Search results for: computer networks
2135 Improved Dynamic Bayesian Networks Applied to Arabic on Line Characters Recognition
Authors: Redouane Tlemsani, Abdelkader Benyettou
Abstract:
Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology.
This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data.
Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables.
In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization.
The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.
Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17842134 REDD: Reliable Energy-Efficient Data Dissemination in Wireless Sensor Networks with Multiple Mobile Sinks
Authors: K. Singh, T. P. Sharma
Abstract:
In wireless sensor network (WSN) the use of mobile sink has been attracting more attention in recent times. Mobile sinks are more effective means of balancing load, reducing hotspot problem and elongating network lifetime. The sensor nodes in WSN have limited power supply, computational capability and storage and therefore for continuous data delivery reliability becomes high priority in these networks. In this paper, we propose a Reliable Energy-efficient Data Dissemination (REDD) scheme for WSNs with multiple mobile sinks. In this strategy, sink first determines the location of source and then directly communicates with the source using geographical forwarding. Every forwarding node (FN) creates a local zone comprising some sensor nodes that can act as representative of FN when it fails. Analytical and simulation study reveals significant improvement in energy conservation and reliable data delivery in comparison to existing schemes.Keywords: Energy Efficient, REED, Sink Mobility, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19432133 Intelligent Control of Robotized Workcell by Augmented Reality Application
Authors: L. Novakova-Marcincinova, J. Novak-Marcincin, M. Janak
Abstract:
The computer aided for design, analysis, control, visualization and simulation of robotized workcells is very interesting in this time. Computer Aided Robot Control (CARC) is a subsystem of the system CIM including the computer aided systems of all activities connected with visualization and working of robotized workcells. There are three basic ideas: current CAD/CAM/CAE systems for design and 3D visualization, special PC based control and simulation systems and Augmented Reality Aided Manufacturing (ARAM) systems. This paper describes example of Open Source software application that can to be utilized at planning of the robotized workcells, visualization and off-line programming the automated processes realized by authors.
Keywords: Intelligent control, augmented reality, robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17622132 Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution
Authors: Asar Khan, Peter D. Widdop, Andrew J. Day, Aliaster S. Wood, Steve, R. Mounce, John Machell
Abstract:
This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.Keywords: Detection, leakage, neural networks, sensors, water distribution networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17482131 A New Self-Adaptive EP Approach for ANN Weights Training
Authors: Kristina Davoian, Wolfram-M. Lippe
Abstract:
Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.Keywords: Artificial Neural Networks (ANN), Learning Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18302130 Evaluating the Perception of Roma in Europe through Social Network Analysis
Authors: Giulia I. Pintea
Abstract:
The Roma people are a nomadic ethnic group native to India, and they are one of the most prevalent minorities in Europe. In the past, Roma were enslaved and they were imprisoned in concentration camps during the Holocaust; today, Roma are subject to hate crimes and are denied access to healthcare, education, and proper housing. The aim of this project is to analyze how the public perception of the Roma people may be influenced by antiziganist and pro-Roma institutions in Europe. In order to carry out this project, we used social network analysis to build two large social networks: The antiziganist network, which is composed of institutions that oppress and racialize Roma, and the pro-Roma network, which is composed of institutions that advocate for and protect Roma rights. Measures of centrality, density, and modularity were obtained to determine which of the two social networks is exerting the greatest influence on the public’s perception of Roma in European societies. Furthermore, data on hate crimes on Roma were gathered from the Organization for Security and Cooperation in Europe (OSCE). We analyzed the trends in hate crimes on Roma for several European countries for 2009-2015 in order to see whether or not there have been changes in the public’s perception of Roma, thus helping us evaluate which of the two social networks has been more influential. Overall, the results suggest that there is a greater and faster exchange of information in the pro-Roma network. However, when taking the hate crimes into account, the impact of the pro-Roma institutions is ambiguous, due to differing patterns among European countries, suggesting that the impact of the pro-Roma network is inconsistent. Despite antiziganist institutions having a slower flow of information, the hate crime patterns also suggest that the antiziganist network has a higher impact on certain countries, which may be due to institutions outside the political sphere boosting the spread of antiziganist ideas and information to the European public.
Keywords: Applied mathematics, oppression, Roma people, social network analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9972129 Massive Lesions Classification using Features based on Morphological Lesion Differences
Authors: U. Bottigli, D.Cascio, F. Fauci, B. Golosio, R. Magro, G.L. Masala, P. Oliva, G. Raso, S.Stumbo
Abstract:
Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based on morphological lesion differences. Some classifiers as a Feed Forward Neural Network, a K-Nearest Neighbours and a Support Vector Machine are used to distinguish the pathological records from the healthy ones. The results obtained in terms of sensitivity (percentage of pathological ROIs correctly classified) and specificity (percentage of non-pathological ROIs correctly classified) will be presented through the Receive Operating Characteristic curve (ROC). In particular the best performances are 88% ± 1 of area under ROC curve obtained with the Feed Forward Neural Network.Keywords: Neural Networks, K-Nearest Neighbours, SupportVector Machine, Computer Aided Diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13862128 A Computer Model of Quantum Field Theory
Authors: Hans H. Diel
Abstract:
This paper describes a computer model of Quantum Field Theory (QFT), referred to in this paper as QTModel. After specifying the initial configuration for a QFT process (e.g. scattering) the model generates the possible applicable processes in terms of Feynman diagrams, the equations for the scattering matrix, and evaluates probability amplitudes for the scattering matrix and cross sections. The computations of probability amplitudes are performed numerically. The equations generated by QTModel are provided for demonstration purposes only. They are not directly used as the base for the computations of probability amplitudes. The computer model supports two modes for the computation of the probability amplitudes: (1) computation according to standard QFT, and (2) computation according to a proposed functional interpretation of quantum theory.
Keywords: Computational Modeling, Simulation of Quantum Theory, Quantum Field Theory, Quantum Electrodynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18182127 Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware
Authors: A. Pedram, M. R. Jamali, T. Pedram, S. M. Fakhraie, C. Lucas
Abstract:
Local Linear Neuro-Fuzzy Models (LLNFM) like other neuro- fuzzy systems are adaptive networks and provide robust learning capabilities and are widely utilized in various applications such as pattern recognition, system identification, image processing and prediction. Local linear model tree (LOLIMOT) is a type of Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its efficiency compared with other neuro fuzzy networks in learning the nonlinear systems and pattern recognition. In this paper, a dedicated reconfigurable and parallel processing hardware for LOLIMOT algorithm and its applications are presented. This hardware realizes on-chip learning which gives it the capability to work as a standalone device in a system. The synthesis results on FPGA platforms show its potential to improve the speed at least 250 of times faster than software implemented algorithms.
Keywords: LOLIMOT, hardware, neurofuzzy systems, reconfigurable, parallel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38922126 Identification of Aircraft Gas Turbine Engines Temperature Condition
Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.
Abstract:
Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.
Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16612125 FWM Aware Fuzzy Dynamic Routing and Wavelength Assignment in Transparent Optical Networks
Authors: Debajyoti Mishra, Urmila Bhanja
Abstract:
In this paper, a novel fuzzy approach is developed while solving the Dynamic Routing and Wavelength Assignment (DRWA) problem in optical networks with Wavelength Division Multiplexing (WDM). In this work, the effect of nonlinear and linear impairments such as Four Wave Mixing (FWM) and amplifier spontaneous emission (ASE) noise are incorporated respectively. The novel algorithm incorporates fuzzy logic controller (FLC) to reduce the effect of FWM noise and ASE noise on a requested lightpath referred in this work as FWM aware fuzzy dynamic routing and wavelength assignment algorithm. The FWM crosstalk products and the static FWM noise power per link are pre computed in order to reduce the set up time of a requested lightpath, and stored in an offline database. These are retrieved during the setting up of a lightpath and evaluated online taking the dynamic parameters like cost of the links into consideration.Keywords: Amplifier spontaneous emission (ASE), Dynamic routing and wavelength assignment, Four wave mixing (FWM), Fuzzy rule based system (FRBS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17372124 A P-SPACE Algorithm for Groebner Bases Computation in Boolean Rings
Authors: Quoc-Nam Tran
Abstract:
The theory of Groebner Bases, which has recently been honored with the ACM Paris Kanellakis Theory and Practice Award, has become a crucial building block to computer algebra, and is widely used in science, engineering, and computer science. It is wellknown that Groebner bases computation is EXP-SPACE in a general setting. In this paper, we give an algorithm to show that Groebner bases computation is P-SPACE in Boolean rings. We also show that with this discovery, the Groebner bases method can theoretically be as efficient as other methods for automated verification of hardware and software. Additionally, many useful and interesting properties of Groebner bases including the ability to efficiently convert the bases for different orders of variables making Groebner bases a promising method in automated verification.Keywords: Algorithm, Complexity, Groebner basis, Applications of Computer Science.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18362123 General Awareness of Teenagers in Information Security
Authors: Magdalena Naplavova, Tomas Ludik, Petr Hruza, Frantisek Bozek
Abstract:
The use of IT equipment has become a part of every day. However, each device that is part of cyberspace should be secured against unauthorized use. It is very important to know the basics of these security devices, but also the basics of safe conduct their owners. This information should be part of every curriculum computer science education in primary and secondary schools. Therefore, the work focuses on the education of pupils in primary and secondary schools on the Internet. Analysis of the current state describes approaches to the education of pupils in security issues on the Internet. The paper presents a questionnaire-based survey which was carried out in the Czech Republic, whose task was to ascertain the level of opinion pupils in primary and secondary schools on the issue of communication in social networks. The research showed that awareness of socio-pathological phenomena on the Internet environment is very low. Based on the results it was proposed appropriate ways of teaching to this issue and its inclusion a proposal of curriculum for primary and secondary schools.
Keywords: Cyberspace, educational system, general awareness, information security, questionnaire, socio-pathological phenomena.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23502122 Identification of Aircraft Gas Turbine Engine's Temperature Condition
Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.
Abstract:
Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.
Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16742121 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator
Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam
Abstract:
This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19782120 Gene Network Analysis of PPAR-γ: A Bioinformatics Approach Using STRING
Authors: S. Bag, S. Ramaiah, P. Anitha, K. M. Kumar, P. Lavanya, V. Sivasakhthi, A. Anbarasu
Abstract:
Gene networks present a graphical view at the level of gene activities and genetic functions and help us to understand complex interactions in a meaningful manner. In the present study, we have analyzed the gene interaction of PPAR-γ (peroxisome proliferator-activated receptor gamma) by search tool for retrieval of interacting genes. We find PPAR-γ is highly networked by genetic interactions with 10 genes: RXRA (retinoid X receptor, alpha), PPARGC1A (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha), NCOA1 (nuclear receptor coactivator 1), NR0B2 (nuclear receptor subfamily 0, group B, member 2), HDAC3 (histone deacetylase 3), MED1 (mediator complex subunit 1), INS (insulin), NCOR2 (nuclear receptor co-repressor 2), PAX8 (paired box 8), ADIPOQ (adiponectin) and it augurs well for the fact that obesity and several other metabolic disorders are inter related.
Keywords: Gene networks, NCOA1, PPARγ, PPARGC1A, RXRA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45472119 Knowledge Representation Based On Interval Type-2 CFCM Clustering
Authors: Myung-Won Lee, Keun-Chang Kwak
Abstract:
This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.
Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26212118 A Fast Sensor Relocation Algorithm in Wireless Sensor Networks
Authors: Yu-Chen Kuo, Shih-Chieh Lin
Abstract:
Sensor relocation is to repair coverage holes caused by node failures. One way to repair coverage holes is to find redundant nodes to replace faulty nodes. Most researches took a long time to find redundant nodes since they randomly scattered redundant nodes around the sensing field. To record the precise position of sensor nodes, most researches assumed that GPS was installed in sensor nodes. However, high costs and power-consumptions of GPS are heavy burdens for sensor nodes. Thus, we propose a fast sensor relocation algorithm to arrange redundant nodes to form redundant walls without GPS. Redundant walls are constructed in the position where the average distance to each sensor node is the shortest. Redundant walls can guide sensor nodes to find redundant nodes in the minimum time. Simulation results show that our algorithm can find the proper redundant node in the minimum time and reduce the relocation time with low message complexity.Keywords: Coverage, distributed algorithm, sensor relocation, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15642117 Segmentation of Lungs from CT Scan Images for Early Diagnosis of Lung Cancer
Authors: Nisar Ahmed Memon, Anwar Majid Mirza, S.A.M. Gilani
Abstract:
Segmentation is an important step in medical image analysis and classification for radiological evaluation or computer aided diagnosis. The CAD (Computer Aided Diagnosis ) of lung CT generally first segment the area of interest (lung) and then analyze the separately obtained area for nodule detection in order to diagnosis the disease. For normal lung, segmentation can be performed by making use of excellent contrast between air and surrounding tissues. However this approach fails when lung is affected by high density pathology. Dense pathologies are present in approximately a fifth of clinical scans, and for computer analysis such as detection and quantification of abnormal areas it is vital that the entire and perfectly lung part of the image is provided and no part, as present in the original image be eradicated. In this paper we have proposed a lung segmentation technique which accurately segment the lung parenchyma from lung CT Scan images. The algorithm was tested against the 25 datasets of different patients received from Ackron Univeristy, USA and AGA Khan Medical University, Karachi, Pakistan.Keywords: Computer Aided Diagnosis, Medical ImageProcessing, Region Growing, Segmentation, Thresholding,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26022116 Health Hazards Related to Computer Use: Experience of the National Institute for Medical Research in Tanzania
Authors: V. P. Mvungi, J. Mcharo, M. E. Mmbuji, L. E. Mgonja, A. Y. Kitua
Abstract:
This paper is based on a study conducted in 2006 to assess the impact of computer usage on health of National Institute for Medical Research (NIMR) staff. NIMR being a research Institute, most of its staff spend substantial part of their working time on computers. There was notion among NIMR staff on possible prolonged computer usage health hazards. Hence, a study was conducted to establish facts and possible mitigation measures. A total of 144 NIMR staff were involved in the study of whom 63.2% were males and 36.8% females aged between 20 and 59 years. All staff cadres were included in the sample. The functions performed by Institute staff using computers includes; data management, proposal development and report writing, research activities, secretarial duties, accounting and administrative duties, on-line information retrieval and online communication through e-mail services. The interviewed staff had been using computers for 1-8 hours a day and for a period ranging from 1 to 20 years. The study has indicated ergonomic hazards for a significant proportion of interviewees (63%) of various kinds ranging from backache to eyesight related problems. The authors highlighted major issues which are substantially applicable in preventing occurrences of computer related problems and they urged NIMR Management and/or the government of Tanzania opts to adapt their practicability.
Keywords: Computers ergonomic hazards, computer usagehealth hazards.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28482115 Improving Location Management in Mobile IPv4 Networks
Authors: Haidar Safa, Hassan Artail, Ahmad Mehio, Hicham Zahr, Ziad Matragi
Abstract:
The Mobile IP Standard has been developed to support mobility over the Internet. This standard contains several drawbacks as in the cases where packets are routed via sub-optimal paths and significant amount of signaling messages is generated due to the home registration procedure which keeps the network aware of the current location of the mobile nodes. Recently, a dynamic hierarchical mobility management strategy for mobile IP networks (DHMIP) has been proposed to reduce home registrations costs. However, this strategy induces a packet delivery delay and increases the risk of packet loss. In this paper, we propose an enhanced version of the dynamic hierarchical strategy that reduces the packet delivery delay and minimizes the risk of packet loss. Preliminary results obtained from simulations are promising. They show that the enhanced version outperforms the original dynamic hierarchical mobility management strategy version.
Keywords: Location management, Mobile IP (MIP), Home Agent, Foreign Agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14502114 Mitigation of ISI for Next Generation Wireless Channels in Outdoor Vehicular Environments
Authors: Mohd. Israil, M. Salim Beg
Abstract:
In order to accommodate various multimedia services, next generation wireless networks are characterized by very high transmission bit rates. Thus, in such systems and networks, the received signal is not only limited by noise but - especially with increasing symbols rate often more significantly by the intersymbol interference (ISI) caused by the time dispersive radio channels such as those are used in this work. This paper deals with the study of the performance of detector for high bit rate transmission on some worst case models of frequency selective fading channels for outdoor mobile radio environments. This paper deals with a number of different wireless channels with different power profiles and different number of resolvable paths. All the radio channels generated in this paper are for outdoor vehicular environments with Doppler spread of 100 Hz. A carrier frequency of 1800 MHz is used and all the channels used in this work are such that they are useful for next generation wireless systems. Schemes for mitigation of ISI with adaptive equalizers of different types have been investigated and their performances have been investigated in terms of BER measured as a function of SNR.Keywords: Mobile channels, Rayleigh Fading, Equalization, NMLD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14252113 A Comparative Study of SVM Classifiers and Artificial Neural Networks Application for Rolling Element Bearing Fault Diagnosis using Wavelet Transform Preprocessing
Authors: Commander Sunil Tyagi
Abstract:
Effectiveness of Artificial Neural Networks (ANN) and Support Vector Machines (SVM) classifiers for fault diagnosis of rolling element bearings are presented in this paper. The characteristic features of vibration signals of rotating driveline that was run in its normal condition and with faults introduced were used as input to ANN and SVM classifiers. Simple statistical features such as standard deviation, skewness, kurtosis etc. of the time-domain vibration signal segments along with peaks of the signal and peak of power spectral density (PSD) are used as features to input the ANN and SVM classifier. The effect of preprocessing of the vibration signal by Discreet Wavelet Transform (DWT) prior to feature extraction is also studied. It is shown from the experimental results that the performance of SVM classifier in identification of bearing condition is better then ANN and pre-processing of vibration signal by DWT enhances the effectiveness of both ANN and SVM classifierKeywords: ANN, Artificial Intelligence, Fault Diagnosis, Pattern Recognition, Rolling Element Bearing, SVM. Wavelet Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21242112 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks
Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin
Abstract:
This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of singleparameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.
Keywords: Hybrid fault diagnosis, Dynamic neural networks, Nonlinear systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22252111 UDCA: An Energy Efficient Clustering Algorithm for Wireless Sensor Network
Authors: Boregowda S.B., Hemanth Kumar A.R. Babu N.V, Puttamadappa C., And H.S Mruthyunjaya
Abstract:
In the past few years, the use of wireless sensor networks (WSNs) potentially increased in applications such as intrusion detection, forest fire detection, disaster management and battle field. Sensor nodes are generally battery operated low cost devices. The key challenge in the design and operation of WSNs is to prolong the network life time by reducing the energy consumption among sensor nodes. Node clustering is one of the most promising techniques for energy conservation. This paper presents a novel clustering algorithm which maximizes the network lifetime by reducing the number of communication among sensor nodes. This approach also includes new distributed cluster formation technique that enables self-organization of large number of nodes, algorithm for maintaining constant number of clusters by prior selection of cluster head and rotating the role of cluster head to evenly distribute the energy load among all sensor nodes.
Keywords: Clustering algorithms, Cluster head, Energy consumption, Sensor nodes, and Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23942110 Computer Aided Language Learning System for Arabic for Second Language Learners
Authors: Osama Abufanas
Abstract:
This paper aims to build an Arabic learning language tool using Flash CS4 professional software with action script 3.0 programming language, based on the Computer Aided Language Learning (CALL) material. An extra intention is to provide a primary tool and focus on learning Arabic as a second language to adults. It contains letters, words and sentences at the first stage. This includes interactive practices, which evaluates learners’ comprehension of the Arabic language. The system was examined and it was found that the language structure was correct and learners were satisfied regarding the system tools. The learners found the system tools efficient and simple to use. The paper's main conclusion illustrates that CALL can be applied without any hesitation to second language learners
Keywords: Arabic Language, Computer Aided Language Learning (CALL), Learner, Material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27322109 Quantifying the Stability of Software Systems via Simulation in Dependency Networks
Authors: Weifeng Pan
Abstract:
The stability of a software system is one of the most important quality attributes affecting the maintenance effort. Many techniques have been proposed to support the analysis of software stability at the architecture, file, and class level of software systems, but little effort has been made for that at the feature (i.e., method and attribute) level. And the assumptions the existing techniques based on always do not meet the practice to a certain degree. Considering that, in this paper, we present a novel metric, Stability of Software (SoS), to measure the stability of object-oriented software systems by software change propagation analysis using a simulation way in software dependency networks at feature level. The approach is evaluated by case studies on eight open source Java programs using different software structures (one employs design patterns versus one does not) for the same object-oriented program. The results of the case studies validate the effectiveness of the proposed metric. The approach has been fully automated by a tool written in Java.Keywords: Software stability, change propagation, design pattern, software maintenance, object-oriented (OO) software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16822108 Methods of Geodesic Distance in Two-Dimensional Face Recognition
Authors: Rachid Ahdid, Said Safi, Bouzid Manaut
Abstract:
In this paper, we present a comparative study of three methods of 2D face recognition system such as: Iso-Geodesic Curves (IGC), Geodesic Distance (GD) and Geodesic-Intensity Histogram (GIH). These approaches are based on computing of geodesic distance between points of facial surface and between facial curves. In this study we represented the image at gray level as a 2D surface in a 3D space, with the third coordinate proportional to the intensity values of pixels. In the classifying step, we use: Neural Networks (NN), K-Nearest Neighbor (KNN) and Support Vector Machines (SVM). The images used in our experiments are from two wellknown databases of face images ORL and YaleB. ORL data base was used to evaluate the performance of methods under conditions where the pose and sample size are varied, and the database YaleB was used to examine the performance of the systems when the facial expressions and lighting are varied.
Keywords: 2D face recognition, Geodesic distance, Iso-Geodesic Curves, Geodesic-Intensity Histogram, facial surface, Neural Networks, K-Nearest Neighbor, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18182107 Detecting and Tracking Vehicles in Airborne Videos
Authors: Hsu-Yung Cheng, Chih-Chang Yu
Abstract:
In this work, we present an automatic vehicle detection system for airborne videos using combined features. We propose a pixel-wise classification method for vehicle detection using Dynamic Bayesian Networks. In spite of performing pixel-wise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. The main novelty of the detection scheme is that the extracted combined features comprise not only pixel-level information but also region-level information. Afterwards, tracking is performed on the detected vehicles. Tracking is performed using efficient Kalman filter with dynamic particle sampling. Experiments were conducted on a wide variety of airborne videos. We do not assume prior information of camera heights, orientation, and target object sizes in the proposed framework. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging dataset.Keywords: Vehicle Detection, Airborne Video, Tracking, Dynamic Bayesian Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15902106 Optimization for Reducing Handoff Latency and Utilization of Bandwidth in ATM Networks
Authors: Pooja, Megha Kulshrestha, V. K. Banga, Parvinder S. Sandhu
Abstract:
To support mobility in ATM networks, a number of technical challenges need to be resolved. The impact of handoff schemes in terms of service disruption, handoff latency, cost implications and excess resources required during handoffs needs to be addressed. In this paper, a one phase handoff and route optimization solution using reserved PVCs between adjacent ATM switches to reroute connections during inter-switch handoff is studied. In the second phase, a distributed optimization process is initiated to optimally reroute handoff connections. The main objective is to find the optimal operating point at which to perform optimization subject to cost constraint with the purpose of reducing blocking probability of inter-switch handoff calls for delay tolerant traffic. We examine the relation between the required bandwidth resources and optimization rate. Also we calculate and study the handoff blocking probability due to lack of bandwidth for resources reserved to facilitate the rapid rerouting.Keywords: Wireless ATM, Mobility, Latency, Optimization rateand Blocking Probability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448