniques (Binary Tree classifier, RBF classifier, Gaussian Mixture classifier). we further reduced the Computational Complexity of LAMSTAR IDS by reducing the dimension of the data using principal component analysis which in turn reduces the training and testing time with almost the same performance.Keywords: Binary Tree Classifier, Gaussian Mixture, IntrusionDetection System, LAMSTAR, Radial Basis Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17468578 A Taxonomy of Routing Protocols in Wireless Sensor Networks
Authors: A. Kardi, R. Zagrouba, M. Alqahtani
Abstract:
The Internet of Everything (IoE) presents today a very attractive and motivating field of research. It is basically based on Wireless Sensor Networks (WSNs) in which the routing task is the major analysis topic. In fact, it directly affects the effectiveness and the lifetime of the network. This paper, developed from recent works and based on extensive researches, proposes a taxonomy of routing protocols in WSNs. Our main contribution is that we propose a classification model based on nine classes namely application type, delivery mode, initiator of communication, network architecture, path establishment (route discovery), network topology (structure), protocol operation, next hop selection and latency-awareness and energy-efficient routing protocols. In order to provide a total classification pattern to serve as reference for network designers, each class is subdivided into possible subclasses, presented, and discussed using different parameters such as purposes and characteristics.
Keywords: WSNs, sensor, routing protocols, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10398577 Novel Adaptive Channel Equalization Algorithms by Statistical Sampling
Authors: János Levendovszky, András Oláh
Abstract:
In this paper, novel statistical sampling based equalization techniques and CNN based detection are proposed to increase the spectral efficiency of multiuser communication systems over fading channels. Multiuser communication combined with selective fading can result in interferences which severely deteriorate the quality of service in wireless data transmission (e.g. CDMA in mobile communication). The paper introduces new equalization methods to combat interferences by minimizing the Bit Error Rate (BER) as a function of the equalizer coefficients. This provides higher performance than the traditional Minimum Mean Square Error equalization. Since the calculation of BER as a function of the equalizer coefficients is of exponential complexity, statistical sampling methods are proposed to approximate the gradient which yields fast equalization and superior performance to the traditional algorithms. Efficient estimation of the gradient is achieved by using stratified sampling and the Li-Silvester bounds. A simple mechanism is derived to identify the dominant samples in real-time, for the sake of efficient estimation. The equalizer weights are adapted recursively by minimizing the estimated BER. The near-optimal performance of the new algorithms is also demonstrated by extensive simulations. The paper has also developed a (Cellular Neural Network) CNN based approach to detection. In this case fast quadratic optimization has been carried out by t, whereas the task of equalizer is to ensure the required template structure (sparseness) for the CNN. The performance of the method has also been analyzed by simulations.
Keywords: Cellular Neural Network, channel equalization, communication over fading channels, multiuser communication, spectral efficiency, statistical sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519