Search results for: WDM networks.
918 A Safety Analysis Method for Multi-Agent Systems
Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller
Abstract:
Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.Keywords: Multi-agent system, safety analysis, safety model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087917 Adaptive Early Packet Discarding Policy Based on Two Traffic Classes
Authors: Rawya Rizk, Rehab Abdel-Kader, Rabab Ramadan
Abstract:
Unlike the best effort service provided by the internet today, next-generation wireless networks will support real-time applications. This paper proposes an adaptive early packet discard (AEPD) policy to improve the performance of the real time TCP traffic over ATM networks and avoid the fragmentation problem. Three main aspects are incorporated in the proposed policy. First, providing quality-of-service (QoS) guaranteed for real-time applications by implementing a priority scheduling. Second, resolving the partially corrupted packets problem by differentiating the buffered cells of one packet from another. Third, adapting a threshold dynamically using Fuzzy logic based on the traffic behavior to maintain a high throughput under a variety of load conditions. The simulation is run for two priority classes of the input traffic: real time and non-real time classes. Simulation results show that the proposed AEPD policy improves throughput and fairness over that using static threshold under the same traffic conditions.Keywords: Early packet discard, Fuzzy logic, packet dropping policies, quality-of-service (QoS), TCP over ATM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425916 Use of Smartphones in 6th and 7th Grade (Elementary Schools) in Istria: Pilot Study
Authors: Maja Ruzic-Baf, Vedrana Keteles, Andrea Debeljuh
Abstract:
Younger and younger children are now using a smartphone, a device which has become ‘a must have’ and the life of children would be almost ‘unthinkable’ without one. Devices are becoming lighter and lighter but offering an array of options and applications as well as the unavoidable access to the Internet, without which it would be almost unusable. Numerous features such as taking of photographs, listening to music, information search on the Internet, access to social networks, usage of some of the chatting and messaging services, are only some of the numerous features offered by ‘smart’ devices. They have replaced the alarm clock, home phone, camera, tablet and other devices. Their use and possession have become a part of the everyday image of young people. Apart from the positive aspects, the use of smartphones has also some downsides. For instance, free time was usually spent in nature, playing, doing sports or other activities enabling children an adequate psychophysiological growth and development. The greater usage of smartphones during classes to check statuses on social networks, message your friends, play online games, are just some of the possible negative aspects of their application. Considering that the age of the population using smartphones is decreasing and that smartphones are no longer ‘foreign’ to children of pre-school age (smartphones are used at home or in coffee shops or shopping centers while waiting for their parents, playing video games often inappropriate to their age), particular attention must be paid to a very sensitive group, the teenagers who almost never separate from their ‘pets’. This paper is divided into two sections, theoretical and empirical ones. The theoretical section gives an overview of the pros and cons of the usage of smartphones, while the empirical section presents the results of a research conducted in three elementary schools regarding the usage of smartphones and, specifically, their usage during classes, during breaks and to search information on the Internet, check status updates and 'likes’ on the Facebook social network.
Keywords: Education, smartphone, social networks, teenagers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524915 Weighted Clustering Coefficient for Identifying Modular Formations in Protein-Protein Interaction Networks
Authors: Zelmina Lubovac, Björn Olsson, Jonas Gamalielsson
Abstract:
This paper describes a novel approach for deriving modules from protein-protein interaction networks, which combines functional information with topological properties of the network. This approach is based on weighted clustering coefficient, which uses weights representing the functional similarities between the proteins. These weights are calculated according to the semantic similarity between the proteins, which is based on their Gene Ontology terms. We recently proposed an algorithm for identification of functional modules, called SWEMODE (Semantic WEights for MODule Elucidation), that identifies dense sub-graphs containing functionally similar proteins. The rational underlying this approach is that each module can be reduced to a set of triangles (protein triplets connected to each other). Here, we propose considering semantic similarity weights of all triangle-forming edges between proteins. We also apply varying semantic similarity thresholds between neighbours of each node that are not neighbours to each other (and hereby do not form a triangle), to derive new potential triangles to include in module-defining procedure. The results show an improvement of pure topological approach, in terms of number of predicted modules that match known complexes.Keywords: Modules, systems biology, protein interactionnetworks, yeast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107914 Q-Net: A Novel QoS Aware Routing Algorithm for Future Data Networks
Authors: Maassoumeh Javadi Baygi, Abdul Rahman B Ramli, Borhanuddin Mohd Ali, Syamsiah Mashohor
Abstract:
The expectation of network performance from the early days of ARPANET until now has been changed significantly. Every day, new advancement in technological infrastructure opens the doors for better quality of service and accordingly level of perceived quality of network services have been increased over the time. Nowadays for many applications, late information has no value or even may result in financial or catastrophic loss, on the other hand, demands for some level of guarantee in providing and maintaining quality of service are ever increasing. Based on this history, having a QoS aware routing system which is able to provide today's required level of quality of service in the networks and effectively adapt to the future needs, seems as a key requirement for future Internet. In this work we have extended the traditional AntNet routing system to support QoS with multiple metrics such as bandwidth and delay which is named Q-Net. This novel scalable QoS routing system aims to provide different types of services in the network simultaneously. Each type of service can be provided for a period of time in the network and network nodes do not need to have any previous knowledge about it. When a type of quality of service is requested, Q-Net will allocate required resources for the service and will guarantee QoS requirement of the service, based on target objectives.Keywords: Quality of Service, Routing, Ant Colony Optimization, Ant-based algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327913 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493912 Enhancing the Performance of Wireless Sensor Networks Using Low Power Design
Authors: N. Mahendran, R. Madhuranthi
Abstract:
Wireless sensor networks (WSNs), are constantly in demand to process information more rapidly with less energy and area cost. Presently, processor based solutions have difficult to achieve high processing speed with low-power consumption. This paper presents a simple and accurate data processing scheme for low power wireless sensor node, based on reduced number of processing element (PE). The presented model provides a simple recursive structure (SRS) to process the sampled data in the wireless sensor environment and to reduce the power consumption in wireless sensor node. Based on this model, to process the incoming samples and produce a smaller amount of data sufficient to reconstruct the original signal. The ModelSim simulator used to simulate SRS structure. Functional simulation is carried out for the validation of the presented architecture. Xilinx Power Estimator (XPE) tool is used to measure the power consumption. The experimental results show the average power consumption of 91 mW; this is 42% improvement compared to the folded tree architecture.Keywords: Power consumption, energy efficiency, low power WSN node, recursive structure, sleep/wake scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014911 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500
Authors: Mustafa Elfituri, Jonathan Cook
Abstract:
Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.
Keywords: Graph computation, Graph500 benchmark, parallel architectures, parallel programming, workload characterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548910 An Efficient Energy Adaptive Hybrid Error Correction Technique for Underwater Wireless Sensor Networks
Authors: Ammar Elyas babiker, M.Nordin B. Zakaria, Hassan Yosif, Samir B. Ibrahim
Abstract:
Variable channel conditions in underwater networks, and variable distances between sensors due to water current, leads to variable bit error rate (BER). This variability in BER has great effects on energy efficiency of error correction techniques used. In this paper an efficient energy adaptive hybrid error correction technique (AHECT) is proposed. AHECT adaptively changes error technique from pure retransmission (ARQ) in a low BER case to a hybrid technique with variable encoding rates (ARQ & FEC) in a high BER cases. An adaptation algorithm depends on a precalculated packet acceptance rate (PAR) look-up table, current BER, packet size and error correction technique used is proposed. Based on this adaptation algorithm a periodically 3-bit feedback is added to the acknowledgment packet to state which error correction technique is suitable for the current channel conditions and distance. Comparative studies were done between this technique and other techniques, and the results show that AHECT is more energy efficient and has high probability of success than all those techniques.Keywords: Underwater communication, wireless sensornetworks, error correction technique, energy efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151909 A Framework for the Design of Green Giga Passive Optical Fiber Access Network in Kuwait
Authors: Ali A. Hammadi
Abstract:
In this work, a practical study on a commissioned Giga Passive Optical Network (GPON) fiber to the home access network in Kuwait is presented. The work covers the framework of the conceptual design of the deployed Passive Optical Networks (PONs), access network, optical fiber cable network distribution, technologies, and standards. The work also describes methodologies applied by system engineers for design of Optical Network Terminals (ONTs) and Optical Line Terminals (OLTs) transceivers with respect to the distance, operating wavelengths, splitting ratios. The results have demonstrated and justified the limitation of transmission distance of a PON link in Fiber to The Premises (FTTP) to not exceed 20 km. Optical Time Domain Reflector (OTDR) test has been carried for this project to confirm compliance with International Telecommunication Union (ITU) specifications regarding the total length of the deployed optical cable, total loss in dB, and loss per km in dB/km with respect to the operating wavelengths. OTDR test results with traces for segments of implemented fiber network will be provided and discussed.
Keywords: Passive optical networks, fiber to the premises, access network, OTDR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067908 Co-tier and Co-channel Interference Avoidance Algorithm for Femtocell Networks
Authors: S. Padmapriya, M. Tamilarasi
Abstract:
Femtocells are regarded as a milestone for next generation cellular networks. As femtocells are deployed in an unplanned manner, there is a chance of assigning same resource to neighboring femtocells. This scenario may induce co-channel interference and may seriously affect the service quality of neighboring femtocells. In addition, the dominant transmit power of a femtocell will induce co-tier interference to neighboring femtocells. Thus to jointly handle co-tier and co-channel interference, we propose an interference-free power and resource block allocation (IFPRBA) algorithm for closely located, closed access femtocells. Based on neighboring list, inter-femto-base station distance and uplink noise power, the IFPRBA algorithm assigns non-interfering power and resource to femtocells. The IFPRBA algorithm also guarantees the quality of service to femtouser based on the knowledge of resource requirement, connection type, and the tolerable delay budget. Simulation result shows that the interference power experienced in IFPRBA algorithm is below the tolerable interference power and hence the overall service success ratio, PRB efficiency and network throughput are maximum when compared to conventional resource allocation framework for femtocell (RAFF) algorithm.
Keywords: Co-channel interference, co-tier interference, femtocells, guaranteed QoS, power optimization, resource assignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466907 Parkinsons Disease Classification using Neural Network and Feature Selection
Authors: Anchana Khemphila, Veera Boonjing
Abstract:
In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.
Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3778906 Image Transmission in Low-Power Networks in Mobile Communications Channel
Authors: M. A. M. El-Bendary, H. Kazimian, A. E. Abo-El-azm, N. A. El-Fishawy, F. El-Samie, F. Shawki
Abstract:
This paper studies a vital issue in wireless communications, which is the transmission of images over Wireless Personal Area Networks (WPANs) through the Bluetooth network. It presents a simple method to improve the efficiency of error control code of old Bluetooth versions over mobile WPANs through Interleaved Error Control Code (IECC) technique. The encoded packets are interleaved by simple block interleaver. Also, the paper presents a chaotic interleaving scheme as a tool against bursts of errors which depends on the chaotic Baker map. Also, the paper proposes using the chaotic interleaver instead of traditional block interleaver with Forward Error Control (FEC) scheme. A comparison study between the proposed and standard techniques for image transmission over a correlated fading channel is presented. Simulation results reveal the superiority of the proposed chaotic interleaving scheme to other schemes. Also, the superiority of FEC with proposed chaotic interleaver to the conventional interleavers with enhancing the security level with chaotic interleaving packetby- packet basis.Keywords: Mobile Bluetooth terminals, WPANs, Jackes' model, Interleaving technique, chaotic interleaver
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935905 A New DIDS Design Based on a Combination Feature Selection Approach
Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman
Abstract:
Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original dataset. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 dataset is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.Keywords: Distributed intrusion detection system, mobile agent, feature selection, Bees Algorithm, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940904 Illumination Invariant Face Recognition using Supervised and Unsupervised Learning Algorithms
Authors: Shashank N. Mathur, Anil K. Ahlawat, Virendra P. Vishwakarma
Abstract:
In this paper, a comparative study of application of supervised and unsupervised learning algorithms on illumination invariant face recognition has been carried out. The supervised learning has been carried out with the help of using a bi-layered artificial neural network having one input, two hidden and one output layer. The gradient descent with momentum and adaptive learning rate back propagation learning algorithm has been used to implement the supervised learning in a way that both the inputs and corresponding outputs are provided at the time of training the network, thus here is an inherent clustering and optimized learning of weights which provide us with efficient results.. The unsupervised learning has been implemented with the help of a modified Counterpropagation network. The Counterpropagation network involves the process of clustering followed by application of Outstar rule to obtain the recognized face. The face recognition system has been developed for recognizing faces which have varying illumination intensities, where the database images vary in lighting with respect to angle of illumination with horizontal and vertical planes. The supervised and unsupervised learning algorithms have been implemented and have been tested exhaustively, with and without application of histogram equalization to get efficient results.Keywords: Artificial Neural Networks, back propagation, Counterpropagation networks, face recognition, learning algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686903 Probabilistic Modeling of Network-induced Delays in Networked Control Systems
Authors: Manoj Kumar, A.K. Verma, A. Srividya
Abstract:
Time varying network induced delays in networked control systems (NCS) are known for degrading control system-s quality of performance (QoP) and causing stability problems. In literature, a control method employing modeling of communication delays as probability distribution, proves to be a better method. This paper focuses on modeling of network induced delays as probability distribution. CAN and MIL-STD-1553B are extensively used to carry periodic control and monitoring data in networked control systems. In literature, methods to estimate only the worst-case delays for these networks are available. In this paper probabilistic network delay model for CAN and MIL-STD-1553B networks are given. A systematic method to estimate values to model parameters from network parameters is given. A method to predict network delay in next cycle based on the present network delay is presented. Effect of active network redundancy and redundancy at node level on network delay and system response-time is also analyzed.Keywords: NCS (networked control system), delay analysis, response-time distribution, worst-case delay, CAN, MIL-STD-1553B, redundancy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770902 Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks
Authors: Tripatjot S. Panag, J. S. Dhillon
Abstract:
The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.Keywords: Coverage, disjoint sets, heuristic, lifetime, scheduling, wireless sensor networks, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841901 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.
Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444900 RadMote: A Mobile Framework for Radiation Monitoring in Nuclear Power Plants
Authors: Javier Barbaran, Manuel Dıaz, Inaki Esteve, Bartolome Rubio
Abstract:
Wireless Sensor Networks (WSNs) have attracted the attention of many researchers. This has resulted in their rapid integration in very different areas such as precision agriculture,environmental monitoring, object and event detection and military surveillance. Due to the current WSN characteristics this technology is specifically useful in industrial areas where security, reliability and autonomy are basic, such as nuclear power plants, chemical plants, and others. In this paper we present a system based on WSNs to monitor environmental conditions around and inside a nuclear power plant, specifically, radiation levels. Sensor nodes, equipped with radiation sensors, are deployed in fixed positions throughout the plant. In addition, plant staff are also equipped with mobile devices with higher capabilities than sensors such as for example PDAs able to monitor radiation levels and other conditions around them. The system enables communication between PDAs, which form a Mobile Ad-hoc Wireless Network (MANET), and allows workers to monitor remote conditions in the plant. It is particularly useful during stoppage periods for inspection or in the event of an accident to prevent risk situations.Keywords: MANETs, Mobile computing, Radiation monitoring, Wireless Sensor Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017899 A Markov Chain Model for Load-Balancing Based and Service Based RAT Selection Algorithms in Heterogeneous Networks
Authors: Abdallah Al Sabbagh
Abstract:
Next Generation Wireless Network (NGWN) is expected to be a heterogeneous network which integrates all different Radio Access Technologies (RATs) through a common platform. A major challenge is how to allocate users to the most suitable RAT for them. An optimized solution can lead to maximize the efficient use of radio resources, achieve better performance for service providers and provide Quality of Service (QoS) with low costs to users. Currently, Radio Resource Management (RRM) is implemented efficiently for the RAT that it was developed. However, it is not suitable for a heterogeneous network. Common RRM (CRRM) was proposed to manage radio resource utilization in the heterogeneous network. This paper presents a user level Markov model for a three co-located RAT networks. The load-balancing based and service based CRRM algorithms have been studied using the presented Markov model. A comparison for the performance of load-balancing based and service based CRRM algorithms is studied in terms of traffic distribution, new call blocking probability, vertical handover (VHO) call dropping probability and throughput.Keywords: Heterogeneous Wireless Network, Markov chain model, load-balancing based and service based algorithm, CRRM algorithms, Beyond 3G network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2486898 Dynamic Routing to Multiple Destinations in IP Networks using Hybrid Genetic Algorithm (DRHGA)
Authors: K. Vijayalakshmi, S. Radhakrishnan
Abstract:
In this paper we have proposed a novel dynamic least cost multicast routing protocol using hybrid genetic algorithm for IP networks. Our protocol finds the multicast tree with minimum cost subject to delay, degree, and bandwidth constraints. The proposed protocol has the following features: i. Heuristic local search function has been devised and embedded with normal genetic operation to increase the speed and to get the optimized tree, ii. It is efficient to handle the dynamic situation arises due to either change in the multicast group membership or node / link failure, iii. Two different crossover and mutation probabilities have been used for maintaining the diversity of solution and quick convergence. The simulation results have shown that our proposed protocol generates dynamic multicast tree with lower cost. Results have also shown that the proposed algorithm has better convergence rate, better dynamic request success rate and less execution time than other existing algorithms. Effects of degree and delay constraints have also been analyzed for the multicast tree interns of search success rate.
Keywords: Dynamic Group membership change, Hybrid Genetic Algorithm, Link / node failure, QoS Parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448897 Quad Tree Decomposition Based Analysis of Compressed Image Data Communication for Lossy and Lossless Using WSN
Authors: N. Muthukumaran, R. Ravi
Abstract:
The Quad Tree Decomposition based performance analysis of compressed image data communication for lossy and lossless through wireless sensor network is presented. Images have considerably higher storage requirement than text. While transmitting a multimedia content there is chance of the packets being dropped due to noise and interference. At the receiver end the packets that carry valuable information might be damaged or lost due to noise, interference and congestion. In order to avoid the valuable information from being dropped various retransmission schemes have been proposed. In this proposed scheme QTD is used. QTD is an image segmentation method that divides the image into homogeneous areas. In this proposed scheme involves analysis of parameters such as compression ratio, peak signal to noise ratio, mean square error, bits per pixel in compressed image and analysis of difficulties during data packet communication in Wireless Sensor Networks. By considering the above, this paper is to use the QTD to improve the compression ratio as well as visual quality and the algorithm in MATLAB 7.1 and NS2 Simulator software tool.
Keywords: Image compression, Compression Ratio, Quad tree decomposition, Wireless sensor networks, NS2 simulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391896 Analysis of Message Authentication in Turbo Coded Halftoned Images using Exit Charts
Authors: Andhe Dharani, P. S. Satyanarayana, Andhe Pallavi
Abstract:
Considering payload, reliability, security and operational lifetime as major constraints in transmission of images we put forward in this paper a steganographic technique implemented at the physical layer. We suggest transmission of Halftoned images (payload constraint) in wireless sensor networks to reduce the amount of transmitted data. For low power and interference limited applications Turbo codes provide suitable reliability. Ensuring security is one of the highest priorities in many sensor networks. The Turbo Code structure apart from providing forward error correction can be utilized to provide for encryption. We first consider the Halftoned image and then the method of embedding a block of data (called secret) in this Halftoned image during the turbo encoding process is presented. The small modifications required at the turbo decoder end to extract the embedded data are presented next. The implementation complexity and the degradation of the BER (bit error rate) in the Turbo based stego system are analyzed. Using some of the entropy based crypt analytic techniques we show that the strength of our Turbo based stego system approaches that found in the OTPs (one time pad).Keywords: Halftoning, Turbo codes, security, operationallifetime, Turbo based stego system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508895 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine
Authors: Hira Lal Gope, Hidekazu Fukai
Abstract:
The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.
Keywords: Convolutional neural networks, coffee bean, peaberry, sorting, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553894 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction
Authors: Talal Alsulaiman, Khaldoun Khashanah
Abstract:
In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent’s attributes. Also, the influence of social networks in the developing of agents interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.Keywords: Artificial stock markets, agent based simulation, bounded rationality, behavioral finance, artificial neural network, interaction, scale-free networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528893 Optical Fish Tracking in Fishways using Neural Networks
Authors: Alvaro Rodriguez, Maria Bermudez, Juan R. Rabuñal, Jeronimo Puertas
Abstract:
One of the main issues in Computer Vision is to extract the movement of one or several points or objects of interest in an image or video sequence to conduct any kind of study or control process. Different techniques to solve this problem have been applied in numerous areas such as surveillance systems, analysis of traffic, motion capture, image compression, navigation systems and others, where the specific characteristics of each scenario determine the approximation to the problem. This paper puts forward a Computer Vision based algorithm to analyze fish trajectories in high turbulence conditions in artificial structures called vertical slot fishways, designed to allow the upstream migration of fish through obstructions in rivers. The suggested algorithm calculates the position of the fish at every instant starting from images recorded with a camera and using neural networks to execute fish detection on images. Different laboratory tests have been carried out in a full scale fishway model and with living fishes, allowing the reconstruction of the fish trajectory and the measurement of velocities and accelerations of the fish. These data can provide useful information to design more effective vertical slot fishways.
Keywords: Computer Vision, Neural Network, Fishway, Fish Trajectory, Tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001892 Robust & Energy Efficient Universal Gates for High Performance Computer Networks at 22nm Process Technology
Authors: M. Geetha Priya, K. Baskaran, S. Srinivasan
Abstract:
Digital systems are said to be constructed using basic logic gates. These gates are the NOR, NAND, AND, OR, EXOR & EXNOR gates. This paper presents a robust three transistors (3T) based NAND and NOR gates with precise output logic levels, yet maintaining equivalent performance than the existing logic structures. This new set of 3T logic gates are based on CMOS inverter and Pass Transistor Logic (PTL). The new universal logic gates are characterized by better speed and lower power dissipation which can be straightforwardly fabricated as memory ICs for high performance computer networks. The simulation tests were performed using standard BPTM 22nm process technology using SYNOPSYS HSPICE. The 3T NAND gate is evaluated using C17 benchmark circuit and 3T NOR is gate evaluated using a D-Latch. According to HSPICE simulation in 22 nm CMOS BPTM process technology under given conditions and at room temperature, the proposed 3T gates shows an improvement of 88% less power consumption on an average over conventional CMOS logic gates. The devices designed with 3T gates will make longer battery life by ensuring extremely low power consumption.
Keywords: Low power, CMOS, pass-transistor, flash memory, logic gates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436891 Delay Preserving Substructures in Wireless Networks Using Edge Difference between a Graph and its Square Graph
Authors: T. N. Janakiraman, J. Janet Lourds Rani
Abstract:
In practice, wireless networks has the property that the signal strength attenuates with respect to the distance from the base station, it could be better if the nodes at two hop away are considered for better quality of service. In this paper, we propose a procedure to identify delay preserving substructures for a given wireless ad-hoc network using a new graph operation G 2 – E (G) = G* (Edge difference of square graph of a given graph and the original graph). This operation helps to analyze some induced substructures, which preserve delay in communication among them. This operation G* on a given graph will induce a graph, in which 1- hop neighbors of any node are at 2-hop distance in the original network. In this paper, we also identify some delay preserving substructures in G*, which are (i) set of all nodes, which are mutually at 2-hop distance in G that will form a clique in G*, (ii) set of nodes which forms an odd cycle C2k+1 in G, will form an odd cycle in G* and the set of nodes which form a even cycle C2k in G that will form two disjoint companion cycles ( of same parity odd/even) of length k in G*, (iii) every path of length 2k+1 or 2k in G will induce two disjoint paths of length k in G*, and (iv) set of nodes in G*, which induces a maximal connected sub graph with radius 1 (which identifies a substructure with radius equal 2 and diameter at most 4 in G). The above delay preserving sub structures will behave as good clusters in the original network.Keywords: Clique, cycles, delay preserving substructures, maximal connected sub graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254890 Dynamic Admission Control Based on Effective Demand for Next Generation Wireless Networks
Authors: Somenath Mukherjee, Rajdeep Ray, Raj Kumar Samanta, Mofazzal H. Khondekar, Gautam Sanyal
Abstract:
In next generation wireless networks (i.e., 4G and beyond), one of the main objectives is to ensure highest level of customer satisfaction in terms of data transfer speed, decrease in cost and delay, non-rejection and no drop of calls, availability of ‘always-on’ connectivity and services, continuity of connected services, hastle-free roaming in addition to the convenience of use of network services from anywhere and anytime. To take care of these requirements effectively, internet service providers (ISPs) and network planners have to go for major capacity enhancement of network resources and at the same time these resources are to be used effectively and efficiently to reduce cost and to increase revenue. In this work, the effective bandwidth available in a Mobile Switching Center (MSC) of a wireless network providing multi-class multimedia services is analyzed. Bandwidth requirement of the users for a customized Quality of Service (QoS) is estimated. The findings of the QoS estimation are applied for the capacity planning and admission control of the multi-class traffic flows coming into the MSC.
Keywords: Next generation wireless network, mobile switching center, multi-class traffic, quality of service, admission control, effective bandwidth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841889 STLF Based on Optimized Neural Network Using PSO
Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi
Abstract:
The quality of short term load forecasting can improve the efficiency of planning and operation of electric utilities. Artificial Neural Networks (ANNs) are employed for nonlinear short term load forecasting owing to their powerful nonlinear mapping capabilities. At present, there is no systematic methodology for optimal design and training of an artificial neural network. One has often to resort to the trial and error approach. This paper describes the process of developing three layer feed-forward large neural networks for short-term load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. Particle Swarm Optimization (PSO) is used to develop the optimum large neural network structure and connecting weights for one-day ahead electric load forecasting problem. PSO is a novel random optimization method based on swarm intelligence, which has more powerful ability of global optimization. Employing PSO algorithms on the design and training of ANNs allows the ANN architecture and parameters to be easily optimized. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. The experimental results show that the proposed method optimized by PSO can quicken the learning speed of the network and improve the forecasting precision compared with the conventional Back Propagation (BP) method. Moreover, it is not only simple to calculate, but also practical and effective. Also, it provides a greater degree of accuracy in many cases and gives lower percent errors all the time for STLF problem compared to BP method. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.
Keywords: Large Neural Network, Short-Term Load Forecasting, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224