# The Mutated Distance between Two Mixture Trees

Wan Chian Li, Justie Su-Tzu Juan\*, Yi-Chun Wang, and Shu-Chuan Chen

Abstract—The evolutionary tree is an important topic in bioinformation. In 2006, Chen and Lindsay proposed a new method to build the mixture tree from DNA sequences. Mixture tree is a new type evolutionary tree, and it has two additional information besides the information of ordinary evolutionary tree. One of the information is time parameter, and the other is the set of mutated sites. In 2008, Lin and Juan proposed an algorithm to compute the distance between two mixture trees. Their algorithm computes the distance with only considering the time parameter between two mixture trees. In this paper, we proposes a method to measure the similarity of two mixture trees with considering the set of mutated sites and develops two algorithm to compute the distance between two mixture trees. The time complexity of these two proposed algorithms are  $O(n^2 \times max\{h(T_1), h(T_2)\})$  and  $O(n^2)$ , respectively.

Keywords-evolutionary tree, mixture tree, mutated site, distance.

#### I. INTRODUCTION

THE phylogenetic trees or evolutionary trees are described I in the relationship of species. Using species information to build phylogenetic trees is a popular problem. The species information is including species external, species frame and DNA sequence, etc. There are many methods to build trees, like neighbor-joining [1], maximum likelihood [2], and so on. In this topic, to propose a method for building trees must do bootstrapping. Different trees could be built by a data set, even if using the same method [3]. Besides, the comparison of phylogenetic trees is necessary when we execute phylogenetic queries on databases of phylogenetic trees [4]. Thus, this is an important problem that how to measure distance between two trees for tree comparison. It is difficult to compare two trees. Unlike the comparison of two numbers or points in space [5], there does not have obvious or natural way to measure the distance between two trees. Many tree comparison metrics have been proposed before, including the partition metric [6], the quartet metric [7], the nearest neighborhood interchange metric [8], the metric from the nodal distance algorithm [9], etc. In 2006, Chen and Lindsay proposed a new method to build the mixture tree from DNA sequences [10]. Mixture tree is a type of evolutionary tree. Mixture tree has two information. One of the information is time parameter, and the other is the set of mutated sites. Fig.1 shows a mixture tree.

In 2008, Lin and Juan gave a definition, called *mixture distance*, and the corresponding algorithm to compute distance between two mixture trees [11]. However, their algorithm only considers the time parameter for computing the distance

\*Corresponding author. Email: jsjuan@ncnu.edu.tw.

Fig. 1. A mixture tree  $M_1$  (source: [10]).

between two mixture trees. Moreover, the time complexity of this algorithm is O(nlogn). In this paper, we give a new definition of distance, called *mutated distance*, between two mixture trees by considering the set of mutated sites. And we also give a corresponding algorithm to computes the mutated distance between two mixture trees. Then, we also give an improved algorithm, such that the time complexity of this algorithm is  $O(n^2)$ . We use the path difference metric [12] concept to define the distance and design our algorithm by using the concept of Lin and Juan's algorithm [11]. Hence, it is easy to combine our algorithm with Lin and Juan's algorithm [11].

Path difference metric [5] - It was mentioned by Penny and Hendy in 1985. Let  $d_{ij}(T)$  denote the number of edges in the path which join two leaves that labeled by iand j in T, and let d(T) be the associate vector obtained by fixed ordering of the pairs(i, j).  $d_p(T_1, T_2)$  denotes the Euclidean distance between the two vector  $d(T_1)$  and  $d(T_2)$ . That is,  $d_p(T_1, T_2)$  is the square root of the sum of the squares of the difference  $d_{ij}(T_1) - d_{ij}(T_2)$ . The distance between two phylogenetic trees  $T_1$  and  $T_2$  is defined as  $Distance(T_1, T_2) = d_p(T_1, T_2) = ||d(T_1) - d(T_2)||_2$ . Williams and Clifford [13] defined a similar dissimilarity measure on trees, except using an L<sup>1</sup>-norm rather than L<sup>2</sup>-norm. That is,  $Distance(T_1, T_2) = d_p(T_1, T_2) = ||d(T_1) - d(T_2)||_2$ .

**The mixture distance** [11] - In 2008, Lin and Juan proposed mixture distance denoted by  $d_m$ , as the sum of the difference of  $P_{T_i}(x, y)$  for any two leaves x, y. That is, the mixture distance between two mixture trees  $T_1, T_2$  is defined as  $d_m(T_1, T_2) = \sum_{x,y \in V'} |P_{T_1}(x, y) - P_{T_2}(x, y)|$ , where V'is the set of leaves of  $T_1$  (equals to the set of leaves of  $T_2$ ) and  $P_{T_i}(x, y)$  denote the time parameter of the least

Wan Chian Li, Justie Su-Tzu Juan and Yi-Chun Wang are with Department of Computer Science and Information Engineering National Chi Nan University Puli, Nantou, 54561, Taiwan, R.O.C.

Shu-Chuan Chen is with School of Mathematical and Statistical Sciences Arizona State University, Tempe, AZ 85287, USA

common ancestor of two leaves x, y in tree  $T_i$  for i = 1, 2. Their corresponding algorithm, called the mixture distance algorithm, only compares the least common ancestor of two leaves in two trees. For an internal node in  $T_1$ , the mixture distance algorithm finds all pairs of leaves which the least common ancestor is this internal node. Then, this algorithm finds the least common ancestors of those leaves in  $T_2$ , and calculates the distance. In order to implement this approach, similar to [12], they used two colors to color leaves of  $T_2$ according to  $T_1$ .

**Definition 1.** [14] There are many topological spaces in which the topology is derived from a notion of distance. A metric for a set X is a function d on the cartesian product  $X \times X$  to the non-negative reals such that for all points x, y and z of X, (a) d(x, y) = d(y, x),

(b) (triangle inequality)  $d(x, y) + d(y, z) \ge d(x, z)$ ,

(c) d(x, y) = 0 if x = y, and

(d) x = y if d(x, y) = 0.

The last one of these conditions is inessential for many purposes. A function d which satisfies only (a), (b) and (c) is called a pseudo-metric.

In Section II, we define a new metric, the mutated distance, to measure the distance between two mixture trees, and we also show that this metric is a pseudo-metric. In Section III, a algorithm for the mutated distance is proposed. Section IV will proposes an improved algorithm for the mutated distance.

#### II. THE METRIC: MUTATED DISTANCE

Throughout this paper, we only discuss the *full binary tree*. A *fully resolved tree* is a tree in which every node bifurcates [15], and it also is called a *full binary tree*. The full binary tree is a tree T = (V, E) with V nodes and n leaves, and each node  $v_i$  has either two children or no child. The node without child is called a *leaf*, which is associated with a *species*. Because we discuss mixture trees, every node  $v_i$  will be associated with a set  $MS_T(v_i)$ , *mutated sites set*, that records the set of all sites of a species mutation occuring from its father. Fig. 2 shows the data tree of the mixture tree in Fig. 1.



Fig. 2. A data tree for the associated mixture tree  $M_1$ .

In a tree T = (V, E), let V'(T) be the leaves vertex set of T. Let  $LCA_T(x, y)$  be the least common ancestors of  $x, y \in V'(T)$  in T. Let  $V_T(x, y)$ -path be the vertex set of (x, LCAT(x, y))-path-LCAT(x, y) in T.

The notation  $\triangle$  is symmetric difference of two sets. Let  $\operatorname{LCA}_T(x, y)$  be the least common ancestors of  $x, y \in V'(T)$  in T. Let  $V_{T_i}(x, y)$ -path be the vertex set of  $(x,\operatorname{LCA}_T(x, y))$ -path $-\operatorname{LCA}_T(x, y)$  in T. Let  $V_{T_i}(x, y)$ -path =  $\{v_1 = x, v_2, \ldots, v_t = \operatorname{LCA}_T(x, y)\}$ , and  $S_T(x, y)$  be the set of  $\operatorname{MS}_T(v_1) \triangle \operatorname{MS}_T(v_2) \triangle \ldots \triangle \operatorname{MS}_T(v_t - 1)$ . Define  $d'(T_1, T_2)$  be the mutated distance between two mixture trees,  $T_1$  and  $T_2$ , by  $d'(T_1, T_2) = \sum_{x,y \in V'} (|S_{T_1}(x, y) \triangle S_{T_2}(x, y)| + |S_{T_1}(y, x) \triangle S_{T_2}(y, x)|)$  where  $V' = V'(T_1) = V'(T_2)$ .

From following Theorems 1, 2, 3 and Example 1, we prove that our metric is a pseudo-metric.

**Theorem 1.** The mutated distance d' satisfies d'(A, B) = d'(B, A) for any two trees A, B.

 $\begin{array}{l} \textbf{Proof. Because} \left|S_A(x,y) \triangle S_B(x,y)\right| = \left|S_B(x,y) \triangle S_A(x,y)\right| \\ \text{and} \left|S_A(y,x) \triangle S_B(y,x)\right| = \left|S_B(y,x) \triangle S_A(y,x)\right| , \text{ for} \\ \text{any two leaves } x, \ y. \ d'(A,B) = \sum_{x,y \in V'} \left|S_A(x,y) \triangle S_B(x,y)\right| + \left|S_A(y,x) \triangle S_B(y,x)\right| = \sum_{x,y \in V'} \left|S_B(x,y) \triangle S_A(x,y)\right| + \left|S_B(y,x) \triangle S_A(y,x)\right| = d'(B,A) \end{array}$ 

**Theorem 2.** The mutated distance d' satisfies the triangle inequality.

**Proof.** Let  $T_1$ ,  $T_2$  and  $T_3$  are three mixture trees with the same set of leaves V'. By the definition,

 $\begin{array}{l} d'(T_1,T_2) &= \sum_{x,y \in V'} (|S_{T_1}(x,y) \bigtriangleup S_{T_2}(x,y)| + |S_{T_1}(y,x) \\ \bigtriangleup S_{T_2}(y,x)|), \ d'(T_2,T_3) &= \sum_{x,y \in V'} |S_{T_2}(x,y) \bigtriangleup S_{T_3}(x,y)| \\ + |S_{T_2}(y,x) \bigtriangleup S_{T_3}(y,x)| \quad \text{and} \quad d'(T_3,T_1) &= \\ \sum_{x,y \in V'} |S_{T_3}(x,y) \bigtriangleup S_{T_1}(x,y)| + |S_{T_3}(y,x) \bigtriangleup S_{T_1}(y,x)| \\ \text{Our goal is to prove} \ d'(T_1,T_2) + d'(T_2,T_3) \geq d'(T_3,T_1). \\ \text{Since the distance is the sum of two terms of symmetric difference operations. So, if we prove that one of these two terms satisfies triangle inequality, the whole inequality will hold \end{array}$ 

Let  $S_1(x,y) = |S_{T_1}(x,y) \bigtriangleup S_{T_2}(x,y)| + |S_{T_2}(x,y) \bigtriangleup$  $S_{T_3}(x,y)| - |S_{T_3}(x,y) \bigtriangleup S_{T_1}(x,y)| \ge 0, S_2(x,y) =$  $|S_{T_1}(y,x) \triangle S_{T_2}(y,x)| + |S_{T_2}(y,x) \triangle S_{T_3}(y,x)| - |S_{T_3}(y,x) \triangle$  $S_{T_1}(y,x) \ge 0$  for any two leaves x and y in V'. We have  $S_1(x,y) = |S_{T_1}(x,y) \triangle S_{T_2}(x,y)| + |S_{T_2}(x,y) \triangle S_{T_3}(x,y)| |S_{T_3}(x,y) \triangle S_{T_1}(x,y)| = |S_{T_1}(x,y) \cup S_{T_2}(x,y)| - |S_{T_1}(x,y) \cap$  $S_{T_2}(x,y)|+|S_{T_2}(x,y)\cup S_{T_3}(x,y)|-|S_{T_2}(x,y)\cap S_{T_3}(x,y)| |S_{T_3}(x,y) \cup S_{T_1}(x,y)| + |S_{T_3}(x,y) \cap S_{T_1}(x,y)|$ Since  $|S_{T_i}(x,y) \cup S_{T_i}(x,y)|$ =  $|S_{T_i}(x,y)|$ + $|S_{T_i}(x,y)| - |S_{T_i}(x,y)| \cap S_{T_i}(x,y)|, \quad S_1(x,y)$  $\begin{array}{l} |S_{T_1}(x,y)| \ + \ |S_{T_2}(x,y)| \ + \ |S_{T_2}(x,y)| \ + \ |S_{T_3}(x,y)| \ - \ 2|S_{T_1}(x,y) \ \cap \ S_{T_2}(x,y)| \ - \ 2|S_{T_2}(x,y) \ \cap \ S_{T_3}(x,y)| \ - \ 2|S_{T_3}(x,y)| \ - \ 2|S$  $\begin{aligned} |S_{T_1}(x,y)| &- |S_{T_2}(x,y)| + 2|S_{T_1}(x,y) \cap S_{T_3}(x,y)| \\ &\{2|S_{T_2}(x,y)| - 2|S_{T_1}(x,y) \cap S_{T_2}(x,y)| - 2|S_{T_2}(x,y) \cap S_{T_3}(x,y)| \\ &+ 2|S_{T_1}(x,y) \cap S_{T_3}(x,y)| \\ &= 2\{|S_{T_2}(x,y)| - 2|S_{T_3}(x,y)| \\ &= 2\{|S_{T_2}(x,y)| \\ &= 2\{|S_{T_2}(x,y)| - 2|S_{T_3}(x,y)| \\ &= 2\{|S_{T_2}(x,y)| - 2|S_{T_3}(x,y)| \\ &= 2\{|S_{T_2}(x,y)| \\$  $|S_{T_1}(x,y) \cap S_{T_2}(x,y)| - |S_{T_2}(x,y) \cap S_{T_3}(x,y)| + |S_{T_1}(x,y) \cap$  $S_{T_3}(x,y)|\} = 2\{|S_{T_2}(x,y) \cup (S_{T_1}(x,y) \cap S_{T_3}(x,y))| +$  $|S_{T_2}(x,y) \cap (S_{T_1}(x,y) \cap S_{T_3}(x,y))| - |(S_{T_1}(x,y) \cap S_{T_2}(x,y)) \cup$  $(S_{T_2}(x,y) \cap S_{T_3}(x,y))| - |(S_{T_1}(x,y) \cap S_{T_2}(x,y)) \cap (S_{T_2}(x,y)) \cap (S_{T_$  $S_{T_3}(x,y))|\} = 2\{|S_{T_2}(x,y) \cup (S_{T_1}(x,y) \cap S_{T_3}(x,y))| +$ 

$$\begin{split} |S_{T_2}(x,y) \cap S_{T_1}(x,y) \cap S_{T_3}(x,y)| - |(S_{T_1}(x,y) \cap S_{T_2}(x,y)) \cup \\ (S_{T_2}(x,y) \cap S_{T_3}(x,y))| - |S_{T_1}(x,y) \cap S_{T_2}(x,y) \cap S_{T_3}(x,y)| \} = \\ 2\{|S_{T_2}(x,y) \cup (S_{T_1}(x,y) \cap S_{T_3}(x,y))| - |(S_{T_1}(x,y) \cap S_{T_2}(x,y)) \cup (S_{T_2}(x,y) \cap S_{T_3}(x,y))| \}.\\ \text{Since } |S_{T_2}(x,y) \cup (S_{T_2}(x,y) \cap S_{T_3}(x,y))| \} \\ |S_{T_2}(x,y) \cap (S_{T_2}(x,y) \cup S_{T_3}(x,y))| \ge |S_{T_2}(x,y)| \ge \\ |S_{T_2}(x,y) \cap (S_{T_2}(x,y) \cup S_{T_3}(x,y))| \} \\ \text{we have } \\ S_1(x,y) = 2\{|S_{T_2}(x,y) \cup (S_{T_1}(x,y) \cap S_{T_3}(x,y))| - |(S_{T_1}(x,y) \cap S_{T_2}(x,y)) \cup (S_{T_2}(x,y) \cap S_{T_3}(x,y))| - \\ |(S_{T_1}(x,y) \cap S_{T_2}(x,y)) \cup (S_{T_2}(x,y) \cap S_{T_3}(x,y))| \} \ge 0.\\ \text{In the same way, we can also prove that } \\ S_2 \ge 0. \end{split}$$

Hence, adding these two terms for any leaves x and y, we have  $d'(T_1, T_2) + d'(T_2, T_3) - d'(T_3, T_1) = \sum_{x,y \in V'} \{S_1(x, y) + S_2(x, y)\} \ge 0.$ 

**Theorem 3.** If tree A is equal to tree B, the mutated distance d'(A, B) is zero.

**Proof.** If tree A is equal to tree B, then  $S_A(x,y) = S_B(x,y)$  and  $S_A(y,x) = S_B(y,x)$  for any two leaves x, y. Hence,  $|S_A(x,y) \triangle S_B(x,y)| = 0$  and  $|S_A(y,x) \triangle S_B(y,x)| = 0$  for any two leaves x, y. That implies  $\sum_{x,y \in V'} |S_A(x,y) \triangle S_B(x,y)| + |S_A(y,x) \triangle S_B(y,x)| = 0$ .

Example 1 shows that the mutated distance does not satisfy (d) x = y if d(x, y) = 0.

**Example 1.** There exist two mixture trees A and B in Fig. 3, such that the mutated distance of A and B, d'(A, B), is zero, but tree A dose not equal to tree B.



Fig. 3.  $T_1$  and  $T_2$  of a counterexample.

#### III. THE ALGORITHM FOR MUTATED DISTANCE

Firstly, we design an algorithm for mutated distance in Section III-A. Then, we give an example in Section III-B. Section III-C is analysis of this algorithm.

# A. The Algorithm

For finding the mutated distance d' of any two mixture trees,  $T_1$  and  $T_2$ , we need find mutated site set data of a path  $S_T(x, y)$  for  $T = T_1$  and  $T_2$  at first. In 2008, Lin and Juan proposed an algorithm to compute the distance of time parameter between two mixture trees [11]. Their algorithm use color information to find all the least common ancestors of any two leaves in each of two trees. That will reduce the complexity for finding for any two leaves x and y in  $V' = V'(T_1) = V'(T_2)$ . We will use this idea, too. Before introducing the algorithm, we have to understand some notations which are used in the algorithm.

- $T_1.u_j$  denotes a node  $u_j$  in  $T_1$ , where j is in the order of BFS,  $T_2.v_j$  denotes a node  $v_j$  in  $T_2$ , where j is in the order of BFS. Note that  $T_1.u_i = T_2.v_j$  for some j for any leaf  $u_i$  of  $T_1$  such that  $T_1.u_i (= T_2.v_j)$  has the same sequence name with  $v_j$  in  $T_2$ .
- color\_i of v<sub>i</sub> denotes the color information of the subtree that rooted by v<sub>i</sub> in T<sub>2</sub>. The color\_i contains two integer: color\_i.Red is the amount of leaves that are colored by red, and color\_i.Green is the amount of leaves that are colored by green. For example, A, B, C is three nodes in a tree. Let B, C be two children of A, then color\_i(A) = color\_i(B) + color\_i(C). That means, these two values color\_i(A). Red = color\_i(B).Red + color\_i(C). Red; color\_i(A).Green = color\_i(B).Green + color\_i(C). Green.
- $sLeafTable_i$  is the leaves data of  $T_i$  for i = 1, 2. The data include sequence name, BFS number and color information. The size of this table is  $n \times 3$ , where a row represents one leaf. The sequence name represents the sequence title of this leaf. The BFS number is the order of this leaf in the order of BFS. The color information is the color of this leaf, which will be green, red or null.
- $d.v_k.Red$   $(d.v_k.Green)$  of  $T_2.v_k$  for  $T_1.v_j$  and  $T_2.v_j$  denotes the sum of symmetric difference between  $S_{T_1}(v_j, v_i)$  and  $S_{T_2}(v_j, v_k)$  for  $v_k$  in  $(v_1, v_j)$ -path of  $T_2$  for any leaf  $v_j$  when we fix i. And when we fix  $v_i$ , if the color of  $v_j$  is red (green, respectively), this value will be stored in  $d.v_k.red$   $(d.v_k.green,$  respectively). After computing all leaves  $v_j$ ,  $d.v_k.Red$   $(d.v_k.Green,$  respectively) is the sum of  $S_{T_2}(v_j, v_k) \bigtriangleup S_{T_1}(v_j, v_i)$  for all leave  $v_j$  in the subtree that rooted by  $v_k$  which colored by red (green, respectively).
- D is the record of the mutated distance of  $T_1$  and  $T_2$ .
- $S_{T_2}(v_j)$  is a temporary for calculating  $S_{T_2}(v_j, v_k)$  for any  $v_k$  in  $T_2$ .
- *T<sub>i</sub>*.*v<sub>j</sub>*.*l* denotes the left child of *T<sub>i</sub>*.*v<sub>j</sub>*, *T<sub>i</sub>*.*v<sub>j</sub>*.*l*.*r* denotes the right child of *T<sub>i</sub>*.*v<sub>j</sub>*.

The algorithm of mutated distance is presented as follows.

**Input:** Two trees  $T_1$  and  $T_2$  with the same *n* leaves. **Output:** The mutated distance between  $T_1$  and  $T_2$ .

- Step 1 Traversal  $T_1$  and  $T_2$ , and give all nodes an order by BFS, respectively.
- Step 2 Find *sLeafTable*<sub>1</sub> and *sLeafTable*<sub>2</sub>, and sort *sLeafTable*<sub>1</sub> and *sLeafTable*<sub>2</sub> by sequence name.
- Step 3 For each internal node  $u_i$  in  $T_1$  do Step 4 to Step 13.
- Step 4 For the subtree which rooted by  $T_1.u_i$ , color all leaves of its left subtree by red, and color all leaves of its right subtree by green. And color all leaves in  $T_2$  by the same color this leaf be colored in  $T_1$ .
- Step 5 For each be colored leaf  $v_j$  in  $T_2$  do Step 6 to Step 12.
- Step 6 Use sLeafTable to find leaf  $T_1.v_k$  with the

same sequence name of  $T_2.v_j$ , and find  $S_{T_1}(v_k, u_i)$ .

- Step 7 For any node  $v_l$  in  $(T_2.v_j, \text{ root of } T_2)$ -path do Step 8 to Step 12.
- Step 8  $S_{T_2}(v_j)$  is the symmetric difference of  $S_{T_2}(v_j)$ and  $MS(T_2.v_l)$ .
- Step 9 If  $T_2.v_j$  is red to do Step 10.
- Step 10 Compute  $d.v_l.Red$  and  $color\_i.Red(T_2.v_l)$ ,  $d.v_l.Red$  add the number of element of the symmetric difference of  $S_{T_1}(v_k, u_i)$  and  $S_{T_2}(v_j)$ . And  $color\_i.Red(T_2.v_l)$  add 1.
- Step 11 If  $T_2.v_j$  is green to do Step 12.
- Step 12 Compute  $d.v_l.Green$  and  $color\_i.Green(T_2.v_l)$ ,  $d.v_l.Green$  add the number of element of the symmetric difference of  $S_{T_1}(v_k, u_i)$  and  $S_{T_2}(v_j)$ . And  $color\_i.Green(T_2.v_l)$  add 1.
- Step 13 For any internal node  $v_j$  in  $T_2$ , compute mutated distance D. D add the sum of  $color\_i.Green(v_j.l)$  multiplied by  $d.(v_j.r).Red$ ,  $color\_i.Red(v_j.r)$  multiplied by  $d.(v_j.l).Green$ ,  $color\_i.Green(v_j.r)$  multiplied by  $d.(v_j.l).Red$  and  $color\_i.Red(v_j.l)$  multiplied by  $d.(v_j.r).Green$ .

# B. An Example of the Algorithm

In Fig. 4 and Fig. 5, there are two trees  $T_1$  and  $T_2$ , and the mutated site set of each node. First give  $T_1$  and  $T_2$  the BFS numbers  $u_1, u_2, u_{13}$  and  $v_1, v_2, v_{13}$ . The *sLeafTable*<sub>1</sub> is the leaf table of  $T_1$  in Fig. 4. The  $sLeafTable_2$  is the leaf table of  $T_2$  in Fig. 5. Table I shows the  $sLeafTable_1$ and  $sLeafTable_2$  sorted by sequence name. This algorithm uses the sLeafTable to find two leaves, which two leaves have the same sequence name of  $T_1$  and  $T_2$ . Then, this algorithm uses the color to compute the mutated distance between  $T_1$  and  $T_2$ . When we fix  $u_1$  as the subroot which be computing currently in  $T_1$ , see Fig. 4. The leaves of the left subtree of  $u_1$  are  $\{A, B, C, F\}$  that are colored by red, and the leaves of the right subtree of  $u_1$  are  $\{D, E, G\}$  that are colored by green. The leaves in  $T_2$  are colored by the same color. Table II shows after computing all leaves of  $T_2$ , the values of  $d.v_k.Red$  and  $d.v_k.Green$ , when the algorithm color all leaves of the left subtree of the subtree, which rooted by  $T_1.u_1$ , by red; and color all leaves of its right subtree by green. Table III shows *color\_i* values in the algorithm. We use these two tables to compute the mutated distance between two mixture trees. The mutated distance of (A, E)path, (B, E)-path and (C, E)-path=  $4 \times 3 + 12 \times 1 = 24$ were computed in  $T_2.v_4$ . The mutated distance of (D, F)path =  $4 \times 1 + 4 \times 1 = 8$  was computed in  $T_2.v_3$ . The mutated distance of (A, G)-path, (B, G)-path and (C, G)-path  $= 3 \times 3 + 9 \times 1 = 18$  were computed in  $T_2 \cdot v_2$ . The mutated distances of (A, D)-path, (B, D)-path, (C, D)-path, (F, G)path and (F, E)-path =  $4 \times 3 + 12 \times 1 + 4 \times 2 + 8 \times 1 = 40$ were computed in  $T_2.v_1$ . When the subtree which rooted by  $T_1.u_1$  round finish to compute mutated distance, the mutated distance = 24 + 8 + 18 + 40 = 90.

Next round the algorithm will fix the node  $u_2$ , and consider the subtree which rooted by  $T_1.u_2$ . Then, it will color all leaves



Fig. 4.  $T_1$  colored according to  $u_1$  of  $T_1$ .



Fig. 5.  $T_2$  colored according to  $u_1$  of  $T_1$ .

of its left subtree by red, and color all leaves of its right subtree by green, and compute mutated distance until each internal node of  $T_1$  has been fixed. The mutated distance between two mixture trees will be computed. The mutated distance between  $T_1$  and  $T_2$  is 146. Table IV shows the complete data when computing the mutated distance between  $T_1$  and  $T_2$ .

TABLE I sleafTable sorted by sequence name with colored by  $T_1.u_1.$ 

|          | $T_1$ |         | $T_2$    |       |           |  |  |  |  |
|----------|-------|---------|----------|-------|-----------|--|--|--|--|
| sequence | BFS   | color_i | sequence | BFS   | $color_i$ |  |  |  |  |
| name     | order |         | name     | order |           |  |  |  |  |
| A        | 8     | red     | A        | 12    | red       |  |  |  |  |
| B        | 11    | red     | В        | 13    | red       |  |  |  |  |
| C        | 10    | red     | C        | 11    | red       |  |  |  |  |
| D        | 12    | green   | D        | 6     | green     |  |  |  |  |
| E        | 13    | green   | E        | 9     | green     |  |  |  |  |
| F        | 9     | red     | F        | 7     | red       |  |  |  |  |
| G        | 6     | green   | G        | 5     | green     |  |  |  |  |

#### TABLE II

The  $d.v_k.Green$  and  $d.v_k.Red$  table of  $T_2$  according to  $u_1$  of  $T_1.$ 

| $m{k}$        | 1 | 2  | 3 | 4 | 5 | 6 | 7 | 8  | 9 | 10 | 11 | 12 | 13 |
|---------------|---|----|---|---|---|---|---|----|---|----|----|----|----|
| $d.v_k.Green$ | - | 8  | 4 | 3 | 3 | 4 | 0 | 0  | 4 | 0  | 0  | 0  | 0  |
| $d.v_k.Red$   | - | 12 | 4 | 9 | 0 | 0 | 4 | 12 | 0 | 6  | 3  | 3  | 3  |

TABLE III

The  $color_i(v_k)$  table of  $T_2$  according to  $u_1$  of  $T_1$ .

| $m{k}$                | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|-----------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|
| $color\_i(v_k).Green$ | - | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0  | 0  | 0  | 0  |
| $color\_i(v_k).Red$   | - | 3 | 1 | 3 | 0 | 0 | 1 | 3 | 0 | 2  | 1  | 1  | 1  |

#### C. Analysis

The time complexity of BFS order is O(n) in this algorithm. The time complexity while finds  $sLaftTable_i$  is O(n). The time complexity of thise algorithm while sorts  $sLaftTable_i$  is  $O(n\log n)$ . For each internal node of  $T_1$  we compute  $color_i$ ,  $d.v_k.Red$ ,  $d.v_k.Green$  and D between two mixture trees of each node of  $T_2$  in time  $O(n \times max\{h(T_1), h(T_2)\} \times s)$ , where s means the sequence length of the DNA sequence of species. The total time complexity is  $O(n^2 \times max\{h(T_1), h(T_2)\} \times s)$ . Since the sequence length s is a constant value, the total time complexity is  $O(n^2 \times max\{h(T_1), h(T_2)\})$ . When  $T_1$  and  $T_2$  are complete binary trees, the height of a tree is log n. Hence, the time complexity of our algorithm is  $O(n^2\log n)$  for complete binary trees.

# IV. THE IMPROVED ALGORITHM FOR MUTATED DISTANCE

Firstly, we design an improved algorithm for mutated distance in Section IV-A. Then, we give an example in Section IV-B. Section IV-C is analysis of this algorithm.

#### A. The Improved Algorithm

This algorithm improves the time complexity of modified algorithm, it transforms the data MS to TMS. The TMS of vertex represents the difference sites between the root of  $T_1$  and this vertex. This algorithm uses TMS and *color\_i* of vertex to compute the mutated distance between two mixture trees.

Before introducing the algorithm, we have to understand some notations which are used in the algorithm.

- $T_1.u_j$  denotes a node  $u_j$  in  $T_1$ , where j is in the order of BFS,  $T_2.v_j$  denotes a node  $v_j$  in  $T_2$ , where j is in the order of BFS. Note that  $T_1.u_i = T_2.v_j$  for some j for any leaf  $u_i$  of  $T_1$  such that  $T_1.u_i (= T_2.v_j)$  has the same sequence name with  $v_j$  in  $T_2$ .
- color\_i of  $v_i$  denotes the color information of the subtree that rooted by  $v_i$  in  $T_2$ . The color\_i contains two integer: color\_i.Red is the amount of leaves that are colored by red, and color\_i.Green is the amount of leaves that are colored by green. For example, A, B, C is three nodes in a tree. Let B, C be two children of A, then color\_i(A) = color\_i(B) + color\_i(C). That means, these two values color\_i(A). Red = color\_i(B).Red + color\_i(C).Red; color\_i(A).Green = color\_i(B).Green + color\_i(C).Green.

- $sLeafTable_i$  is the leaves data of  $T_i$  for i = 1, 2. The data include sequence name, BFS number, color information. The size of this table is  $n \times 3$ , where a row represents one leaf. And each row includes three items: the sequence name represents the sequence title of this leaf, the BFS number is the order of this leaf in the order of BFS, the color information is the color of this leaf, which will be green, red or null.
- D is the record of the mutated distance of  $T_1$  and  $T_2$ .
- $S_{T_2}(v_j)$  is a temporary for calculating  $S_{T_2}(v_j, v_k)$  for any  $v_k$  in  $T_2$ .
- $T_i.v_j.l$  denotes the left child of  $T_i.v_j$ ,  $T_i.v_j.r$  denotes the right child of  $T_i.v_j$ .
- **Path\_number** of  $v_i$  in  $T_2$  denotes an integer that is the inner product of color information of the two children of the subtree that rooted by  $v_i$ . For example, let B, C be two children of A, then the path number of A is equal to  $color_i(B).Red \times color_i(C).Green +$  $<math>color_i(B).Green \times color_i(C).Red$ .
- **TMS** of  $v_i$  denotes a set, which represents the difference mutated sites between root of  $T_1$  and  $v_i$ . Moreover, this set reveals the distance between root of  $T_1$  and  $v_i$ .

The improved algorithm of mutated distance is presented as follows.

**Input:** Two trees  $T_1$  and  $T_2$  with the same *n* leaves. **Output:** The mutated distance between  $T_1$  and  $T_2$ .

- Step 1 Traversal  $T_1$  and  $T_2$ , and give all nodes an order by BFS, separatedly.
- Step 2 Find *sLeafTable*<sub>1</sub> and *sLeafTable*<sub>2</sub>, and sort *sLeafTable*<sub>1</sub> and *sLeafTable*<sub>2</sub> by sequence name.
- Step 3 Transform  $T_1$ , transformed set of mutated sites TMS of root in  $T_1$  is null. For other node  $u_i$  of  $T_1$ , compute TMS of node from  $u_2$  to  $u_{2n-1}$ ; TMS of  $u_i$  is the symmetric difference between TMS of the father of  $u_i$  and MS $(u_i)$ .
- Step 4 Transform  $T_2$ , the TMS $(v_j)$  of leaves in  $T_2$  is the same with the TMS $(u_i)$  of  $T_1$  where  $v_j$  and  $u_i$  has the same sequence name. For any internal node  $v_j$  of  $T_2$ , compute TMS $(v_j)$  from leaf to root, TMS of  $v_j$  is the symmetric difference between TMS $(v_j.l)$  and MS $(v_j)$  $(=TMS(v_j.r)$  and MS $(v_j)$ ).
- Step 5 For each internal node  $u_i$  in  $T_1$ , do Step 6

| TABLE IV                                             |
|------------------------------------------------------|
| THE DISTANCE TABLE IN THE EXAMPLE OF THE ALGORITHEM. |

| the subtree reated     |                                             | _ (1                                                                    | ~ 9                 | 10                     | (1)                                            | 1 (4       | × 1            | 1 4 5        | (1)                                    | + ( <b>2</b> \ | / 9   1       | 0.2 |    |
|------------------------|---------------------------------------------|-------------------------------------------------------------------------|---------------------|------------------------|------------------------------------------------|------------|----------------|--------------|----------------------------------------|----------------|---------------|-----|----|
| by T an                |                                             | = (4)                                                                   | × ວ -<br>~ າ        | 12                     | $\begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix}$ | + (4)      | + × +<br>- × 9 | + 4 2        | $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ | +(3)           | (3+           | 9×  |    |
|                        | 1)                                          | + 4(4                                                                   | ~ 4                 | + 0                    | × 1)                                           | +(4        | × 3            | + 12         |                                        | = 90           | 11            | 10  | 12 |
| K<br>d.u. Crasse       | 1                                           | 2                                                                       | 3                   | 4                      | 3                                              | 0          | /              | 0            | 9                                      | 10             | 0             | 12  | 15 |
| d = B d                | -                                           | 0                                                                       | 4                   | 3                      | 3                                              | 4          | 0              | 12           | 4                                      | 0              | 2             | 2   | 0  |
| a.v <sub>k</sub> . Rea | -                                           | 12                                                                      | 4                   | 9                      | 1                                              | 1          | 4              | 12           | 1                                      | 0              | 3             | 3   | 3  |
| $color_i(v_k).Green$   | -                                           | 2                                                                       | 1                   | 1                      | 1                                              | 1          | 0              | 0            | 1                                      | 0              | 0             | 0   | 0  |
| $color_i(v_k).Red$     | -                                           | 3                                                                       | 1                   | 3                      | 0                                              | 0          | 1              | 3            | 0                                      | 2              | I             | 1   | 1  |
| the subtree rooted     | D                                           | = 90                                                                    | +(3)                | $\times 1$             | +3                                             | × 1)       | +(3)           | $\times 1 -$ | $-3 \times$                            | (1) +          | $(4 \times )$ | 2+  |    |
| by $T_1.u_2$           | 8>                                          | < 1) =                                                                  | : 118               |                        | _                                              |            | _              |              | -                                      |                |               |     |    |
| k                      | 1                                           | 2                                                                       | 3                   | 4                      | 5                                              | 6          | 7              | 8            | 9                                      | 10             | 11            | 12  | 13 |
| $d.v_k.Green$          | -                                           | 8                                                                       | 0                   | 6                      | 0                                              | 0          | 0              | 8            | 0                                      | 3              | 3             | 0   | 3  |
| $d.v_k.Red$            | -                                           | 4                                                                       | 4                   | 3                      | 0                                              | 0          | 4              | 4            | 0                                      | 3              | 0             | 3   | 0  |
| $color\_i(v_k).Green$  | -                                           | 2                                                                       | 0                   | 2                      | 0                                              | 0          | 0              | 2            | 0                                      | 1              | 1             | 0   | 1  |
| $color\_i(v_k).Red$    | -                                           | 1                                                                       | 1                   | 1                      | 0                                              | 0          | 1              | 1            | 0                                      | 1              | 0             | 1   | 0  |
| the subtree rooted     | D                                           | $D = 118 + (1 \times 1 + 1 \times 1) + (2 \times 1 + 2 \times 1) = 124$ |                     |                        |                                                |            |                |              |                                        |                |               |     |    |
| by $T_1.u_3$           |                                             |                                                                         |                     |                        |                                                |            |                |              |                                        |                |               |     |    |
| k                      | 1                                           | 2                                                                       | 3                   | 4                      | 5                                              | 6          | 7              | 8            | 9                                      | 10             | 11            | 12  | 13 |
| $d.v_k.Green$          | -                                           | 2                                                                       | 2                   | 1                      | 0                                              | 2          | 0              | 0            | 2                                      | 0              | 0             | 0   | 0  |
| $d.v_k.Red$            | -                                           | 2                                                                       | 0                   | 0                      | 1                                              | 0          | 0              | 0            | 0                                      | 0              | 0             | 0   | 0  |
| color $i(v_k)$ .Green  | -                                           | 1                                                                       | 1                   | 1                      | 0                                              | 1          | 0              | 0            | 1                                      | 0              | 0             | 0   | 0  |
| $color i(v_k).Red$     | -                                           | 1                                                                       | 0                   | 0                      | 1                                              | 0          | 0              | 0            | 0                                      | 0              | 0             | 0   | 0  |
| the subtree rooted     | $D = 124 + (6 \times 1 + 6 \times 1) = 136$ |                                                                         |                     |                        |                                                |            |                |              |                                        |                |               |     |    |
| by $T_1.u_4$           | . (- · · - / - · · · - / - · ·              |                                                                         |                     |                        |                                                |            |                |              |                                        |                |               |     |    |
| $\frac{1}{k}$          | 1                                           | 2                                                                       | 3                   | 4                      | 5                                              | 6          | 7              | 8            | 9                                      | 10             | 11            | 12  | 13 |
| $d.v_h.Green$          | -                                           | 0                                                                       | 6                   | 0                      | 0                                              | 0          | 6              | 0            | 0                                      | 0              | 0             | 0   | 0  |
| $d.v_h.Red$            | -                                           | 6                                                                       | 0                   | 5                      | 0                                              | 0          | 0              | 6            | 0                                      | 3              | 0             | 1   | 0  |
| $color i(v_h).Green$   | -                                           | 0                                                                       | 1                   | 0                      | 0                                              | 0          | 1              | 0            | 0                                      | 0              | 0             | 0   | 0  |
| $color i(v_{k})$ . Red | -                                           | 1                                                                       | 0                   | 1                      | 0                                              | 0          | 0              | 1            | 0                                      | 1              | 0             | 1   | Õ  |
| the subtree rooted     | D                                           | = 136                                                                   | $\frac{1}{3} + (1)$ | $3 \times 1$           | +3                                             | $\times 1$ | ) = 1          | 42           | 0                                      | •              | •             | •   |    |
| by $T_1$ $u_5$         | -                                           | 100                                                                     | (                   |                        |                                                | · · · +    | /              |              |                                        |                |               |     |    |
| <b>k</b>               | 1                                           | 2                                                                       | 3                   | 4                      | 5                                              | 6          | 7              | 8            | 9                                      | 10             | 11            | 12  | 13 |
| d.v. Green             | -                                           | 4                                                                       | 0                   | 3                      | 0                                              | 0          | ,              | 4            | 0                                      | 3              | 0             | 0   | 3  |
| d y Red                | _                                           | 1                                                                       | 0                   | 3                      | 0                                              | 0          | 0              | 4            | 0                                      | 0              | 3             | 0   | 0  |
| color i(w) Green       | _                                           | 1                                                                       | 0                   | 1                      | 0                                              | 0          | 0              | 1            | 0                                      | 1              | 0             | 0   | 1  |
| $color_i(w)$ Red       | -                                           | 1                                                                       | 0                   | 1                      | 0                                              | 0          | 0              | 1            | 0                                      | 0              | 1             | 0   | 0  |
| the subtree rooted     | -<br>D                                      | $-14^{\circ}$                                                           |                     | $\frac{1}{2 \sqrt{1}}$ | 0                                              |            | (0) = 1        | 1            | 0                                      | 0              | 1             | 0   | 0  |
| by Trans               |                                             | - 142                                                                   | · + (               | 2 ^ 1                  | - T 4                                          | · ^ 1      | ) — 1          | 140          |                                        |                |               |     |    |
| by 11.47               | 1                                           | 2                                                                       | 2                   | 4                      | 5                                              | 6          | 7              | 0            | 0                                      | 10             | 11            | 10  | 12 |
| da Croom               | 1                                           | 2                                                                       | 3                   | 1                      | 3                                              | 0          | /              | 0            | 2                                      | 10             | 11            | 14  | 15 |
| $a.v_k.Green$          | -                                           | 2                                                                       | 2                   | 1                      | 0                                              | 2          | 0              | 0            | 2                                      | 0              | 0             | 0   | 0  |
|                        | -                                           | 1                                                                       | 2                   | 0                      | 0                                              | 4          | 0              | 0            | 1                                      | 0              | 0             | 0   | 0  |
| $color_i(v_k)$ . Green | -                                           | 1                                                                       | 0                   | 1                      | 0                                              | 0          | 0              | 0            | 1                                      | 0              | 0             | 0   | 0  |
| $color_i(v_k).Ked$     | -                                           | 0                                                                       |                     | 0                      | 0                                              |            | 0              | 0            | 0                                      | 0              | 0             | 0   | 0  |

to Step 8.

- Step 6 For the subtree which rooted by  $T_1.u_i$ , color all leaves of its left subtree by red, and color all leaves of its right subtree by green. And color all leaves in  $T_2$  by the same color this leaf be colored in  $T_1$ .
- Step 7 For each internal node  $v_j$  in  $T_2$  do Step 8
- Step 8 Compute color\_i.Red(v<sub>j</sub>), color\_i.Green(v<sub>j</sub>), Path-number and mutated distance D from v<sub>2n-1</sub> to v<sub>1</sub>; color\_i.Red(v<sub>j</sub>) is the sum of color\_i.Red(v<sub>j</sub>.l) and color\_i.Red(v<sub>j</sub>.r); color\_i.Green(v<sub>j</sub>) is the sum of color\_i.Green(v<sub>j</sub>.l) and color\_i.Green(v<sub>j</sub>.r); Pathnumber is the sum of color\_i.Green(v<sub>j</sub>.l) multiplied by color\_i.Red(v<sub>j</sub>.r) and color\_i.Green(v<sub>j</sub>.r) multiplied by color\_i.Red(v<sub>j</sub>.l); D is Path-number multiplied by two times of the number of element of the symmetric difference between TMS(u<sub>i</sub>) and TMS(v<sub>j</sub>).

## B. An Example of the Improved Algorithm

We use the same example as previous section in Fig. 4 and Fig. 5 to present how does this algorithm work. There are two trees  $T_1$  and  $T_2$ , and the mutated site set of each node. First transform Fig. 4 to Fig. 6 and transform Fig. 5 to Fig. 7. Then give  $T_1$  and  $T_2$  the BFS numbers  $u_1, u_2, u_{13}$  and  $v_1, v_2, v_{13}$ . The  $sLeafTable_1$  is the leaf table of  $T_1$  in Fig. 6. The  $sLeafTable_2$  is the leaf table of  $T_2$  in Fig. 7. Table I shows the  $sLeafTable_1$  and  $sLeafTable_2$  sorted by sequence name. This algorithm uas the sLeafTable to find two leaves, which two leaves have the same sequence name of  $T_1$  and  $T_2$ . Then this algorithm using the color to compute the mutated distance between  $T_1$  and  $T_2$ . When we fix  $u_1$  as the subroot which be computing currently in  $T_1$ , see Fig, 6. The leaves of the left subtree of  $u_1$  are  $\{A, B, C, F\}$  that are colored by red, and the leaves of the right subtree of  $u_1$  are  $\{D, E, G\}$  that are colored by green. The leaves in  $T_2$  are colored by the same color. Table III shows *color\_i* values in the algorithm. We use these table to compute the mutated distance between two mixture trees. The mutated distance of (A, E)-path, (B, E)-path and

 $\begin{array}{l} (C, E)\text{-path} = (0 \times 0 + 3 \times 1) \times 2 \times (|\{\} \bigtriangleup \{9, 16, 12, 15\}|) = \\ 3 \times 2 \times 4 = 24 \text{ were computed in } T_2.v_4. \text{ The mutated} \\ \text{distance of } (D, F)\text{-path} = (1 \times 1 + 0 \times 0) \times 2 \times (|\{\} \bigtriangleup \{9, 16, 3, 4\}|) = 1 \times 2 \times 4 = 8 \text{ was computed in } T_2.v_3. \text{ The} \\ \text{mutated distance of } (A, G)\text{-path}, (B, G)\text{-path and } (C, G)\text{-path} \\ = (1 \times 0 + 3 \times 1) \times 2 \times (|\{\} \bigtriangleup \{9, 16, 2\}|) = 3 \times 2 \times 3 = 18 \\ \text{were computed in } T_2.v_2. \text{ The mutated distances of } (A, D)\text{-path}, (B, D)\text{-path}, (C, D)\text{-path}, (F, G)\text{-path and } (F, E)\text{-path} \\ = (2 \times 1 + 3 \times 1) \times 2 \times (|\{\} \bigtriangleup \{9, 16, 3, 4\}|) = 5 \times 2 \times 4 = 40 \\ \text{were computed in } T_2.v_1. \text{ When finish the round of computing} \\ \text{the mutated distance of the subtree which rooted by } T_1.u_1, \\ \text{the mutated distance } = 24 + 8 + 18 + 40 = 90. \\ \end{array}$ 



Fig. 6. The transform  $T_1$  colored according to  $u_1$  of  $T_1$ .



Fig. 7. The transform  $T_2$  colored according to  $u_1$  of  $T_1$ .

Next round the algorithm will fix the node  $u_2$ , and consider the subtree which rooted by  $T_1.u_2$ . Then, it will color all leaves of its left subtree by red, and color all leaves of its right subtree by green, and compute mutated distance until each internal node of  $T_1$  has been fixed. The mutated distance between two mixture trees will be computed. The mutated distance between  $T_1$  and  $T_2$  is 146. Table V shows the complete data when computing the mutated distance between  $T_1$  and  $T_2$ .

## C. Analysis

The time complexity of BFS order is O(n) in this algorithm. The time complexity of this algorithm which finds  $sLaftTable_i$  is O(n). The time complexity of this algorithm while sorts  $sLaftTable_i$  is  $O(n\log n)$ . The time complexity of this algorithm while transforms  $T_1$  and  $T_2$  is in time O(n). For each internal node of  $T_1$ , we compute color\_i and D between two mixture trees of each node of  $T_2$  in

time  $O(n \times max\{h(T_1), h(T_2)\} \times s)$ , where s means the sequence length of the DNA sequence of species. The total time complexity is  $O(n^2 \times s)$ . Since the sequence length s is a constant value, the total time complexity is  $O(n^2)$ . When  $T_1$  and  $T_2$  are complete binary trees, the height of a tree is logn. Hence, the time complexity of our algorithm is  $O(n\log n)$  for complete binary trees.

#### V. CONCLUSION

In this work, we define a metric, the mutated distance, and propose two algorithms to compute the distance with considering the set of mutated sites between two mixture trees. Considering our algorithms and Lin and Juan's algorithms [16], these algorithms all calculate the distance between two mixture trees. In [16], Lin and Juan also proposed two algorithms, and these two algorithms focus on the time paremeter of mixture trees. Table VI shows the time complexity of these two algorithms and our two algorithms.

Hence, the two information of mixture trees are considered by our algorithms and Lin and Juans algorithms [16]. One can get a *compound-distance*  $D_c$  for two mixture trees  $T_1$ and  $T_2$  by our mutated distance d' and mixture distance (or mixture-matching distance)  $d_m$  [16]. That means, let  $D_c(T_1,T_2) = k_1d' + k_2d_m$  for any two real number  $k_1$  and  $k_2$ , these two real number can be defined according to his (or her) requirement. When one choose d' be mutated distance and  $d_m$  be mixture distance, the time complexity of the proposed algorithm for this compound-distance  $D_c$  will be  $O(n^2)$ . In the future, we hope to find other metric for computing the distance with considering these two information, time parameter and set of mutated sites, between two mixture trees and it can satisfy not only pseudo-metric, but also the metric conditions.

 TABLE VI

 THE COMPARISON OF THE ALGORITHMS OF OUR WORK.

|                    | Mixture<br>Distance [16] | Mutated<br>Distance                   |
|--------------------|--------------------------|---------------------------------------|
| Modified Algorithm | $O(n^2)$                 | $O(n^2 \times max\{h(T_1), h(T_2)\})$ |
| Improved Algorithm | O(nlogn)                 | $O(n^2)$                              |

#### ACKNOWLEDGMENT

This research was supported in part by the National Science Council of the Republic of China under grant NSC 100-2221-E-260-024- .

#### REFERENCES

- N. Saitou and M. Nei, "The neighbor-joining method: a new method for reconstructing phylogenetic trees," *Mol Biol Evol*, vol. 4, no. 4, pp. 406–425, Jul 1987.
- [2] M. L. Lesperance and J. D. Kalbeisch, "An algorithm for computing the nonparametric mle of a mixing distribution," *Journal of the American Statistical Association*, vol. 87, no. 417, pp. 120–126, Mar. 1992.
- [3] M. A. Steel, "The maximum likelihood point for a phylogenetic tree is not unique," *Systematic Biology*, vol. 43, pp. 560–564, 1994.
- [4] G. Valiente, "A fast algorithmic technique for comparing large phylogenetic trees," SPIRE, pp. 370–375, 2005.

# TABLE V The distance table in the example of the improved algorithm.

| the subtree rooted                              | D                                                                                                                                                                                                               | = (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\times 0$                                              | +1                           | $\times 0)$                                                                                         | $\times 2($                                                | $ \{10$                                                    | , 11,                                | $15$ }.                                    | $\Delta \{\} $                     | ) + (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\times 0$         |                |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--------------------------------------|--------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|
| by $T_1.u_1$                                    | $+2 \times 0) \times 2( \{10, 12, 15\} \bigtriangleup \{\} ) + (3 \times 1 + 0 \times 0) \times 2$                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                              |                                                                                                     |                                                            |                                                            |                                      |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                |
|                                                 | ( <u> </u> {                                                                                                                                                                                                    | 9,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , 12,                                                   | 15}.                         | ≙ {}                                                                                                | · ) +                                                      | $(1 \times$                                                | 1 +                                  | $0 \times$                                 | $(0) \times (0)$                   | $2( \{9,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16, 3,             |                |
|                                                 | 4}                                                                                                                                                                                                              | $\Delta$ {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | } ) +                                                   | $(3 \times$                  | (1 +                                                                                                | $\cdot 0 \times$                                           | $(1) \times$                                               | 2(                                   | [9, 10]                                    | $5, 2 \} 2$                        | 7 {} )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +(3)               |                |
|                                                 |                                                                                                                                                                                                                 | 1 + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\times 1$                                              | $) \times 2$                 | $( \{9\}$                                                                                           | 16,3                                                       | $3, 4$ }                                                   | Δ{.                                  | } ) =                                      | : 24 +                             | 8+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .8+                |                |
| 7.                                              | 40                                                                                                                                                                                                              | = 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )<br>  ]                                                | 4                            | F                                                                                                   | (                                                          | 7                                                          | 0                                    | 0                                          | 10                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                 | 12             |
| $\frac{\kappa}{1}$                              | 1                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                       | 4                            | 5                                                                                                   | 0                                                          | /                                                          | ð<br>0                               | <u> </u>                                   | 10                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                 | 13             |
| $\frac{color_i(v_k).Green}{color_i(v_k).Green}$ | -                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                       | 1                            | 1                                                                                                   | 1                                                          | 1                                                          | 2                                    | 1                                          | 0                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                  | 0              |
| $color_i(v_k)$ .Red                             | -<br>D                                                                                                                                                                                                          | <u>_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                       | 3<br>× 1                     |                                                                                                     |                                                            | 1                                                          | $\frac{3}{(111)}$                    | 11                                         | 151                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 1              |
| by Trans                                        |                                                                                                                                                                                                                 | $D = D + (1 \times 1 + 0 \times 0) \times 2([\{10, 11, 10\} \triangle \{\}]) + (1 \times 1 + 0 \times 1) \times 2([\{10, 12, 10\} \triangle \{\}]) + (1 \times 0 + 0 \times 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                              |                                                                                                     |                                                            |                                                            |                                      |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                |
| by $11.u_2$                                     |                                                                                                                                                                                                                 | L + U<br>D(∐G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                      | 121                          | ( {⊥<br>⊑l ∧                                                                                        | $\mathcal{M}^{12}$                                         | 10                                                         | ⊥1<br>0 √ (                          | }リ+<br>) 1                                 | $(1 \times 0)$                     | $v + 0  \times 2(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | × 2)<br>10-16      |                |
|                                                 | 3                                                                                                                                                                                                               | $41 \land$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{10}{10}$                                         | $^{12,1}_{\pm (1)}$          | l∨0                                                                                                 | 1+0                                                        | $\times 2$                                                 | $\sim 2$                             | ) — 1<br>( {0                              | 16.2                               | $1 \wedge 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0, 10)            | 2              |
|                                                 | $1^{0,-1}$                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1x                                                     | $(1)^{-1}$                   | 2(1                                                                                                 | [9 16                                                      | 334                                                        | 1                                    | (10)                                       | = 90                               | +6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /// · \<br>⊢ 6+    |                |
|                                                 | 0-                                                                                                                                                                                                              | +0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0+                                                     | 16 =                         | = 118                                                                                               | 8                                                          | , 0,                                                       |                                      | UD                                         | - 00                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                |
| k                                               | 1                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                       | 4                            | 5                                                                                                   | 6                                                          | 7                                                          | 8                                    | 9                                          | 10                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                 | 13             |
| $\frac{1}{color \ i(v_k).Green}$                | -                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                       | 2                            | 0                                                                                                   | 0                                                          | 0                                                          | 2                                    | 0                                          | 1                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                  | 1              |
| $color i(v_k)$ . Red                            | -                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                       | 1                            | 0                                                                                                   | 0                                                          | 1                                                          | 1                                    | 0                                          | 1                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                  | 0              |
| the subtree rooted                              | D                                                                                                                                                                                                               | = D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | + ((                                                    | $) \times 0$                 | +0                                                                                                  | $(\times 0)$                                               | $\times 2$                                                 | ( {1(                                | ). 11.                                     | $15 \} /$                          | $\setminus \{9, \cdot\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16}1)              |                |
| by $T_1.u_3$                                    | $+(0 \times 0 + 0 \times 0) \times 2( \{10, 12, 15\} \land \{9, 16\} ) + (0 \times 1)$                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                              |                                                                                                     |                                                            |                                                            |                                      |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                |
| , i 10                                          | $(0, 10, 10) \rightarrow 0 \rightarrow$                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                              |                                                                                                     |                                                            |                                                            |                                      |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                |
|                                                 | 1)                                                                                                                                                                                                              | $\times 2($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \{9,1\} $                                             | 16, 3,                       | 4} 4                                                                                                | Ź{9.                                                       | , 16                                                       | ) +                                  | (0 ×                                       | 0 + 1                              | $\times 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\times 2( \cdot $ | {              |
|                                                 | 9,1                                                                                                                                                                                                             | $16, 2^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | }∆ ·                                                    | $\{9, 10\}$                  | 5}ĺ)∙                                                                                               | +(1)                                                       | $\times 1$                                                 | +1 :                                 | × 0)                                       | $\times 2( \cdot$                  | $\{9, 16\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 3, 4             |                |
|                                                 |                                                                                                                                                                                                                 | $\{9, 1\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,<br>5} ):                                              | = 11                         | 8 <del>+</del> 1                                                                                    | 2 + 4                                                      | l = 1                                                      | 24                                   |                                            |                                    | <b>C</b> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                  |                |
| k                                               | 1                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                       | 4                            | 5                                                                                                   | 6                                                          | 7                                                          | 8                                    | 9                                          | 10                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                 | 13             |
| $color\_i(v_k).Green$                           | -                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                       | 1                            | 0                                                                                                   | 1                                                          | 0                                                          | 0                                    | 1                                          | 0                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                  | 0              |
| $color\_i(v_k).Red$                             | -                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                       | 0                            | 1                                                                                                   | 0                                                          | 0                                                          | 0                                    | 0                                          | 0                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                  | 0              |
| the subtree rooted                              | D                                                                                                                                                                                                               | = D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +(1)                                                    | $\times 0$                   | +0                                                                                                  | $\times 0)$                                                | $\times 2$                                                 | ( {10                                | ), 11,                                     | 15} 4                              | (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,11}               |                |
| by $T_1.u_4$                                    | )+                                                                                                                                                                                                              | - (1 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | × 0 +                                                   | - 0 ×                        | 0) >                                                                                                | < 2(                                                       | $\{10, 10\}$                                               | 12, 1                                | $5\} \triangle$                            | \{10,                              | $11\} )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +(1)               |                |
|                                                 | $\times 0$                                                                                                                                                                                                      | ) + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\times 0$                                              | $) \times 2$                 | $( \{9,$                                                                                            | 16,1                                                       | 12, 1!                                                     | $5 \} \triangle$                     | . {10                                      | $,11\} )$                          | ) + (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\times 1$         |                |
|                                                 | +0                                                                                                                                                                                                              | $) \times 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $) \times 2$                                            | $2( \{9\}$                   | , 16,                                                                                               | 3, 4                                                       | $\Delta$ {                                                 | 10, 1                                | $1\} )$                                    | +(1)                               | $\times 0 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0 \times$         |                |
|                                                 | 0)                                                                                                                                                                                                              | $\times 2($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \{9, 1\} $                                            | 16, 2                        | } △ ·                                                                                               | $\{10, 1, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$ | $11\} )$                                                   | +(                                   | $1 \times 1$                               | +0                                 | $\times 0) >$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 2(               |                |
|                                                 | {9                                                                                                                                                                                                              | 9, 16,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [3, 4]                                                  | $\cdot \Delta \{$            | 10, 1                                                                                               | $ 1\} )$                                                   | = 1                                                        | 24 +                                 | 12 =                                       | = 136                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                |
| k                                               | 1                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                       | 4                            | 5                                                                                                   | 6                                                          | 7                                                          | 8                                    | 9                                          | 10                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                 | 13             |
| $color_i(v_k)$ .Green                           | -                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                       | 0                            | 0                                                                                                   | 0                                                          | 1                                                          | 0                                    | 0                                          | 0                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                  | 0              |
| $color_i(v_k).Red$                              | -                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                       | 1                            | 0                                                                                                   |                                                            | 0                                                          |                                      | 0                                          | 1                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 0              |
| the subtree rooted                              | D                                                                                                                                                                                                               | = D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | + ((                                                    | $) \times 1$                 | +0                                                                                                  | (10)                                                       | $\times 2$                                                 | ([{1(                                | , 11, 00                                   | 15}2                               | 7 {} )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + (                |                |
| by $T_1.u_5$                                    |                                                                                                                                                                                                                 | < 0 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1X                                                     | 1) ×                         | (2( +))                                                                                             | 10, .                                                      | 12, 13                                                     | )} ∆                                 | · { }])                                    | +(1)                               | $\times 0 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - UX               |                |
|                                                 |                                                                                                                                                                                                                 | × 2(<br>16-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19, .                                                   | 10,12                        | 2,10                                                                                                | $\Delta$                                                   | ()) ·                                                      | + (0                                 | X U ·                                      | $+0 \times$                        | 160 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2( \{$            |                |
|                                                 | $\begin{bmatrix} 9, 10, 5, 4\} \bigtriangleup \{\} \end{bmatrix} + (1 \times 0 + 0 \times 1) \times 2([\{9, 10, 2\}] \bigtriangleup 12)$                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                              |                                                                                                     |                                                            |                                                            |                                      |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                |
|                                                 | \<br>1 ⊥f                                                                                                                                                                                                       | 3 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42                                                      | 0 + 1                        | 0 ^ .                                                                                               | L) ^                                                       | 2(1):                                                      | , 10                                 | , 5, 4                                     | ſ Δ ι.                             | <i>s</i> D –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 130                |                |
| k                                               | 1                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                      | 4                            | 5                                                                                                   | 6                                                          | 7                                                          | 8                                    | 0                                          | 10                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                 | 13             |
| $\frac{\kappa}{color i(w)}$ Green               | 1                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                       | 1                            | 0                                                                                                   | 0                                                          | 0                                                          | 1                                    | 0                                          | 10                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                  | 15             |
| $\frac{color i(v_k).Green}{color i(v_k).Green}$ | -                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                       | 1                            | 0                                                                                                   | 0                                                          | 0                                                          | 1                                    | 0                                          | 0                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                  | 0              |
| the subtree rooted                              | D                                                                                                                                                                                                               | = D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | + ((                                                    | $) \times 0$                 | +0                                                                                                  | $\times 0$                                                 | $\times 2$                                                 | (111                                 | ) 11                                       | 15} /                              | 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 163                | -              |
| by $T_1 u_7$                                    | 1)+                                                                                                                                                                                                             | -(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | × 0 +                                                   | - 0 ×                        | $\dot{0}$                                                                                           | $c_2(1)$                                                   | {10                                                        | 12.1                                 | 5} ∧                                       | 1012                               | 631) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - (0               |                |
| -, -1.01                                        | $   \begin{array}{c} (0 \times 0 + 0 \times 0) \times 2( \{10, 12, 13\} \bigtriangleup \{9, 10\} ) + (0 \\ \times 1 + 0 \times 0) \times 2( \{0, 16, 12, 15\} \land \{0, 16\} ) + (1 \times 0) \\ \end{array} $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                              |                                                                                                     |                                                            |                                                            |                                      |                                            |                                    | + (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0                |                |
|                                                 | $+0 \times 0 \times 2( \{9, 16, 3, 4\} \land \{9, 16\} ) + (0 \times 0 + 0 \times 10)$                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                              |                                                                                                     |                                                            |                                                            |                                      |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                |
|                                                 | +0                                                                                                                                                                                                              | $) \times 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) × 2                                                   | $2( \{9\}$                   | , 16.                                                                                               | $3, 4$ }                                                   | $\Delta$ {                                                 | 9,16                                 | 3)) 4                                      | - (0 ×                             | 0 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )×                 |                |
|                                                 | +0<br>1)                                                                                                                                                                                                        | (1 + 0)<br>(1 + 0)<br>(1 + 0)<br>(2 + | $) \times 2$                                            | $2( \{9, 16, 2\})$           | $, 16, \\ \land \land$                                                                              | $3,4\}$<br>$\{9,10\}$                                      | $\left  \begin{array}{c} \Delta \\ 6 \end{array} \right  $ | 9,16 + (0                            | $ ) + \times 0$                            | $-(0 \times + 1 \times$            | $0 + (0 + 0) \times $ | )×<br>2(           |                |
|                                                 | +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0                                                                                                                                                                          | $(+ 0) \times 0 \times 2($<br>$(+ 0) \times 2($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $) \times 2$<br>$ \{9,1,3,4\}$                          | $2( \{9,16,2\}$              | $, 16, \\ A \\ 9, 16$                                                                               | $3,4\}$<br>$\{9,10\}$<br>$\{3\} \}=$                       | $\triangle \{ 6\}   ) \cdot 145$                           | 9,16<br>+ (0<br>2+4                  | $  ) + \times 0 = 1$<br>4 = 1              | $(0 \times + 1 \times 146)$        | 0 + 0<br>1) ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2(                 |                |
| k                                               | +0<br>1)<br>$ \{9$<br>1                                                                                                                                                                                         | $(2 + 0) \times 0 \times 2(0, 16, 16, 16)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $) \times 2$<br>$ \{9, 1]$<br>$3, 4\}$<br><b>3</b>      | $2( \{9\\16,2\}$ $\Delta \{$ | $, 16, \\ A = 0, 16 \\ 9, 16 \\ 5 \\ 5 \\ 5 \\ 16 \\ 5 \\ 5 \\ 5 \\ 16 \\ 5 \\ 16 \\ 5 \\ 16 \\ 16$ | 3,4}<br>{9,10<br>5} ) =<br><b>6</b>                        | $\triangle \{ 6\}   \} = 142$                              | 9,16<br>+ (0<br>2 + 4<br><b>8</b>    | $ ) + \times 0$<br>4 = 1<br>9              | - (0 ×<br>+ 1 ×<br>46<br><b>10</b> | 0 + 0<br>1) ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )×<br>2(<br>12     | 13             |
| $rac{k}{color\_i(v_k).Green}$                  | +0<br>1)<br> {9<br>1                                                                                                                                                                                            | $2 + 0 \times 0 \times 2(0, 16, 16, 16) \times 10^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $) \times 2$<br>$ \{9, 1]$<br>$3, 4\}$<br><b>3</b><br>0 | $2( \{9,16,2\})$             | $, 16, \\ A = 0, 16 \\ 9, 16 \\ \hline 0$                                                           | 3, 4<br>$\{9, 10, 5\} ) = 6 0$                             | $\triangle \{ 6\}   \} = 142$                              | 9,16 + (0)<br>2 + 4<br><b>8</b><br>0 | $  ) + \times 0$<br>4 = 1<br><b>9</b><br>1 | $-(0 \times + 1 \times 46)$        | 0 + 0<br>1) ×<br><b>11</b><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2(                 | <b>13</b><br>0 |

- [5] M. A. Steel and D. Penny, "Distributions of tree comparison metricssome new results," *Systematic Biology*, vol. 42, no. 2, pp. 126–141, 1993.
- [6] D. F. Robinson and L. R. Foulds, "Comparison of phylogenetic trees," *Mathematical Biosciences*, vol. 53, no. 1–2, pp. 131–147, February 1981.
- [7] C. A. Meacham, G. F. Estabrook, and F. R. McMorris, "Comparison of undirected phylogenetic trees based on subtrees of four evolutionary units," *Systematic Zoology*, vol. 34, no. 2, pp. 193–200, 1985.
- [8] B. Dasgupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang, "Proceedings of the dimacs workshop on discrete problems with medical applications, dimacs series in discrete mathematics and theoretical computer science," *American Mathematical Society*, vol. 55, pp. 125–143, 2000.
- [9] J. Bluis, D. Shin, and J. Bluis, "Nodal distance algorithm: calculating a

phylogenetic tree comparison metric," Proc. Third IEEE Symposium on Bioinformatics and Bioengineering (D. Shin, ed.), pp. 87–94, 2003.

- [10] S.-C. Chen and B. G. Lindsay, "Building mixture trees from binary sequence data," *Biometrika*, vol. 93, no. 4, pp. 843–860, 2006.
- [11] C.-H. Lin and J. S.-Z. Juan, "Computing the mixture distance between mixture tree," *Proceedings of the 2008 international conference on bioinformatice & computational biology*, vol. I, pp. 98–103, 2008.
- [12] G. S. Brodal, R. Fagerberg, and C. N. S. Pedersen, "Computing the quartet distance between evolutionary trees in time o(nlogn)," *Algorithmica*, vol. 38, no. 2, pp. 377–395, 2003.
- [13] W. T. Williams and H. T. Clifford, "On the comparison of two classifications of the same set of elements," *Taxon*, vol. 20, no. 4, pp. 519–522, Aug. 1971.
- [14] J. L. Kelley, General Topology I: Basic Concepts and Constructions Dimension Theory. Encyclopaedia of Mathematical Sciences, 1990.

- [15] M. J. Fortin, M. R. T. Dale, and J. V. Hoef, "Encyclopedia of environmetrics," vol. 4, ch. Spatial analysis in ecology, pp. 2051–2058, John Wiley & Sons, Ltd, 2002.
- [16] C.-H. Lin, "A study on measuring distance between two mixture trees," In Partial Fulfillment of the Requirements for the Degree of Master of Science, Department of Computer Science and Information Engineering National Chi Nan University, Puli, Nantou Hsien, Taiwan, Republice of China, Juan 2008.



Wan Chian Li received her B.S. degree in Information science, National Taipei College of Business in 2008. Her M.S. degrees in Department of computer science and information engineering, National Chi Nan University in 2010. She is a engineer at project development Department of Innovative Center for Cultural and Creative Industries, Tamkang University.



**Justie Su-Tzu Juan** received her B.S. degree in applied mathematics from Department of Mathematics, Fu Jen Catholic University in 1993, her M.S. and Ph.D. degrees in applied mathematics from National Chiao Tung University, R.O.C. in 1996 and 2000, respectively. She is currently a professor with the Department of computer science and information engineering, National Chi Nan University, R.O.C. Her research interests include graph theory, information security, cryptography, algorithms, and combinatorial mathematics.



Yi-Chun Wang received her B.S. and M.S. degree in Department of computer science and information engineering, National Chi Nan University in 2005 and 2007, respectively. She is currently pursuing his PhD degree in Computer Science and Information Engineering at National Chi Nan University, Nantou County, Taiwan. Her research interests include graph theory, algorithm and secret sharing and image sharing.



Shu-Chuan Chen received her B.S. degree in Applied Mathematics from National ChungHsin University in 1994, her M. S. degree in Applied Mathematics from National Donghwa University in 1996, and her PhD in Statistics and Operations Research from Penn State University in 2003. She is currently an Assistant Professor of Statistics in School of Mathematical and Statistical Sciences, Arizona State University, US. Her current research interests include data mining, pattern recognition, and statistical methods in genetic data analysis.