
Abstract—XML is an important standard of data exchange and
representation. As a mature database system, using relational database
to support XML data may bring some advantages. But storing XML in
relational database has obvious redundancy that wastes disk space,
bandwidth and disk I/O when querying XML data. For the efficiency
of storage and query XML, it is necessary to use compressed XML
data in relational database. In this paper, a compressed relational
database technology supporting XML data is presented. Original
relational storage structure is adaptive to XPath query process. The
compression method keeps this feature. Besides traditional relational
database techniques, additional query process technologies on
compressed relations and for special structure for XML are presented.
In this paper, technologies for XQuery process in compressed
relational database are presented..

Keywords—XML, compression, query processing

I. INTRODUCTION
ECAUSE its extensibility and ability of representation of
semistructured data, XML[1] database can represents

more complex semantics than traditional database. But the
application of XML database needs the support of efficiency
storage. The storage strategies of XML includes three types,
flat text, OO DBMS and relational DBMS.[2] As a type of
mature DBMS, relational database has its special advantages
such as efficiency query process, concurrency control and so
on. Commercial relational database products are widely used
by many users. Using them to support the storage and query of
XML data will result in many advantages. There are several
research about storing XML in [3-9, 15, 16].

A notable problem of existing storage structure of XML is
the redundancy of XML. An XML document can be divided
into two parts, one is the context of data it represents, the other
is structure of XML which is compounded by tags. Structure
information is important for the semantics of XML document.
However, lots of repetitive tags result in redundancy. And the
context that XML document represents also has redundancy.
Storing XML data in relational may result in additional
redundancy because of the decomposition of the schema. In
order to support XML database efficiently, it is necessary to
compress XML document in relational database.

Hongzhi Wang is with the Harbin Institute of Technology, Harbin, 150001,
China (phone: +86-451-86415280-22; fax: +86-451-86415827; e-mail:
wangzh@hit.edu.cn).

Jianzhong Li is with the Harbin Institute of Technology, Harbin, 150001,
China (e-mail: wangzh@hit.edu.cn).

Hong Gao is with the the Harbin Institute of Technology, Harbin, 150001,
China (e-mail: honggao@hit.edu.cn).

Several XML compression technologies have been presented
[10-14]. Some of them are only design for the compression the
XML document without the requirement of query [10, 11]. The
compression methods considering query in [12, 13, 14] are all
the methods on original XML document. The query efficiency
of them depends on the query process technologies on XML
data. In [14], a compression method of the structure of XML is
presented without considering of context.

In this paper, the compression technique special for XML
document in relational database is presented. At first, a
relational structure supporting XML document in various sizes
and schemas is presented. This storage structure supports path
query very well and adapt for query process on it. In order to
make the relational adaptive to be compressed, vertical
partition of the relation is used as the structure. And various
types of context data are compressed respectively to gain large
compress ratio.

The query process technology on compression relations is
presented. Without considering compression instance, the
query translation technology of XQuery[28] to query plan with
relational algebra for common relation database is presented.
Since the query optimization and query execution technologies
of relational database are quite mature, they needs only a little
improvement to support the compression.

The contributions of this paper include:
 The paper presents a relational storage structure of XML

data adaptive for both compressing and querying XML data.
The path is kept in the relation. Primary part of XPath[29]
query can be processed in main memory. Vertical partition
based physical storage structure is also designed to support
compression.

Compression technology for XML data in relational
database is presented. A practical compression method is
designed for the structure information of XML data in
relational database.

Context is separated and compressed based on data type
and range of value which are obtained without schema
information.

Query translation technology from XQuery to relational is
designed for XML query process on relational database. This
technology is independent to the compression structure can be
applied for querying XML in common relational database.

Considering the usage of existing query optimization and
execution technologies of relational, a little improvement is
done for the special feature of our compress structure for XML
data.

The remainder of this paper is organized as follows. In

XML Data Management in Compressed
Relational Database
Hongzhi Wang, Jianzhong Li, and Hong Gao

B

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4210International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

26
39

.p
df

section 2, we summary related work. In section 3, special
relational storage for XML is presented, as well as compression
technology on this sturcure. Query processing technology on
compressed data is designed in section 4. Section 5 contains the
result of our experiments. Finally, in Section 6, we summarize
our work.

Motive Example: In order to explain our storage and query
process strategy, an example of a bookshop is presented. The
DTD of the example is shown in fig.1. In the DTD, price has
float type, number has integer type, name, title, author and
publisher are in string type.

II. RELATED WORK

Data compression is an important field of information
theory. Data compression has some advantages such as
reduction of storage size, saving network bandwidth and
accelerating query processing by reducing times of I/O. With
these advantages, compression technology plays an important
role in database.

For XML data, there are two types of compression method.
One is to separate context and tag. They are coded respectively.
The two parts are assembled after coded. This type of
compression technologies keeps homomorphism between
compressed XML document and original XML document.
Therefore, most query process technologies directly to XML
document are still not efficient to compressed XML document.
XGRIND[12] and XPRESS[13] are of this type. These
technologies have large compression ratio. But an obvious
problem of them is that in order to support efficient XPath
Query, some index is necessary, as will result in additional
storage cost. When XML document is large, existing
technologies of query processing are inefficient.

The other type of compression is to compress structure and
context separately and store them respectively. XMILL[11]
belongs to this type. XMILL stores data with same type as a
unit and compress each unit using a special compression
method. The compression ratio of XMILL is high. But query
can not be processed on compressed data without
decompressing the whole document. [15] presents a technology
that compresses only structure of XML document.
Compression of structure has excellent compression ratio. The
problem of this technology is that the connection of structure
information and context information results in additional
storage. And without the compression of context, compression

ratio of the whole document is limited.
There are many relational storage structures supporting

XML documents. [3] and [4] considers large XML document
and store XML document in the relations that are partitioned
based on the schema of XML document. [5] and [15] are the
extension of this method to self-tuning of the storage structure.
These methods are not adaptive to the instance of storing many
XML documents with various schemas and bring redundancy.
Query process in these storage structure results in many join
operations. It is hard to translation XQuery to SQL for various
instance of schema. More adaptive storage structure and query
translation is presented in [5] and [6]. The method is to store
each edge of the XML document. The shortcoming is that the
query process efficiency on this storage is low. [7, 16] use
interval encoding to represent the ancestor and descendence.
XRel [5] is to encode the path and store the code and the extent
of each node. But the translation detail of XQuery is not
presented in [5]. In [9], a storage structure is presented to
converting XQuery to range query. It accelerates XML steps.
But none of the above structures consider the problem of
compression.

It is noted compression method that can be used to compress
database should lossless one. There are much research work
about compressed relational database[17-23]. [17] gives many
methods to compress database. A block-based compression
method is presented in [18]. In [19], an order preserving string
compression method is presented, which is useful for the
compression of database with text. [20] uses vector
quantization to compress the repetitive in recorders. The query
optimization strategy is presented in [12]. With the strategy,
compressed database can be changed to a self-change one. [22]
presents a loss compression method with the usage of data
mining technology. The compression method special for 2-ary
relation is introduced in [23]. Some technologies of these
papers are referenced during the design of our compression
method of relational database.

There are also many technologies for lossless compression of
general data. Huffman[24] is a classical compression
technology. It assigns shorter code to most frequently
appearing symbols and longer code to less frequently appearing
symbols. BWT[25] is a new technology of compression text.
(introduction to BWT) Dictionary coding is effective when
only a small number of words exist. The idea of dictionary
coding is to assign an integer value to each new word from
input data. The differential encoding method, also called delta
encoding, replaces a data item with a code value that defines its
relationship to a specific data item. Differential encoding is
adaptive to compression of numerical value. All these methods
can be selected to compress some part of XML data lossless.

III. COMPRESSION OF RELATIONAL DATABASE WITH XQUERY
SUPPORT

In this section, the storage of relational database with
XQuery support is presented. Based on the logical structure, a
special physical storage with compression technology is
designed.

<!ELEMENT bookshop (name, department*)>
<!ELEMENT department (name, book*)>
<!ELEMENT book (title, author*,publisher, price>
<!ELEMENT name (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT number (#PCDATA)>

Fig. 1 DTD of Example

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4211International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

26
39

.p
df

A. Store XML in Relational Database
Beyond existing relational structure storing XML document,

a storage structure adapt for XQuery process on XML data.
Some redundancy is permitted because compression
technology will be applied to eliminate the redundancy without
effect to the query process.

 Each node of XML document can be uniform identified by
its preorder rank. Each path from root to leaf node can be
represented as the list of the preorder ranks of nodes in this
path. Based on this fact, the storage structure of XML
document is to store the preorder ranks of a path with the value.
The paths with same path schema s are stored together as a
relation, which is called path relation of s, rs for short. If ls is the
length of path schema s, rs has ls+1 columns, the first ls columns
are the preorder rank of the path with names the name of
corresponding tag and the last column with the name value is
the value of the leaf node. It is suppose that for a record a in rs,
the column i of it is a(i).

The tags in XML document is encoded and stored in a
separate relation, rtag. Each path schema can be presented as the
list of tags. All Path schemas of leaf nodes in XML document
are also encoded. The content of path schema with its code is
stored in a relation rp, in which the content of path schema is
represent as a string with each char having ASCII value of the
tag nodes’ codes. The schemas of rs, rtag and rp are shown in
table1, table2 and table 3.

Two properties of XML document stored in this structure are
presented as Theorem1 and Theorem2. Before the two
theorems are presented. A property of preordered rank stored in
rs is shown in Lemma1.

Lemma1 Two records a and b in an rs. when i<ls+1, if
a(i)=b(i), a(i-1)=b(i-1).

Proof a(i)=b(i) represents the ith nodes of path
corresponding to record a and b are the same. It is supposed to
be ni. In a XML tree, the parent of a node is uniform. The
preorder rank of ni’s parent is preorder(ni-1)=a(i-1)=b(i-1).

All the records in rs can be sorted by the first ls columns with
the order from 1 to ls. Thus, a property of sorted rs is shown in
Therom1

Theorem1 all records rs which has been sorted by the first ls

columns with the order from 1 to ls with the same values of the
ith (0<i<ls+1) column must be coterminous.

Proof The theorem is to be proved in mathematic induction.
When i=1, the 1st column of rs represnts the preorder rank of

root of XML tree, which is uniform in a XML tree.
If when i=n, the theorem holds, it is to be proved that when

i=n+1, the theorem holds.
By Lemma1, the values of the parents of the ith column with

the same value of all the records must be same. By the induction
hypothesis and the sorted rules that the records with the same
values of the ith column are sorted by the i+1 column, records
in sorted rs with the same values of the ith (0<i<ls+1) column
must be coterminous.

A property of the order of nodes in the same level is
presented in Theorem2.

Theorem2: In the same column of a sorted relation, the order
of the node to the same parent node is kept.

Proof: Since the model of XML is an ordered labeled the
tree, the prerank of a node is smaller than that of its following
sibling. Hence in an ordered column, the prerank for the node
precedes that of its following sibling.

B. Compression of the Relational Database
In this section, the compression method of the relational

database is presented. Based on special physical storage for
compression, the columns of the path and that of the value are
compressed respectively.

1) The Physical Storage adaptive for compression
The data with the same data type and range of value is easy to

compress. An observation of rs for various s following the
storage schema in 3.1 shows that the redundancy exists in that
the some leaves may share the same ancestor, the code of which
is stored many times. To solve this problem, the physical
storage is the vertical partition of the relation so that the
preorder rank of the same type of data can be gathered together.
And the values of the leaf nodes with the same path schema
often have the same data type and range of value. Storing the
values together makes the context information easy to
compress. Another advantage of vertical partition is that the
acceleration of projection operation, which is often used during
the process of XQuery in relations to select special nodes
binding to variable in variable forest.

2) The compression of Path property
With the assurance of Therom1, on the physical storage of

vertical partition, the value of each path property can be
compressed the following compression method. For the storage
of the ith column, the difference of each value and the former
value to it is obtained. And the value with the number of the
number of times the value continues to exist is stored. Although
the method is simple, the wide the column can be shortened and
the repetitive values can be eliminated.

Example 3.1: The array 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15 is
converted to 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2 and compressed as 1, 5,
2, 1, 1, 2, 2, 3.

3) The compression of the value column
The value column of each rs can also be compressed. The

name type meaning
p1 long Preorder rank of 1st node of the path
p2 long Preorder rank of 2nd node of the path
...
Pls long Preorder rank of ls

th node of the path
value Integer/string/double The value of path

TABLE I THE SCHEMA OF RS

name type meaning
name string name of the tag
code int code of the tag

TABLE II THE SCHEMA OF RTA

name type meaning
path string The context of the path
code int code of the path

TABLE III THE SCHEMA OF RPATH

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4212International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

26
39

.p
df

value column is compressed by its data type and value of range.
The type of the column of value is judged by statistics. The data
type supported by our compressor includes enumeration type,
integer, float, string and text. Obviously, enumeration typed
data is easily to be compressed with dictionary compressor.
Hence at first, each path type is supposed as enumeration type.
The values of the path class are stored. If the number of the
values is larger than a threshold, the path type is considered not
enumeration typed and judged by existing value. If existing
value is all number but the first character is not ‘0’, path type is
considered as integer. If all characters is ‘0’ to ‘9’ or ‘.’, path
type is considered as float. If the length of existing values is
smaller than a threshold, it is string. Otherwise, path type is
text. The range of value should be recorded with path type
integer and float.

Compression method to path class can be determined with
path type. Referencing compressors to various data types in [4]
and [5], the compressor to various data type is presented in
table1. u8, u16 and u32 are the differential encoders for integer.
F32 is float encoder built according to IEEE float code
standard. Enumerate typed data is compressed by dictionary
compressor. String is encoded with suffix compressor. While
for long text, BWT[10] compression method is used.

IV. QUERY PROCESSING ON COMPRESSED DATABASE

In this section, query process technology on the database
compressed with the method of is presented.

A. An Overview of Query Processing
Basic idea of query process is to express query plan with

relational operators. XQuery is expressed as relational The
steps of query process are shown in fig.2

Before query process, XQuery expression should be parsed
and preprocessed. Besides computing expression with only
constant and reduce constant restriction,

The first step of query translator is to extract the variables
and their relationship from the query. They are represented as a
tree, as is defined as variable tree. Each node represents a
variable with its path in the query. More than one tree can be
extracted from the query. The results of the trees are to be join
in semantics. All of variable trees of a query form a forest, as is
defined as variable forest.

And then the condition of the query is transformed into the
form of DNF. Each clause of DNF is CNF. Each clause is to be
generated on forest. For the optimization, some clause should
be merged.

The next step is to add each CNF clause of restriction clause
to the forest. Thus, several restricted VFs generate. The final

result is the unions of these restricted VFs. Additional nodes are
added to the forest. Restrictions are added to existing nodes.
The generation and adding restriction process of VF is
presented in section4.2.

Query plan is generated from restricted VFs. The query plan
generation method is presented in section 4.3. And the query
plan is executed to obtain the information from compressed
relational database. The query plan is represented by relational

operators. The implementations of these operators on
compressed storage are quite like those on common relational
database. The improvements of the implementation of
operators are introduced in section4.4. The last step is to wrap
the final result to the format of XML with the result schema.

B. Generation of Variable Forest
1) Generation of Original Variable Forest

The first step is to convert the query to variable forest
containing several variable trees, which represents the
relationship between the variables in the query.

Definition 4.1 Variable Tree (VT for short): A Variable Tree
of a query Q TQ=(r, V, E), where r is the root of the tree, V is the
set of nodes of the tree and E is the edge of the tree such that:

Each v V can be represented as (ID, var, path, res, isresult,
agg), where ID is the identify of the v which is uniform in the
whole variable forest, var is the name of varable v binding to,
path is the XPath expression of the var in Q and res is the
restriction of this var. If v is a leaf node, res is the comparison
of var and a constant. Otherwise res is the existing restriction of
some child of v in TQ or the relationship between the children of
v in TQ. property isresult represents if the variable exists in the
final result. Property agg represents the aggregation function
with id of group by nodes on this node.

Each e E is labeled pc(for parent child relationship), ad(for
ancestor descendant relationship), ad* (for self-or descendant

XQuery parser

Preprocessor

Build Variable forest Reduce Restriction

Bind restriction to variable forest

Query Plan

Query executor Result wrapper

Compressed
Relational DB

Result viewer

Variable list restriction

Variable forest restiction

Variable forests

Variable forests

Result as relational

R
esult schem

a

R
esult in X

M
L form

at

Fig. 2 Query Process steps

Compressor Path type
u8 Integer max-min<28

u16 Integer max-min<216

u32 Integer max-min<232

f32 Float
Dictionary encoder Enumerate typed data
Suffix encoder String
BWT encoder Text

TABLE IV COMPRESSORS TO VARIOUS PATH TYPES

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4213International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

26
39

.p
df

relationship)or the description of XPath.
Definition 4.2 Variable Forest (VF for short): A set of

variable trees FQ= (ST, R), where ST is the set of variable trees
in FQ and R is the set of relationships between the trees in ST in
FQ.R is represented as the restriction to connect the VTs.

Example 4.1 For the query to “for each book published by
MIT Press find the number of book published by Prince Hall
with the same title as it
for $a in document(“bookshop.xml”)//book (Q1)

 let $c:=for $b in document(“bookshop.xml”)//book
 where $a/title=$b/title and $b/publisher=’Prince Hall’

 Result <item>$b</item>
 where $a/Publisher=”MIT Press”
 result <result>
<book1>$a/title</book1>
 <number>count($c)</number>
 </result>
The VF of Q1 has two VTs. The initial VF of Q1 is shown in

fig.3, in which $v1 represents a virtual variable.
The generation of a VF is to extract the variables from query

and construct VTs. At first, for each independent variable that
is obtained from for and let clause, a VT is built with ID, var
and path expression. It is noted that the path expression is
absolute path from root to the node var standing for.

2) Binding Restrictions to VF
Each DNF ri=ri1 ri2 …… rimi of restriction is then added to

the VF. The restricted VF generated by ri is VFi. Internal plan pi

is translated from each VFi respectively. Final result is the
union of the result of all the internal plans.

The process of adding ri to VF is to apply each rij to VF. The
application is processed according to the variables in each rij.

If rij contains just one variable or XPath expression that
has been bound to some node n in VF, the restriction rij is add
to res property of n.

If rij contains variables or XPath expressions that have
not been bound to any node n in VF, a node n binding to a
virtual variable is added to corresponding VT in VF. In this
instance, if rij has only one virtual variable, the restriction is
added to res property of n directly.

If rij contains more than one variable or XPath
expression, all variables or XPath expressions are bound to the

VF at first. And then, each variable v is check to determine
which VT it belongs to. If all the variables belong to the same
VT Tk, restriction rij is added to the nearest ancestor of them in
Tk. Otherwise, a connection node is built to connect all the VTs
that rij has variable binding to.

Example 4.2: When the restriction in where clause of Q1 is
applied to VF in Example 4.1, the VF is converted to the form
as fig.4

C. Construct Query Plan from Restricted Variable Forest
The query plan of compressed relational database is in the
same form as that of common relational database[26].

1) Generation of Logical Plan
The generation of logical plan is to traverse bound VF and

generation corresponding logical plan for each node. The
translation result may have more than one operator, such that
the relationships among them are defined. The translated
result of one node n in VF can be considered as a box with its

inputs the result of the children of n and the output of n is used
as the input of n’s parent.

The traversal is the hybrid of preorder and postorder. Each
internal node in VF is to be accessed two times during the
traversal. During the traversal, a stack is used to record the
variable to be projected in the path. When first time to access an
internal node n, if var of n has more than one child or agg
property of n is not NULL or it appears in res property of its
ancestors, the tag number corresponding to n is pushed in to
project stack. At the same time, the set of various ids that all its
ancestors need are recorded in n.

When a leaf node is met, the names of the relations of leaves
of each VT in VF are obtained by matching the path property of
the leaf node to the path context column in rp. These relations
are represented as rt1, rt2,…, rtn. A projection operation is added
to each rit with projection columns the union of current project
stack t, the tag number of the leaf and value. A selection
operator is then added above projection operators if there is
some restriction binding to the node. A projection precedes
selection is because that the cost of projection operator is
constant. If more than one relation matches the path expression
of this node, an addition union operation is added to the top of
the query plan for each single relation.

When the second time visiting an internal node n, a join
operation is added with the objects the results of the operations
corresponding to its children. The join restrictions include not
only the res property but also the restriction of the equation of
the column corresponding to the tag number of n. The selection
of the order of the join is left for the generation of physical plan.

#1, $a, //book, NULL, F

#2, $v1, //book/title,NULL, T
Fig. 3 Initial VF of Q1

#3, $b, //book, NULL, T
pc

Fig. 4 VF of Q1 bound to restrictions

#1, $a, //book, NULL, F, NULL

#2, $v1,
//book/title,
NULL, T, NULL

#3, $b, //book, NULL, T, count

#5, $v3,
//book/title, NULL,
F, NULL, F,NULL

#4, $v2, //book/publisher,
$v2=”MIT Press”, NULL,
F, NULL

#6, $v4, //book/publisher,
$v2=”Prince Hall”, NULL,
F, NULL

#7, $v1=$v3

pc pc pc pc

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4214International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

26
39

.p
df

A projection operation is added to the top of
A join operator may be generated from the top level

restriction node with the restriction stated in this node. The
projection of final result and aggregation operation is added to
the top level.

Example 4.3: The logical query plan of the VF in
example4.2 is shown in fig.5

2) Generation of Physical Plan
 The generation of physical plan is the improvement of that

of common relational database with the data properties in the
storage structure. And the cost estimated also needs a little
improvement. Here only the improvements are presented.

 First of all, based on Theorom1, arbitrary column except
value is ordered. Thus, the join with restriction of only columns
of preorder ranks is naturally merge sort join with the cost only
that of merge operation without that of sort. In order to keep the
order during the process, if there is union above the logic plan
according to a node in VF, the physical operator of the union is
multi-way merge union.

 Since our operator is on compressed data, the additional
operators of compression and decompression are necessary. In
the scan for selection operator or join operator by the restriction
of value column, decompression is necessary only when the
string matching operation is applied to the column with type
text. Otherwise, the value in restriction is compressed to
compare with the compressed value in value column. The cost
of compression and decompression operator is also depends on
the compress method and the size of compression data. The
cost of scan operation should consider the reduction of I/O. The
reduction depends on the estimate of compression ratio of the
compression method and the statistics of the data.

D. Execution of Query Plan
The implementation of query operators in a query plan is also

quite similar to that of common relational database except
compression operators should be added to the implementation.

The sequence scan operation on compressed data should be
considered. When the operation scan is executing, on the
compressed column of preorder rank in path, the preorder rank
of the node can be extracted from compressed data in a cup time
of adding. And when the operation scan is by the restriction of
value, the value in restriction is compressed in the compression
method of corresponding value column. It is noted that
performing scan on the vertical partitioned table needs to keep
the synchronization of the block of all necessary columns.

V. EXPERIMENTS

A. Experimental Environment
The experiments are performed on a PC with AMD 1G CPU

and 256M main memory. Operation system is Microsoft
windows XP Professional and develop platform is Visual C++
6.0. Relations and temporal tables are stored as files in local
computer.

Data Set: XMark[27] is a famous benchmark of XML data
management. It covers many features of XQuery. We use

XMark as our data set with various factor.
Queries: All the 20 queries presented in XMark are used for

experiments.

B. Performance Result and Analysis
Three measurements are used to represent the performance

of the compression:
RE ratio(relation expand ratio)=relations size/original size-1
RC ratio(relation compression ratio)=1-size of compressed

relations/ size of relations
DC ratio(document compression ratio)=1-size of

compressed relations/size of original XML document

The result of compression is in table5.
The compression ratio of XMark data sets with factor above

to 0.1 is a similar. The reason is that they are automatically
generated and have similar ratios of various data types and tags.

 To test the efficiency of query process on compressed
data, the 20 queries in XMark is applied to XMark data set with
factor 1.0. The result of query process is shown in table 6.

From the result, the efficiency of the query processing on
compressed data is acceptance. Q8-Q11 are slower because the
join of XML trees results many joins with many temporal
tables. Especially 14 temporal tables are resulted during
processing of Q10. Q14 is slower because that we do not
optimize for the string matching.

If the compression and query processing technology is
embedded to an existing database system with optimization of
execution of joins and temporal tables, higher efficiency can be
gained.

VI. CONCLUSIONS

In this paper, the strategy of storing and querying XML
document in compressed relational compressed database is
presented. On one hand, the strategy has the relation database’s
advantage of easy query process. On the other hand, it reduces
the storage needed to store XML data, as well as the disk I/O
during query processing. A special relational structure for
storing XML is presented. And the compression on it obtains a

Fig. 5 logic plan of Q1

Ja.book=b.book

book, title, value book, publisher, value

value=”MIT Press”

publisher.value, title.value

Ja.title.value=b.title.value

Ja.book=b.book

book, title,value book, publisher, vlaue

value=”Prince Hall”

book, publisher.value

a.title.value(b.book)

a.tilte.value, b.book

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4215International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

26
39

.p
df

good compress ratio. The technique of converting XQuery to
logical query plan of relational is designed as the basic of query
on the XML data in compressed relations. During query
process, most techniques of query process in relational
database continue to be used with a little improvement, which
is also introduced in this paper.

This compression method adapts to very large XML
databases with the application of XML warehouse and to be
embedded to existing relational databases for better supporting
of XML data.

REFERENCES

[1] T.Bray, J.Paoli, C.M.Sperberg-McQueen. Extensible markup
language(XML)1.0. W3C Recommendation.
Feb.1998.http://www.w3.org/TR/REX-xml.

[2] Feng Tian, David J. DeWitt, Jianjun Chen, Chun Zhang. The Design and
Performance Evaluation of Alternative XML Storage Strategies.
SIGMOD Record special issue on "Data Management Issues in
E-commerce", March 2002

[3] A Deutsch, M. F. Fernandez, D. Suciu, Storing Semi-structured Data with
STORED, SIGMOD Conference 1999.

[4] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, J. F.
Naughton, Relational Databases for Querying XML Documents:
Limitations and Opportunities. VLDB 1999.

[5] S. Abiteboul, P. Buneman, D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers. 2000.

[6] Ioana Manolescu, Daniela Florescu, Donald Kossmann. Answering XML
queries on heterogeneous data sources. In Proc. of VLDB 2001.

[7] M. Yashikawa et al. : XRel: A Path-Based Approach to Storage and
Retrieval of XML Documents using Relational Databases. TOIS2001

[8] P. Bohhanon et al. From XML Schema to Relations: A Cost-Based
Approach to XML Storage. In the Proc. of ICDE 2002

[9] Torsten Grust. Accelerating XPath Location Steps. In Proc of SIGMOD
2002.

[10] James Cheney, Compressing XML with Multiplexed Hierarchical
Models, in Proceedings of the 2001 IEEE Data Compression Conference,
pp. 163-172

[11] Hartmut Liefke, Dan Suciu. XMill: an Efficient Compressor for XML
Data. In Proc of ACM SIGMOD2000.

[12] Pankaj M. Tolani, Jayant R. Haritsa. XGRIND: A Query-friendly XML
Compressor. In Proc. of the 18th International Conference on Data
Engineering, 2002

[13] JunKi Min, Myung-Jae Park, ChinWan Chung. XPRESS: A Queriable
Compression for XML Data. In Proc. of ACM SIGMOD 2003.

[14] Peter Buneman, Matin Grohe, Christoph Koch. Path Queries on
Compressed XML. In Proc of the 29th VLDB conference, 2003.

[15] Zhengchuan Xu, Zhimao Guo, Shuigeng Zhou, Aoying Zhou. Dynamic
Tuning of XML Sgorage Schema in VXMLR. In Proc. of IDEAS 2003.

[16] David DeHaan, David Toman, Mariano P. Consens, M. Tamer Ozsu. A
Comprehensive XQuery to SQL Translation using Dynamic Interval
Encoding. In Proc. of SIGMOD 2003.

[17] T.Westmann, D.Kossmann, S.Helmer, G.Moerkotte, The Implementation
and Performance of Compressed Databases, SIGMOD RECORD, Vol.29,
No.3, Sept. 2000

[18] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing relations and
indexes. Proceedings of the IEEE Conference on Data Engineering, pages
370-379, 1998

[19] G. Antoshenkov, D. Lomet, J. Murray. Order Preserving String
Compression. 12th International Conference on Data Engineering.

[20] W.K. Ng, C.V. Ravishankar. Relational database compression using
augmented vector quantization. 11TH International Conference on Data
Engineering

[21] Zhiyuan Chen, Johannes Gehrke, Flip Korn. Query Optimization in
Compressed Database Systems.SIGMOD2001.

[22] Shivnath Babu, Minos Garofalakis, Rajeev Rastogi. SPARTAN: A
Model-Based Semantic Compression System for Massive Data Tables.
SIGMOD2001.

[23] S. J. O’Connell, N. Winterbottom. Performing Joins without
Decompression in a compressed Database System. SIGMOD Record
32(2), June, 2003.

[24] D. A. Huffman. A Method for the Construction of Minimum Redandancy
Codes. In Proceedings of the Institute of Radio Engineers 40, pages
1098–1101, September 1952.

[25] M. Nelson, "Data compression with the Burrows--Wheeler transform,"
Dr. Dobbs' J., Sept. 1996.

[26] Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom. Database
System Implementation. Prentice Hall. 2000.

[27] Albrecht Schmidt, Florian Waas, Martin Kersten, Micheal J. Carey,
Ionana Manolescu, Ralph Busse. XMark: A Benchmark for XML Data
Managemetn. In Proc of the 28th VLDB conference, 2002.

[28] World Wide Web consortium. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/

[29] World Wide Web Consortium: XML Path Language (XPath) 2.0.
http://www.w3.org/TR/xpath20/

Hongzhi Wang Hongzhi Wang received his PHD in computer science from
Harbin Institute of Technology in 2008. He is a lecturer of Department of
Computer Science and Technology, Harbin Institute of Technology. His
research area is XML data management and information integration.
Jianzhong Li is a professor of Department of Computer Science and
Technology, Harbin Institute of Technology. His research area includes parallel
database, sensor network, data mining, data warehouse, compressed database
and XML data management.
Hong Gao Jizhou Luo received her PHD in computer science from Harbin
Institute of Technology in 2004. He is a professor of Department of Computer
Science and Technology, Harbin Institute of Technology. His research area is
graph database and data warehouse.

TABLE V RESULT OF COMPRESSION

DS Factor Ori. size Rel. size RE ratio Com. size RC ratio DC ratio
XMark 0.0001 33.13K 36.532K 10.2% 29.98K 17.9% 9.5%
XMark 0.1 11.13M 11.71M 5.3% 5.26M 55.0% 52.70%
XMark 0.2 22.43M 23.63M 5.4% 10.44M 55.84% 53.46%
XMark 0.4 46.89M 44.53M 5.3% 20.54M 56.19% 53.87%
XMark 0.8 89.23M 93.95M 5.3% 40.88M 56.48% 54.18%
XMark 1.0 111.1M 116.9M 5.3% 50.8M 56.51% 54.22%
Shakes / 7.50M 7.97M 6.2% 2.98M 62.60% 60.3%

TABLE VI THE PERFORMANCE OF QUERY PROCESS ON

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Time(s) 3.012 28.352 2.565 97.002 3.546 0.03 0.52 79.691 358.21 1102.35
Query Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
Time(s) 411.12 409.55 1.713 475.35 8.152 1.058 0.581 1.465 3.390 0.791

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4216International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

26
39

.p
df

