Search results for: Data Retention Voltage
7470 Extreme Temperature Forecast in Mbonge, Cameroon through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, temperature extremes are forecast by employing the block maxima method of the Generalized extreme value(GEV) distribution to analyse temperature data from the Cameroon Development Corporation (C.D.C). By considering two sets of data (Raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data while in the simulated data, the return values show an increasing trend but with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend but with an upper bound. This clearly shows that temperatures in the tropics even-though show a sign of increasing in the future, there is a maximum temperature at which there is no exceedence. The results of this paper are very vital in Agricultural and Environmental research.Keywords: Return level, Generalized extreme value (GEV), Meteorology, Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21067469 Landfill Leachate: A Promising Substrate for Microbial Fuel Cells
Authors: Jayesh M. Sonawane, Prakash C. Ghosh
Abstract:
Landfill leachate emerges as a promising feedstock for microbial fuel cells (MFCs). In the present investigation, direct air-breathing cathode-based MFCs are fabricated to investigate the potential of landfill leachate. Three MFCs that have different cathode areas are fabricated and investigated for 17 days under open circuit conditions. The maximum open circuit voltage (OCV) is observed to be as high as 1.29 V. The maximum cathode area specific power density achieved in the reactor is 1513 mW m-2. Further studies are under progress to understand the origin of high OCV obtained from landfill leachate-based MFCs.Keywords: Microbial fuel cells, landfill leachate, air-breathing cathode, performance study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13057468 Effect of Current Density, Temperature and Pressure on Proton Exchange Membrane Electrolyser Stack
Authors: Na Li, Samuel Simon Araya, Søren Knudsen Kær
Abstract:
This study investigates the effects of operating parameters of different current density, temperature and pressure on the performance of a proton exchange membrane (PEM) water electrolysis stack. A 7-cell PEM water electrolysis stack was assembled and tested under different operation modules. The voltage change and polarization curves under different test conditions, namely current density, temperature and pressure, were recorded. Results show that higher temperature has positive effect on overall stack performance, where temperature of 80 ℃ improved the cell performance greatly. However, the cathode pressure and current density has little effect on stack performance.
Keywords: PEM electrolysis stack, current density, temperature, pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10627467 Mining Multicity Urban Data for Sustainable Population Relocation
Authors: Xu Du, Aparna S. Varde
Abstract:
In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.Keywords: Data Mining, Environmental Modeling, Sustainability, Urban Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17837466 Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments
Authors: M. S. Baazzim, M. S. Al-Saud, M. A. El-Kady
Abstract:
In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method.
Keywords: Cable ampacity, Finite element method, underground cable, thermal rating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58597465 An Ant-based Clustering System for Knowledge Discovery in DNA Chip Analysis Data
Authors: Minsoo Lee, Yun-mi Kim, Yearn Jeong Kim, Yoon-kyung Lee, Hyejung Yoon
Abstract:
Biological data has several characteristics that strongly differentiate it from typical business data. It is much more complex, usually large in size, and continuously changes. Until recently business data has been the main target for discovering trends, patterns or future expectations. However, with the recent rise in biotechnology, the powerful technology that was used for analyzing business data is now being applied to biological data. With the advanced technology at hand, the main trend in biological research is rapidly changing from structural DNA analysis to understanding cellular functions of the DNA sequences. DNA chips are now being used to perform experiments and DNA analysis processes are being used by researchers. Clustering is one of the important processes used for grouping together similar entities. There are many clustering algorithms such as hierarchical clustering, self-organizing maps, K-means clustering and so on. In this paper, we propose a clustering algorithm that imitates the ecosystem taking into account the features of biological data. We implemented the system using an Ant-Colony clustering algorithm. The system decides the number of clusters automatically. The system processes the input biological data, runs the Ant-Colony algorithm, draws the Topic Map, assigns clusters to the genes and displays the output. We tested the algorithm with a test data of 100 to1000 genes and 24 samples and show promising results for applying this algorithm to clustering DNA chip data.
Keywords: Ant colony system, biological data, clustering, DNA chip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19747464 The Resource Description Framework (RDF) as a Modern Structure for Medical Data
Authors: Gabriela Lindemann, Danilo Schmidt, Thomas Schrader, Dietmar Keune
Abstract:
The amount and heterogeneity of data in biomedical research, notably in interdisciplinary fields, requires new methods for the collection, presentation and analysis of information. Important data from laboratory experiments as well as patient trials are available but come out of distributed resources. The Charité - University Hospital Berlin has established together with the German Research Foundation (DFG) a new information service centre for kidney diseases and transplantation (Open European Nephrology Science Centre - OpEN.SC). Beside a collaborative aspect to create new research groups every single partner or institution of this science information centre making his own data available is allowed to search the whole data pool of the various involved centres. A core task is the implementation of a non-restricting open data structure for the various different data sources. We decided to use a modern RDF model and in a first phase transformed original data coming from the web-based Electronic Patient Record database TBase©.
Keywords: Medical databases, Resource Description Framework (RDF), metadata repository.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20317463 XML Data Management in Compressed Relational Database
Authors: Hongzhi Wang, Jianzhong Li, Hong Gao
Abstract:
XML is an important standard of data exchange and representation. As a mature database system, using relational database to support XML data may bring some advantages. But storing XML in relational database has obvious redundancy that wastes disk space, bandwidth and disk I/O when querying XML data. For the efficiency of storage and query XML, it is necessary to use compressed XML data in relational database. In this paper, a compressed relational database technology supporting XML data is presented. Original relational storage structure is adaptive to XPath query process. The compression method keeps this feature. Besides traditional relational database techniques, additional query process technologies on compressed relations and for special structure for XML are presented. In this paper, technologies for XQuery process in compressed relational database are presented..Keywords: XML, compression, query processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18067462 A System for Analyzing and Eliciting Public Grievances Using Cache Enabled Big Data
Authors: P. Kaladevi, N. Giridharan
Abstract:
The system for analyzing and eliciting public grievances serves its main purpose to receive and process all sorts of complaints from the public and respond to users. Due to the more number of complaint data becomes big data which is difficult to store and process. The proposed system uses HDFS to store the big data and uses MapReduce to process the big data. The concept of cache was applied in the system to provide immediate response and timely action using big data analytics. Cache enabled big data increases the response time of the system. The unstructured data provided by the users are efficiently handled through map reduce algorithm. The processing of complaints takes place in the order of the hierarchy of the authority. The drawbacks of the traditional database system used in the existing system are set forth by our system by using Cache enabled Hadoop Distributed File System. MapReduce framework codes have the possible to leak the sensitive data through computation process. We propose a system that add noise to the output of the reduce phase to avoid signaling the presence of sensitive data. If the complaints are not processed in the ample time, then automatically it is forwarded to the higher authority. Hence it ensures assurance in processing. A copy of the filed complaint is sent as a digitally signed PDF document to the user mail id which serves as a proof. The system report serves to be an essential data while making important decisions based on legislation.Keywords: Big Data, Hadoop, HDFS, Caching, MapReduce, web personalization, e-governance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15927461 Developing a Simple and an Accurate Formula for the Conduction Angle of a Single Phase Rectifier with RL Load
Authors: S. Ali Al-Mawsawi, Fadhel A. Albasri
Abstract:
The paper presents a simple and an accurate formula that has been developed for the conduction angle (δ) of a single phase half-wave or full-wave controlled rectifier with RL load. This formula can be also used for calculating the conduction angle (δ) in case of A.C. voltage regulator with inductive load under discontinuous current mode. The simulation results shows that the conduction angle calculated from the developed formula agree very well with that obtained from the exact solution arrived from the iterative method. Applying the developed formula can reduce the computational time and reduce the time for manual classroom calculation. In addition, the proposed formula is attractive for real time implementations.Keywords: Conduction Angle, Firing Angle, Excitation Angle, Load Angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51307460 The Influence of Substrate Bias on the Mechanical Properties of a W- and S-containing DLC-based Solid-lubricant Film
Authors: Guojia Ma, Guoqiang Lin, Shuili Gong, Gang Sun, Dawang Wang
Abstract:
A diamond-like carbon (DLC) based solid-lubricant film was designed and DLC films were successfully prepared using a microwave plasma enhanced magnetron sputtering deposition technology. Post-test characterizations including Raman spectrometry, X-ray diffraction, nano-indentation test, adhesion test, friction coefficient test were performed to study the influence of substrate bias voltage on the mechanical properties of the W- and S-doped DLC films. The results indicated that the W- and S-doped DLC films also had the typical structure of DLC films and a better mechanical performance achieved by the application of a substrate bias of -200V.Keywords: Adhesive Strength, Coefficient of Friction, Substrate Bias, W- and S-doped DLC film
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19687459 Theoretical Analysis of a Crossed-Electrode 2D Array for 3D Imaging
Authors: Yuriy Tasinkevych, Eugene Danicki
Abstract:
Planar systems of electrodes arranged on both sides of dielectric piezoelectric layer are applied in numerous transducers. They are capable of electronic beam-steering of generated wave both in azimuth and elevation. The wave-beam control is achieved by addressable driving of two-dimensional transducer through proper voltage supply of electrodes on opposite surfaces of the layer. In this paper a semi-analytical method of analysis of the considered transducer is proposed, which is a generalization of the well-known BIS-expansion method. It was earlier exploited with great success in the theory of interdigital transducers of surface acoustic waves, theory of elastic wave scattering by cracks and certain advanced electrostatic problems. The corresponding nontrivial electrostatic problem is formulated and solved numerically.
Keywords: Beamforming, transducer array, BIS-expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17917458 Theoretical Analysis of a Crossed-Electrode 2D Array for 3D Imaging
Authors: Yuriy Tasinkevych, Eugene Danicki
Abstract:
Planar systems of electrodes arranged on both sides of dielectric piezoelectric layer are applied in numerous transducers. They are capable of electronic beam-steering of generated wave both in azimuth and elevation. The wave-beam control is achieved by addressable driving of two-dimensional transducer through proper voltage supply of electrodes on opposite surfaces of the layer. In this paper a semi-analytical method of analysis of the considered transducer is proposed, which is a generalization of the well-known BIS-expansion method. It was earlier exploited with great success in the theory of interdigital transducers of surface acoustic waves, theory of elastic wave scattering by cracks and certain advanced electrostatic problems. The corresponding nontrivial electrostatic problem is formulated and solved numerically.
Keywords: Beamforming, transducer array, BIS-expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15067457 Development of a Smart System for Measuring Strain Levels of Natural Gas and Petroleum Pipelines on Earthquake Fault Lines in Türkiye
Authors: Ahmet Yetik, Seyit Ali Kara, Cevat Özarpa
Abstract:
Load changes occur on natural gas and oil pipelines due to natural disasters. The displacement of the soil around the natural gas and oil pipes due to situations that may cause erosion, such as earthquakes, landslides, and floods, is the source of this load change. The exposure of natural gas and oil pipes to variable loads causes deformation, cracks, and breaks in these pipes. Such cracks and breaks can cause significant damage to people and the environment, including the risk of explosions. Especially with the examinations made after natural disasters, it can be easily understood which of the pipes has sustained more damage in those quake-affected regions. It has been determined that earthquakes in Türkiye have caused permanent damage to pipelines. This project was initiated in response to the identification of cracks and gas leaks in the insulation gaskets placed in the pipelines, especially at the junction points. In this study, a SCADA (Supervisory Control and Data Acquisition) application has been developed to monitor load changes caused by natural disasters. The developed SCADA application monitors the changes in the x, y, and z axes of the stresses occurring in the pipes with the help of strain gauge sensors placed on the pipes. For the developed SCADA system, test setups in accordance with the standards were created during the fieldwork. The test setups created were integrated into the SCADA system, and the system was followed up. Thanks to the SCADA system developed with the field application, the load changes that will occur on the natural gas and oil pipes are instantly monitored, and the accumulations that may create a load on the pipes and their surroundings are immediately intervened, and new risks that may arise are prevented. It has contributed to energy supply security, asset management, pipeline holistic management, and overall sustainability in the industry.
Keywords: Earthquake, natural gas pipes, oil pipes, voltage measurement, landslide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127456 Improved K-Modes for Categorical Clustering Using Weighted Dissimilarity Measure
Authors: S.Aranganayagi, K.Thangavel
Abstract:
K-Modes is an extension of K-Means clustering algorithm, developed to cluster the categorical data, where the mean is replaced by the mode. The similarity measure proposed by Huang is the simple matching or mismatching measure. Weight of attribute values contribute much in clustering; thus in this paper we propose a new weighted dissimilarity measure for K-Modes, based on the ratio of frequency of attribute values in the cluster and in the data set. The new weighted measure is experimented with the data sets obtained from the UCI data repository. The results are compared with K-Modes and K-representative, which show that the new measure generates clusters with high purity.
Keywords: Clustering, categorical data, K-Modes, weighted dissimilarity measure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36897455 Mobile Phone as a Tool for Data Collection in Field Research
Authors: Sandro Mourão, Karla Okada
Abstract:
The necessity of accurate and timely field data is shared among organizations engaged in fundamentally different activities, public services or commercial operations. Basically, there are three major components in the process of the qualitative research: data collection, interpretation and organization of data, and analytic process. Representative technological advancements in terms of innovation have been made in mobile devices (mobile phone, PDA-s, tablets, laptops, etc). Resources that can be potentially applied on the data collection activity for field researches in order to improve this process. This paper presents and discuss the main features of a mobile phone based solution for field data collection, composed of basically three modules: a survey editor, a server web application and a client mobile application. The data gathering process begins with the survey creation module, which enables the production of tailored questionnaires. The field workforce receives the questionnaire(s) on their mobile phones to collect the interviews responses and sending them back to a server for immediate analysis.Keywords: Data Gathering, Field Research, Mobile Phone, Survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20597454 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis
Authors: N. R. N. Idris, S. Baharom
Abstract:
A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates.On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.
Keywords: Aggregate data, combined-level data, Individual patient data, meta analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17407453 Influence of the Flow Rate Ratio in a Jet Pump on the Size of Air Bubbles
Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski
Abstract:
In wastewater treatment processes, aeration introduces air into a liquid. In these systems, air is introduced by different devices submerged in the wastewater. Smaller bubbles result in more bubble surface area per unit of volume and higher oxygen transfer efficiency. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. The principle of jet pumps is their ability to transfer energy of one fluid, called primary or motive, into a secondary fluid or gas. These pumps have no moving parts and are able to work in remote areas under extreme conditions. The objective of this work is to study experimentally the characteristics of the jet pump and the size of air bubbles in the laboratory water tank. The effect of flow rate ratio on pump performance is investigated in order to have a better understanding about pump behavior under various conditions, in order to determine the efficiency of receiving air bubbles different sizes. The experiments show that we should take care when increasing the flow rate ratio while seeking to decrease bubble size in the outlet flow. This study will help improve and extend the use of the jet pump in many practical applications.Keywords: Jet pump, air bubbles size, retention time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29897452 Optimal Planning of Dispatchable Distributed Generators for Power Loss Reduction in Unbalanced Distribution Networks
Authors: Mahmoud M. Othman, Y. G. Hegazy, A. Y. Abdelaziz
Abstract:
This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm.
Keywords: Distributed generation, heuristic approach, Optimization, planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18087451 Multivariate Assessment of Mathematics Test Scores of Students in Qatar
Authors: Ali Rashash Alzahrani, Elizabeth Stojanovski
Abstract:
Data on various aspects of education are collected at the institutional and government level regularly. In Australia, for example, students at various levels of schooling undertake examinations in numeracy and literacy as part of NAPLAN testing, enabling longitudinal assessment of such data as well as comparisons between schools and states within Australia. Another source of educational data collected internationally is via the PISA study which collects data from several countries when students are approximately 15 years of age and enables comparisons in the performance of science, mathematics and English between countries as well as ranking of countries based on performance in these standardised tests. As well as student and school outcomes based on the tests taken as part of the PISA study, there is a wealth of other data collected in the study including parental demographics data and data related to teaching strategies used by educators. Overall, an abundance of educational data is available which has the potential to be used to help improve educational attainment and teaching of content in order to improve learning outcomes. A multivariate assessment of such data enables multiple variables to be considered simultaneously and will be used in the present study to help develop profiles of students based on performance in mathematics using data obtained from the PISA study.
Keywords: Cluster analysis, education, mathematics, profiles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8927450 Sensorless Commutation Control of Switched Reluctance Motor
Authors: N.H. Mvungi
Abstract:
This paper addresses control of commutation of switched reluctance (SR) motor without the use of a physical position detector. Rotor position detection schemes for SR motor based on magnetisation characteristics of the motor use normal excitation or applied current /voltage pulses. The resulting schemes are referred to as passive or active methods respectively. The research effort is in realizing an economical sensorless SR rotor position detector that is accurate, reliable and robust to suit a particular application. An effective and reliable means of generating commutation signals of an SR motor based on inductance profile of its stator windings determined using active probing technique is presented. The scheme has been validated online using a 4-phase 8/6 SR motor and an 8-bit processor.Keywords: Position detection, rotor position, sensorless, switched reluctance, SR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28657449 DIVAD: A Dynamic and Interactive Visual Analytical Dashboard for Exploring and Analyzing Transport Data
Authors: Tin Seong Kam, Ketan Barshikar, Shaun Tan
Abstract:
The advances in location-based data collection technologies such as GPS, RFID etc. and the rapid reduction of their costs provide us with a huge and continuously increasing amount of data about movement of vehicles, people and goods in an urban area. This explosive growth of geospatially-referenced data has far outpaced the planner-s ability to utilize and transform the data into insightful information thus creating an adverse impact on the return on the investment made to collect and manage this data. Addressing this pressing need, we designed and developed DIVAD, a dynamic and interactive visual analytics dashboard to allow city planners to explore and analyze city-s transportation data to gain valuable insights about city-s traffic flow and transportation requirements. We demonstrate the potential of DIVAD through the use of interactive choropleth and hexagon binning maps to explore and analyze large taxi-transportation data of Singapore for different geographic and time zones.Keywords: Geographic Information System (GIS), MovementData, GeoVisual Analytics, Urban Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23897448 Gene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning
Authors: Chunming Xu
Abstract:
Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn-t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The proposed DR-SSL algorithm can not only make use of the sparse representation to model the data, but also can effective employ the label information to guide the procedure of dimensionality reduction. In addition,the presented algorithm can effectively deal with the out-of-sample problem.The experiments on gene-expression data sets show that the proposed algorithm is an effective tool for dimensionality reduction and gene-expression data classification.Keywords: sparse representation, dimensionality reduction, labelinformation, sparse subspace learning, gene-expression data classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14477447 Determining Cluster Boundaries Using Particle Swarm Optimization
Authors: Anurag Sharma, Christian W. Omlin
Abstract:
Self-organizing map (SOM) is a well known data reduction technique used in data mining. Data visualization can reveal structure in data sets that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOMs, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of a generic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOMs. The application of our method to unlabeled call data for a mobile phone operator demonstrates its feasibility. PSO algorithm utilizes U-matrix of SOMs to determine cluster boundaries; the results of this novel automatic method correspond well to boundary detection through visual inspection of code vectors and k-means algorithm.
Keywords: Particle swarm optimization, self-organizing maps, clustering, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17187446 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.
Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10757445 Energetic Considerations for Sputter Deposition Processes
Authors: Dirk Hegemann, Martin Amberg
Abstract:
Sputter deposition processes, especially for sputtering from metal targets, are well investigated. For practical reasons, i.e. for industrial processes, energetic considerations for sputter deposition are useful in order to optimize the sputtering process. In particular, for substrates at floating conditions it is required to obtain energetic conditions during film growth that enables sufficient dense metal films of good quality. The influence of ion energies, energy density and momentum transfer is thus examined both for sputtering at the target as well as during film growth. Different regimes dominated by ion energy, energy density and momentum transfer were identified by using different plasma sources and by varying power input, pressure and bias voltage.
Keywords: Energy density, film growth, momentum transfer, sputtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24477444 Risk of Late Payment in the Malaysian Construction Industry
Authors: Kho Mei Ye, Hamzah Abdul Rahman
Abstract:
The purpose of this study is to identify the underlying causes of late payment from the contractors- perspective in the Malaysian construction industry and to recommend effective solutions to mitigate late payment problems. The target groups of respondents in this study were Grades G3, G5, G6 and G7 contractors with specialization in building works and civil engineering works registered with the Construction Industry Development Board (CIDB) in Malaysia. Results from this study were analyzed with Statistical Package for the Social Science (SPSS 15.0). From this study, it was found that respondents have highest ranked five significant variables out of a total of forty-one variables which can caused late payment problems: a) cash flow problems due to deficiencies in client-s management capacity (mean = 3.96); b) client-s ineffective utilization of funds (mean = 3.88); c) scarcity of capital to finance the project (mean = 3.81); d) clients failure to generate income from bank when sales of houses do not hit the targeted amount (mean=3.72); and e) poor cash flow because of lack of proper process implementation, delay in releasing of the retention monies to contractor and delay in the evaluation and certification of interim and final payment (mean = 3.66).Keywords: Underlying causes, late payment, constructionindustry, Malaysia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71927443 A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain
Authors: Hiroaki Nasu, Ryota Miyamoto, Yuta Kodera, Yasuyuki Nogami
Abstract:
To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of the manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. Blockchain mechanism such as Bitcoin using Public Key Infrastructure (PKI) requires plaintext to be shared between companies in order to verify the identity of the company that sent the data. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems, this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is top-secret. In this scenario, we show an implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.
Keywords: Business to business data collaboration, industrial supply chain, blockchain, homomorphic encryption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8197442 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach
Authors: Sarisa Pinkham, Kanyarat Bussaban
Abstract:
The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.
Keywords: Daily rainfall, Image processing, Approximation, Pixel value data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17587441 Automatic Generation of Ontology from Data Source Directed by Meta Models
Authors: Widad Jakjoud, Mohamed Bahaj, Jamal Bakkas
Abstract:
Through this paper we present a method for automatic generation of ontological model from any data source using Model Driven Architecture (MDA), this generation is dedicated to the cooperation of the knowledge engineering and software engineering. Indeed, reverse engineering of a data source generates a software model (schema of data) that will undergo transformations to generate the ontological model. This method uses the meta-models to validate software and ontological models.
Keywords: Meta model, model, ontology, data source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998