Search results for: Similarity detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1864

Search results for: Similarity detection

934 Time-Domain Stator Current Condition Monitoring: Analyzing Point Failures Detection by Kolmogorov-Smirnov (K-S) Test

Authors: Najmeh Bolbolamiri, Maryam Setayesh Sanai, Ahmad Mirabadi

Abstract:

This paper deals with condition monitoring of electric switch machine for railway points. Point machine, as a complex electro-mechanical device, switch the track between two alternative routes. There has been an increasing interest in railway safety and the optimal management of railway equipments maintenance, e.g. point machine, in order to enhance railway service quality and reduce system failure. This paper explores the development of Kolmogorov- Smirnov (K-S) test to detect some point failures (external to the machine, slide chairs, fixing, stretchers, etc), while the point machine (inside the machine) is in its proper condition. Time-domain stator Current signatures of normal (healthy) and faulty points are taken by 3 Hall Effect sensors and are analyzed by K-S test. The test is simulated by creating three types of such failures, namely putting a hard stone and a soft stone between stock rail and switch blades as obstacles and also slide chairs- friction. The test has been applied for those three faults which the results show that K-S test can effectively be developed for the aim of other point failures detection, which their current signatures deviate parametrically from the healthy current signature. K-S test as an analysis technique, assuming that any defect has a specific probability distribution. Empirical cumulative distribution functions (ECDF) are used to differentiate these probability distributions. This test works based on the null hypothesis that ECDF of target distribution is statistically similar to ECDF of reference distribution. Therefore by comparing a given current signature (as target signal) from unknown switch state to a number of template signatures (as reference signal) from known switch states, it is possible to identify which is the most likely state of the point machine under analysis.

Keywords: stator currents monitoring, railway points, point failures, fault detection and diagnosis, Kolmogorov-Smirnov test, time-domain analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
933 Signal Processing Approach to Study Multifractality and Singularity of Solar Wind Speed Time Series

Authors: Tushnik Sarkar, Mofazzal H. Khondekar, Subrata Banerjee

Abstract:

This paper investigates the nature of the fluctuation of the daily average Solar wind speed time series collected over a period of 2492 days, from 1st January, 1997 to 28th October, 2003. The degree of self-similarity and scalability of the Solar Wind Speed signal has been explored to characterise the signal fluctuation. Multi-fractal Detrended Fluctuation Analysis (MFDFA) method has been implemented on the signal which is under investigation to perform this task. Furthermore, the singularity spectra of the signals have been also obtained to gauge the extent of the multifractality of the time series signal.

Keywords: Detrended fluctuation analysis, generalized Hurst exponent, holder exponents, multifractal exponent, multifractal spectrum, singularity spectrum, time series analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
932 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: EIoT, machine learning, anomaly detection, environment monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1027
931 A CBR System to New Product Development: An Application for Hearing Devices Design

Authors: J.L. Castro, K. Benghazi, M.V. Hurtado, M. Navarro, J.M. Zurita

Abstract:

Nowadays, quick technological changes force companies to develop innovative products in an increasingly competitive environment. Therefore, how to enhance the time of new product development is very important. This design problem often lacks the exact formula for getting it, and highly depends upon human designers- past experiences. For these reasons, in this work, a Casebased reasoning (CBR) system to assist in new product development is proposed. When a case is recovered from the case base, the system will take into account not only the attribute-s specific value and how important it is. It will also take into account if the attribute has a positive influence over the product development. Hence the manufacturing time will be improved. This information will be introduced as a new concept called “adaptability". An application to this method for hearing instrument new design illustrates the proposed approach.

Keywords: Case based reasoning, Fuzzy logic, New product development, Retrieval stage, Similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
930 A Model for Bidding Markup Decisions Making based-on Agent Learning

Authors: W. Hou, X. Shan, X. Ye

Abstract:

Bidding is a very important business function to find latent contractors of construction projects. Moreover, bid markup is one of the most important decisions for a bidder to gain a reasonable profit. Since the bidding system is a complex adaptive system, bidding agent need a learning process to get more valuable knowledge for a bid, especially from past public bidding information. In this paper, we proposed an iterative agent leaning model for bidders to make markup decisions. A classifier for public bidding information named PIBS is developed to make full use of history data for classifying new bidding information. The simulation and experimental study is performed to show the validity of the proposed classifier. Some factors that affect the validity of PIBS are also analyzed at the end of this work.

Keywords: bidding markup, decision making, agent learning, information similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
929 Using Spectral Vectors and M-Tree for Graph Clustering and Searching in Graph Databases of Protein Structures

Authors: Do Phuc, Nguyen Thi Kim Phung

Abstract:

In this paper, we represent protein structure by using graph. A protein structure database will become a graph database. Each graph is represented by a spectral vector. We use Jacobi rotation algorithm to calculate the eigenvalues of the normalized Laplacian representation of adjacency matrix of graph. To measure the similarity between two graphs, we calculate the Euclidean distance between two graph spectral vectors. To cluster the graphs, we use M-tree with the Euclidean distance to cluster spectral vectors. Besides, M-tree can be used for graph searching in graph database. Our proposal method was tested with graph database of 100 graphs representing 100 protein structures downloaded from Protein Data Bank (PDB) and we compare the result with the SCOP hierarchical structure.

Keywords: Eigenvalues, m-tree, graph database, protein structure, spectra graph theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
928 MIBiClus: Mutual Information based Biclustering Algorithm

Authors: Neelima Gupta, Seema Aggarwal

Abstract:

Most of the biclustering/projected clustering algorithms are based either on the Euclidean distance or correlation coefficient which capture only linear relationships. However, in many applications, like gene expression data and word-document data, non linear relationships may exist between the objects. Mutual Information between two variables provides a more general criterion to investigate dependencies amongst variables. In this paper, we improve upon our previous algorithm that uses mutual information for biclustering in terms of computation time and also the type of clusters identified. The algorithm is able to find biclusters with mixed relationships and is faster than the previous one. To the best of our knowledge, none of the other existing algorithms for biclustering have used mutual information as a similarity measure. We present the experimental results on synthetic data as well as on the yeast expression data. Biclusters on the yeast data were found to be biologically and statistically significant using GO Tool Box and FuncAssociate.

Keywords: Biclustering, mutual information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
927 Grid-HPA: Predicting Resource Requirements of a Job in the Grid Computing Environment

Authors: M. Bohlouli, M. Analoui

Abstract:

For complete support of Quality of Service, it is better that environment itself predicts resource requirements of a job by using special methods in the Grid computing. The exact and correct prediction causes exact matching of required resources with available resources. After the execution of each job, the used resources will be saved in the active database named "History". At first some of the attributes will be exploit from the main job and according to a defined similarity algorithm the most similar executed job will be exploited from "History" using statistic terms such as linear regression or average, resource requirements will be predicted. The new idea in this research is based on active database and centralized history maintenance. Implementation and testing of the proposed architecture results in accuracy percentage of 96.68% to predict CPU usage of jobs and 91.29% of memory usage and 89.80% of the band width usage.

Keywords: Active Database, Grid Computing, ResourceRequirement Prediction, Scheduling,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
926 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition (HAR) modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view Football datasets. Our HAR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH Multi-view Football datasets, respectively.

Keywords: Computer vision, human motion analysis, random forest, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39
925 Business Buyers’ Expectations in Buyer-Seller Encounters

Authors: Pia I. Hautamäki

Abstract:

Selling has changed. Selling has taken on aspects of relationship marketing and sales force play a critical role in developing long-term relationships between buyers and sellers which is seen to serve the company’s targets and create success for a long run. The purpose of this study was to examine what really matters in buyer-seller encounters and determine what expectations business buyers have. We studied 17 business buyers by a qualitative interview. We found that buyers appreciate encounters where the salesperson face the buyer as a way he or she is as a person, map the real needs to improve buyers’ business and build up cooperation for long-term relationship. This study show that personality matters are a key elements when satisfying business buyers’ expectations.

Keywords: Business-to-Business, Business buyer-seller encounters, Business buyer, Expectations, Perceived similarity, Personal selling, Personality types.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378
924 Emotions in Health Tweets: Analysis of American Government Official Accounts

Authors: García López

Abstract:

The Government Departments of Health have the task of informing and educating citizens about public health issues. For this, they use channels like Twitter, key in the search for health information and the propagation of content. The tweets, important in the virality of the content, may contain emotions that influence the contagion and exchange of knowledge. The goal of this study is to perform an analysis of the emotional projection of health information shared on Twitter by official American accounts: the disease control account CDCgov, National Institutes of Health, NIH, the government agency HHSGov, and the professional organization PublicHealth. For this, we used Tone Analyzer, an International Business Machines Corporation (IBM) tool specialized in emotion detection in text, corresponding to the categorical model of emotion representation. For 15 days, all tweets from these accounts were analyzed with the emotional analysis tool in text. The results showed that their tweets contain an important emotional load, a determining factor in the success of their communications. This exposes that official accounts also use subjective language and contain emotions. The predominance of emotion joy over sadness and the strong presence of emotions in their tweets stimulate the virality of content, a key in the work of informing that government health departments have.

Keywords: Emotions in tweets emotion detection in text, health information on Twitter, American health official accounts, emotions on Twitter, emotions and content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697
923 NOHIS-Tree: High-Dimensional Index Structure for Similarity Search

Authors: Mounira Taileb, Sami Touati

Abstract:

In Content-Based Image Retrieval systems it is important to use an efficient indexing technique in order to perform and accelerate the search in huge databases. The used indexing technique should also support the high dimensions of image features. In this paper we present the hierarchical index NOHIS-tree (Non Overlapping Hierarchical Index Structure) when we scale up to very large databases. We also present a study of the influence of clustering on search time. The performance test results show that NOHIS-tree performs better than SR-tree. Tests also show that NOHIS-tree keeps its performances in high dimensional spaces. We include the performance test that try to determine the number of clusters in NOHIS-tree to have the best search time.

Keywords: High-dimensional indexing, k-nearest neighborssearch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
922 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Authors: Motahar Reza, Rajni Chahal, Neha Sharma

Abstract:

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

Keywords: Boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
921 Context Aware Anomaly Behavior Analysis for Smart Home Systems

Authors: Zhiwen Pan, Jesus Pacheco, Salim Hariri, Yiqiang Chen, Bozhi Liu

Abstract:

The Internet of Things (IoT) will lead to the development of advanced Smart Home services that are pervasive, cost-effective, and can be accessed by home occupants from anywhere and at any time. However, advanced smart home applications will introduce grand security challenges due to the increase in the attack surface. Current approaches do not handle cybersecurity from a holistic point of view; hence, a systematic cybersecurity mechanism needs to be adopted when designing smart home applications. In this paper, we present a generic intrusion detection methodology to detect and mitigate the anomaly behaviors happened in Smart Home Systems (SHS). By utilizing our Smart Home Context Data Structure, the heterogeneous information and services acquired from SHS are mapped in context attributes which can describe the context of smart home operation precisely and accurately. Runtime models for describing usage patterns of home assets are developed based on characterization functions. A threat-aware action management methodology, used to efficiently mitigate anomaly behaviors, is proposed at the end. Our preliminary experimental results show that our methodology can be used to detect and mitigate known and unknown threats, as well as to protect SHS premises and services.

Keywords: Internet of Things, network security, context awareness, intrusion detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
920 Resources-Based Ontology Matching to Access Learning Resources

Authors: A. Elbyed

Abstract:

Nowadays, ontologies are used for achieving a common understanding within a user community and for sharing domain knowledge. However, the de-centralized nature of the web makes indeed inevitable that small communities will use their own ontologies to describe their data and to index their own resources. Certainly, accessing to resources from various ontologies created independently is an important challenge for answering end user queries. Ontology mapping is thus required for combining ontologies. However, mapping complete ontologies at run time is a computationally expensive task. This paper proposes a system in which mappings between concepts may be generated dynamically as the concepts are encountered during user queries. In this way, the interaction itself defines the context in which small and relevant portions of ontologies are mapped. We illustrate application of the proposed system in the context of Technology Enhanced Learning (TEL) where learners need to access to learning resources covering specific concepts.

Keywords: Resources query, ontologies, ontology mapping, similarity measures, semantic web, e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
919 Detection of Legionella pneumophila in Cooling Water Systems of Hospitals and Nursing Homes of Kerman City, Iran by Semi- Nested PCR

Authors: Mohammad Ahmadinejad, Mohammad Reza Shakibaie, Kyvan Shams, Mohammad Khalili

Abstract:

Legionella pneumophila is involved in more than 95% cases of severe atypical pneumonia. Infection is mainly by inhalation the indoor aerosols through the water-coolant systems. Because some Legionella strains may be viable but not culturable, therefore, Taq polymerase, DNA amplification and semi-nested-PCR were carried out to detect Legionella-specific 16S-rDNA sequence. For this purpose, 1.5 litter of water samples from 77 water-coolant system were collected from four different hospitals, two nursing homes and one student hostel in Kerman city of Iran, each in a brand new plastic bottle during summer season of 2006 (from April to August). The samples were filtered in the sterile condition through the Millipore Membrane Filter. DNA was extracted from membrane and used for PCR to detect Legionella spp. The PCR product was then subjected to semi-nested PCR for detection of L. pneumophila. Out of 77 water samples that were tested by PCR, 30 (39%) were positive for most species of Legionella. However, L. pneumophila was detected from 14 (18.2%) water samples by semi-nested PCR. From the above results it can be concluded that water coolant systems of different hospitals and nursing homes in Kerman city of Iran are highly contaminated with L. pneumophila spp. and pose serious concern. So, we recommend avoiding such type of coolant system in the hospitals and nursing homes.

Keywords: Legionella pneumophila, water-coolant system, semi-nested -PCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
918 Performance Analysis of Traffic Classification with Machine Learning

Authors: Htay Htay Yi, Zin May Aye

Abstract:

Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.

Keywords: False negative rate, intrusion detection system, machine learning methods, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
917 Effect of Birks Constant and Defocusing Parameter on Triple-to-Double Coincidence Ratio Parameter in Monte Carlo Simulation-GEANT4

Authors: F. Abubaker, F. Tortorici, M. Capogni, C. Sutera, V. Bellini

Abstract:

This project concerns with the detection efficiency of the portable Triple-to-Double Coincidence Ratio (TDCR) at the National Institute of Metrology of Ionizing Radiation (INMRI-ENEA) which allows direct activity measurement and radionuclide standardization for pure-beta emitter or pure electron capture radionuclides. The dependency of the simulated detection efficiency of the TDCR, by using Monte Carlo simulation Geant4 code, on the Birks factor (kB) and defocusing parameter has been examined especially for low energy beta-emitter radionuclides such as 3H and 14C, for which this dependency is relevant. The results achieved in this analysis can be used for selecting the best kB factor and the defocusing parameter for computing theoretical TDCR parameter value. The theoretical results were compared with the available ones, measured by the ENEA TDCR portable detector, for some pure-beta emitter radionuclides. This analysis allowed to improve the knowledge of the characteristics of the ENEA TDCR detector that can be used as a traveling instrument for in-situ measurements with particular benefits in many applications in the field of nuclear medicine and in the nuclear energy industry.

Keywords: Birks constant, defocusing parameter, GEANT4 code, TDCR parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 521
916 Voice Command Recognition System Based on MFCC and VQ Algorithms

Authors: Mahdi Shaneh, Azizollah Taheri

Abstract:

The goal of this project is to design a system to recognition voice commands. Most of voice recognition systems contain two main modules as follow “feature extraction" and “feature matching". In this project, MFCC algorithm is used to simulate feature extraction module. Using this algorithm, the cepstral coefficients are calculated on mel frequency scale. VQ (vector quantization) method will be used for reduction of amount of data to decrease computation time. In the feature matching stage Euclidean distance is applied as similarity criterion. Because of high accuracy of used algorithms, the accuracy of this voice command system is high. Using these algorithms, by at least 5 times repetition for each command, in a single training session, and then twice in each testing session zero error rate in recognition of commands is achieved.

Keywords: MFCC, Vector quantization, Vocal tract, Voicecommand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3157
915 Test of Moisture Sensor Activation Speed

Authors: I. Parkova, A. Vališevskis, A. Viļumsone

Abstract:

Nocturnal enuresis or bed-wetting is intermittent incontinence during sleep of children after age 5 that may precipitate wide range of behavioral and developmental problems. One of the non-pharmacological treatment methods is the use of a bed-wetting alarm system. In order to improve comfort conditions of nocturnal enuresis alarm system, modular moisture sensor should be replaced by a textile sensor. In this study behavior and moisture detection speed of woven and sewn sensors were compared by analyzing change in electrical resistance after solution (salt water) was dripped on sensor samples. Material of samples has different structure and yarn location, which affects solution detection rate. Sensor system circuit was designed and two sensor tests were performed: system activation test and false alarm test to determine the sensitivity of the system and activation threshold. Sewn sensor had better result in system’s activation test – faster reaction, but woven sensor had better result in system’s false alarm test – it was less sensitive to perspiration simulation. After experiments it was found that the optimum switching threshold is 3V in case of 5V input voltage, which provides protection against false alarms, for example – during intensive sweating.

Keywords: Conductive yarns, moisture textile sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
914 Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)

Authors: Tanwarat Kajsongkram, Saowalux Rotamporn, Sirinat Limbunruang, Sirinan Thubthimthed

Abstract:

High Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20- 60 and 6-18 μg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 μg/ml and for 6S were 0.3672 and 1.2238 μg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results.

Keywords: Ginger, 6-gingerol, HPLC, 6-shogaol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
913 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: Artificial neural networks, digital image processing, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
912 Radiation Effect on Unsteady MHD Flow over a Stretching Surface

Authors: Zanariah Mohd Yusof, Siti Khuzaimah Soid, Ahmad Sukri Abd Aziz, Seripah Awang Kechil

Abstract:

Unsteady magnetohydrodynamics (MHD) boundary layer flow and heat transfer over a continuously stretching surface in the presence of radiation is examined. By similarity transformation, the governing partial differential equations are transformed to a set of ordinary differential equations. Numerical solutions are obtained by employing the Runge-Kutta-Fehlberg method scheme with shooting technique in Maple software environment. The effects of unsteadiness parameter, radiation parameter, magnetic parameter and Prandtl number on the heat transfer characteristics are obtained and discussed. It is found that the heat transfer rate at the surface increases as the Prandtl number and unsteadiness parameter increase but decreases with magnetic and radiation parameter.

Keywords: Heat transfer, magnetohydrodynamics, radiation, unsteadiness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675
911 Implementation of a Motion Detection System

Authors: Asif Ansari, T.C.Manjunath, C. Ardil

Abstract:

In today-s competitive environment, the security concerns have grown tremendously. In the modern world, possession is known to be 9/10-ths of the law. Hence, it is imperative for one to be able to safeguard one-s property from worldly harms such as thefts, destruction of property, people with malicious intent etc. Due to the advent of technology in the modern world, the methodologies used by thieves and robbers for stealing have been improving exponentially. Therefore, it is necessary for the surveillance techniques to also improve with the changing world. With the improvement in mass media and various forms of communication, it is now possible to monitor and control the environment to the advantage of the owners of the property. The latest technologies used in the fight against thefts and destruction are the video surveillance and monitoring. By using the technologies, it is possible to monitor and capture every inch and second of the area in interest. However, so far the technologies used are passive in nature, i.e., the monitoring systems only help in detecting the crime but do not actively participate in stopping or curbing the crime while it takes place. Therefore, we have developed a methodology to detect the motion in a video stream environment and this is an idea to ensure that the monitoring systems not only actively participate in stopping the crime, but do so while the crime is taking place. Hence, a system is used to detect any motion in a live streaming video and once motion has been detected in the live stream, the software will activate a warning system and capture the live streaming video.

Keywords: Motion, Detection, System, Video, Crime, Matlab, Surveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4290
910 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework

Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim

Abstract:

Background modeling and subtraction in video analysis has been widely used as an effective method for moving objects detection in many computer vision applications. Recently, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are the most frequently occurred problems in the practical situation. This paper presents a favorable two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean value of each RGB color channel. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the output of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate very competitive performance compared to previous models.

Keywords: Background subtraction, codebook model, local binary pattern, dynamic background, illumination changes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
909 The Mutated Distance between Two Mixture Trees

Authors: Wan Chian Li, Justie Su-Tzu Juan, Yi-Chun Wang, Shu-Chuan Chen

Abstract:

The evolutionary tree is an important topic in bioinformation. In 2006, Chen and Lindsay proposed a new method to build the mixture tree from DNA sequences. Mixture tree is a new type evolutionary tree, and it has two additional information besides the information of ordinary evolutionary tree. One of the information is time parameter, and the other is the set of mutated sites. In 2008, Lin and Juan proposed an algorithm to compute the distance between two mixture trees. Their algorithm computes the distance with only considering the time parameter between two mixture trees. In this paper, we proposes a method to measure the similarity of two mixture trees with considering the set of mutated sites and develops two algorithm to compute the distance between two mixture trees. The time complexity of these two proposed algorithms are O(n2 × max{h(T1), h(T2)}) and O(n2), respectively

Keywords: evolutionary tree, mixture tree, mutated site, distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
908 Effect of Magnetic Field on Mixed Convection Boundary Layer Flow over an Exponentially Shrinking Vertical Sheet with Suction

Authors: S. S. P. M. Isa, N. M. Arifin, R. Nazar, N. Bachok, F. M. Ali, I. Pop

Abstract:

A theoretical study has been presented to describe the boundary layer flow and heat transfer on an exponentially shrinking sheet with a variable wall temperature and suction, in the presence of magnetic field. The governing nonlinear partial differential equations are converted into ordinary differential equations by similarity transformation, which are then solved numerically using the shooting method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented through graphs and tables for several sets of values of the parameters. The effects of the governing parameters on the flow and heat transfer characteristics are thoroughly examined.

Keywords: Exponentially shrinking sheet, magnetic field, mixed convection, suction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476
907 An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses

Authors: Ki Ok Choi, Sung Ho Hong, Dong Suck Kim, Don Mook Choi

Abstract:

Rack type warehouses are different from general buildings in the kinds, amount, and arrangement of stored goods, so the fire risk of rack type warehouses is different from those buildings. The fire pattern of rack type warehouses is different in combustion characteristic and storing condition of stored goods. The initial fire burning rate is different in the surface condition of materials, but the running time of fire is closely related with the kinds of stored materials and stored conditions. The stored goods of the warehouse are consisted of diverse combustibles, combustible liquid, and so on. Fire detection time may be delayed because the residents are less than office and commercial buildings. If fire detectors installed in rack type warehouses are inadaptable, the fire of the warehouse may be the great fire because of delaying of fire detection. In this paper, we studied what kinds of fire detectors are optimized in early detecting of rack type warehouse fire by real-scale fire tests. The fire detectors used in the tests are rate of rise type, fixed type, photo electric type, and aspirating type detectors. We considered optimum fire detecting method in rack type warehouses suggested by the response characteristic and comparative analysis of the fire detectors.

Keywords: Fire detector, rack, response characteristic, warehouse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984
906 Mixed Convection with Radiation Effect over a Nonlinearly Stretching Sheet

Authors: Kai-Long Hsiao

Abstract:

In this study, an analysis has been performed for free convection with radiation effect over a thermal forming nonlinearly stretching sheet. Parameters n, k0, Pr, G represent the dominance of the nonlinearly effect, radiation effect, heat transfer and free convection effects which have been presented in governing equations, respectively. The similarity transformation and the finite-difference methods have been used to analyze the present problem. From the results, we find that the effects of parameters n, k0, Pr, Ec and G to the nonlinearly stretching sheet. The increase of Prandtl number Pr, free convection parameter G or radiation parameter k0 resulting in the increase of heat transfer effects, but increase of the viscous dissipation number Ec will decrease of heat transfer effect.

Keywords: Nonlinearly stretching sheet, Free convection, Finite-difference, Radiation effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
905 Automatic Text Summarization

Authors: Mohamed Abdel Fattah, Fuji Ren

Abstract:

This work proposes an approach to address automatic text summarization. This approach is a trainable summarizer, which takes into account several features, including sentence position, positive keyword, negative keyword, sentence centrality, sentence resemblance to the title, sentence inclusion of name entity, sentence inclusion of numerical data, sentence relative length, Bushy path of the sentence and aggregated similarity for each sentence to generate summaries. First we investigate the effect of each sentence feature on the summarization task. Then we use all features score function to train genetic algorithm (GA) and mathematical regression (MR) models to obtain a suitable combination of feature weights. The proposed approach performance is measured at several compression rates on a data corpus composed of 100 English religious articles. The results of the proposed approach are promising.

Keywords: Automatic Summarization, Genetic Algorithm, Mathematical Regression, Text Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336