Search results for: replacement of reinforcement material
1459 Fung’s Model Constants for Intracranial Blood Vessel of Human Using Biaxial Tensile Test Results
Authors: Mohammad Shafigh, Nasser Fatouraee, Amirsaied Seddighi
Abstract:
Mechanical properties of cerebral arteries are, due to their relationship with cerebrovascular diseases, of clinical worth. To acquire these properties, eight samples were obtained from middle cerebral arteries of human cadavers, whose death were not due to injuries or diseases of cerebral vessels, and tested within twelve hours after resection, by a precise biaxial tensile test device specially developed for the present study considering the dimensions, sensitivity and anisotropic nature of samples. The resulting stress-stretch curve was plotted and subsequently fitted to a hyperelastic three-parameter Fung model. It was found that the arteries were noticeably stiffer in circumferential than in axial direction. It was also demonstrated that the use of multi-parameter hyperelastic constitutive models is useful for mathematical description of behavior of cerebral vessel tissue. The reported material properties are a proper reference for numerical modeling of cerebral arteries and computational analysis of healthy or diseased intracranial arteries.
Keywords: Anisotropic Tissue, Cerebral Blood Vessels, Fung Model, Nonlinear Material, Plain Stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33591458 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels
Authors: WooYoung Jung, HoYoung Son
Abstract:
This study presented to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, hightech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).Keywords: Composite material, GFRP, Infill Panel, Aftershock, Seismic Retrofitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22871457 Characterising Effects of Applied Loads on the Mechanical Properties of Formed Steel Sheets
Authors: Esther T. Akinlabi, Stephen A. Akinlabi
Abstract:
The purpose of this research study is to investigate the manner in which various loads affect the mechanical properties of the formed mild steel plates. The investigation focuses on examining the cross-sectional area of the metal plate at the centre of the formed mild steel plate. Six mild steel plates were deformed with different loads. The loads applied on the plates had a magnitude of 5 kg, 10 kg, 15 kg, 20 kg, 25 kg and 30 kg. The radius of the punching die was 120 mm and the loads were applied at room temperature. The investigations established that the applied load causes the Vickers microhardness at the cross-sectional area of the plate to increase due to strain hardening. Hence, the percentage increase of the hardness due to the load was found to be directly proportional to the increase in the load. Furthermore, the tensile test results for the parent material showed that the average Ultimate Tensile Strength (UTS) for the three samples was 308 MPa while the average Yield Strength and Percentage Elongation were 227 MPa and 38 % respectively. Similarly, the UTS of the formed components increased after the deformation of the plate, as such it can be concluded that the forming loads alter the mechanical properties of the materials by improving and strengthening the material properties.
Keywords: Applied load, forming and Mechanical Properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14281456 Developing Cu-Mesoporous TiO2 Cooperated with Ozone Assistance and Online- Regeneration System for Acid Odor Removal in All Weather
Authors: Yuchih Lin, Chung-Liang Chang, Hong-Yi Cao, Sheng-Hsuan Hsiao
Abstract:
Cu-mesoporous TiO2 is developed for removal acid odor cooperated with ozone assistance and online- regeneration system with/without UV irradiation (all weather) in study. The results showed that Cu-mesoporous TiO2 present the desirable adsorption efficiency of acid odor without UV irradiation, due to the larger surface area, pore sizeand the additional absorption ability provided by Cu. In the photocatalysis process, the material structure also benefits Cu-mesoporous TiO2 to perform the more outstanding efficiency on degrading acid odor. Cu also postponed the recombination of electron-hole pairs excited from TiO2 to enhance photodegradation ability. Cu-mesoporous TiO2 could gain the conspicuous increase on photocatalysis ability from ozone assistance, but without any benefit on adsorption. In addition, the online regeneration procedure could process the used Cu-mesoporous TiO2 to reinstate the adsorption ability and maintain the photodegradtion performance, depended on scrubbing, desorping acid odor and reducing Cu to metal state.Keywords: mesoporous material, photocatalyst, adsorption, regeneration usage, photocatalytic ozonation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18821455 Utilization of Demolished Concrete Waste for New Construction
Authors: Asif Husain, Majid Matouq Assas
Abstract:
In recent years demolished concrete waste handling and management is the new primary challenging issue faced by the countries all over the world. It is very challenging and hectic problem that has to be tackled in an indigenous manner, it is desirable to completely recycle demolished concrete waste in order to protect natural resources and reduce environmental pollution. In this research paper an experimental study is carried out to investigate the feasibility and recycling of demolished waste concrete for new construction. The present investigation to be focused on recycling demolished waste materials in order to reduce construction cost and resolving housing problems faced by the low income communities of the world. The crushed demolished concrete wastes is segregated by sieving to obtain required sizes of aggregate, several tests were conducted to determine the aggregate properties before recycling it into new concrete. This research shows that the recycled aggregate that are obtained from site make good quality concrete. The compressive strength test results of partial replacement and full recycled aggregate concrete and are found to be higher than the compressive strength of normal concrete with new aggregate.
Keywords: Demolished, concrete waste, recycle, new concrete, fresh coarse aggregate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58441454 Synthesis and Characterization of Nickel and Sulphur Sensitized Zinc Oxide Structures
Authors: Ella C. Linganiso, Bonex W. Mwakikunga, Trilock Singh, Sanjay Mathur, Odireleng M. Ntwaeaborwa
Abstract:
The use of nanostructured semiconducting material to catalyze degradation of environmental pollutants still receives much attention to date. One of the desired characteristics for pollutant degradation under ultra-violet visible light is the materials with extended carrier charge separation that allows for electronic transfer between the catalyst and the pollutants. In this work, zinc oxide n-type semiconductor vertically aligned structures were fabricated on silicon (100) substrates using the chemical bath deposition method. The as-synthesized structures were treated with nickel and sulphur. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy were used to characterize the phase purity, structural dimensions and elemental composition of the obtained structures respectively. Photoluminescence emission measurements showed a decrease in both the near band edge emission as well as the defect band emission upon addition of nickel and sulphur with different concentrations. This was attributed to increased charger-carrier-separation due to the presence of Ni-S material on ZnO surface, which is linked to improved charge transfer during photocatalytic reactions.
Keywords: Carrier-charge-separation, nickel, sulphur, zinc oxide, photoluminescence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8561453 Oil Palm Empty Fruit Bunch as a New Organic Filler for Electrical Tree Inhibition
Authors: M. H. Ahmad, A. A. A. Jamil, H. Ahmad, M. A. M. Piah, A. Darus, Y. Z. Arief, N. Bashir
Abstract:
The use of synthetic retardants in polymeric insulated cables is not uncommon in the high voltage engineering to study electrical treeing phenomenon. However few studies on organic materials for the same investigation have been carried. .This paper describes the study on the effects of Oil Palm Empty Fruit Bunch (OPEFB) microfiller on the tree initiation and propagation in silicone rubber with different weight percentages (wt %) of filler to insulation bulk material. The weight percentages used were 0 wt % and 1 wt % respectively. It was found that the OPEFB retards the propagation of the electrical treeing development. For tree inception study, the addition of 1(wt %) OPEFB has increase the tree inception voltage of silicone rubber. So, OPEFB is a potential retardant to the initiation and growth of electrical treeing occurring in polymeric materials for high voltage application. However more studies on the effects of physical and electrical properties of OPEFB as a tree retardant material are required.Keywords: Oil palm empty fruit bunch, electrical tree, siliconerubber, fillers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23631452 Kinetics and Thermodynamics Adsorption of Phenolic Compounds on Organic-Inorganic Hybrid Mesoporous Material
Authors: Makhlouf Mourad, Messabih Sidi Mohamed, Bouchher Omar, Houali Farida, Benrachedi Khaled
Abstract:
Mesoporous materials are very commonly used as adsorbent materials for removing phenolic compounds. However, the adsorption mechanism of these compounds is still poorly controlled. However, understanding the interactions mesoporous materials/adsorbed molecules is very important in order to optimize the processes of liquid phase adsorption. The difficulty of synthesis is to keep an orderly and cubic pore structure and achieve a homogeneous surface modification. The grafting of Si(CH3)3 was chosen, to transform hydrophilic surfaces hydrophobic surfaces. The aim of this work is to study the kinetics and thermodynamics of two volatile organic compounds VOC phenol (PhOH) and P hydroxy benzoic acid (4AHB) on a mesoporous material of type MCM-48 grafted with an organosilane of the Trimethylchlorosilane (TMCS) type, the material thus grafted or functionalized (hereinafter referred to as MCM-48-G). In a first step, the kinetic and thermodynamic study of the adsorption isotherms of each of the VOCs in mono-solution was carried out. In a second step, a similar study was carried out on a mixture of these two compounds. Kinetic models (pseudo-first order, pseudo-second order) were used to determine kinetic adsorption parameters. The thermodynamic parameters of the adsorption isotherms were determined by the adsorption models (Langmuir, Freundlich). The comparative study of adsorption of PhOH and 4AHB proved that MCM-48-G had a high adsorption capacity for PhOH and 4AHB; this may be related to the hydrophobicity created by the organic function of TMCS in MCM-48-G. The adsorption results for the two compounds using the Freundlich and Langmuir models show that the adsorption of 4AHB was higher than PhOH. The values obtained by the adsorption thermodynamics show that the adsorption interactions for our sample with the phenol and 4AHB are of a physical nature. The adsorption of our VOCs on the MCM-48 (G) is a spontaneous and exothermic process.
Keywords: Adsorption, kinetics, isotherm, mesoporous materials, TMCS, phenol, P-hydroxy benzoic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8001451 Application of Pearson Parametric Distribution Model in Fatigue Life Reliability Evaluation
Authors: E. A. Azrulhisham, Y. M. Asri, A. W. Dzuraidah, A. H. Hairul Fahmi
Abstract:
The aim of this paper is to introduce a parametric distribution model in fatigue life reliability analysis dealing with variation in material properties. Service loads in terms of responsetime history signal of Belgian pave were replicated on a multi-axial spindle coupled road simulator and stress-life method was used to estimate the fatigue life of automotive stub axle. A PSN curve was obtained by monotonic tension test and two-parameter Weibull distribution function was used to acquire the mean life of the component. A Pearson system was developed to evaluate the fatigue life reliability by considering stress range intercept and slope of the PSN curve as random variables. Considering normal distribution of fatigue strength, it is found that the fatigue life of the stub axle to have the highest reliability between 10000 – 15000 cycles. Taking into account the variation of material properties associated with the size effect, machining and manufacturing conditions, the method described in this study can be effectively applied in determination of probability of failure of mass-produced parts.Keywords: Stub axle, Fatigue life reliability, Stress-life, PSN curve, Weibull distribution, Pearson system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21401450 Influence of Fiber Packing on Transverse Plastic Properties of Metal Matrix Composites
Authors: Mohammad Tahaye Abadi
Abstract:
The present paper concerns with the influence of fiber packing on the transverse plastic properties of metal matrix composites. A micromechanical modeling procedure is used to predict the effective mechanical properties of composite materials at large tensile and compressive deformations. Microstructure is represented by a repeating unit cell (RUC). Two fiber arrays are considered including ideal square fiber packing and random fiber packing defined by random sequential algorithm. The micromechanical modeling procedure is implemented for graphite/aluminum metal matrix composite in which the reinforcement behaves as elastic, isotropic solids and the matrix is modeled as an isotropic elastic-plastic solid following the von Mises criterion with isotropic hardening and the Ramberg-Osgood relationship between equivalent true stress and logarithmic strain. The deformation is increased to a considerable value to evaluate both elastic and plastic behaviors of metal matrix composites. The yields strength and true elastic-plastic stress are determined for graphite/aluminum composites.Keywords: Fiber packing, metal matrix composites, micromechanics, plastic deformation, random
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16441449 The Influence of Mineraliser Granulometry on Dense Silica Brick Microstructure
Authors: L. Nevrivova, K. Lang, M. Kotoucek, D. Vsiansky
Abstract:
This entry concerned with dense silica bricks microstructure was produced as a part of a project within the Technology Agency of the Czech Republic which is being implemented in cooperation of the biggest producer of refractories the P-D Refractories CZ company with the research organisation Brno University of Technology. The paper is focused on the influence of mixture homogenisation and the influence of grain size of the mineraliser on the resulting utility properties of the material as well as its microstructure. It has a decisive influence on the durability of the material in a building structure. This paper is a continuation of a previously published study dealing with the suitability of various types of mineralising agents in terms of density, strength and mineral composition of silica brick. The entry describes the influence of the method of mixture homogenisation and the influence of granulometry of the applied Femineralising agent on the resulting silica microstructure. Porosity, density, phase composition and microstructure of the experimentally prepared silica bricks samples were examined and the results were discussed in context with the technology of homogenisation and firing temperature used. The properties of silica bricks samples were compared to the sample without any Fe-mineraliser.
Keywords: Silica bricks, Fe-mineraliser, mineralogical composition, new developed silica bricks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20311448 Structural and Optical Properties of Ce3+ Doped YPO4: Nanophosphors Synthesis by Sol Gel Method
Authors: B. Kahouadji, L. Guerbous, L. Lamiri, A. Mendoud
Abstract:
Recently, nanomaterials are developed in the form of nano-films, nano-crystals and nano-pores. Lanthanide phosphates as a material find extensive application as laser, ceramic, sensor, phosphor, and also in optoelectronics, medical and biological labels, solar cells and light sources. Among the different kinds of rare-earth orthophosphates, yttrium orthophosphate has been shown to be an efficient host lattice for rare earth activator ions, which have become a research focus because of their important role in the field of light display systems, lasers, and optoelectronic devices. It is in this context that the 4fn- « 4fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies .Though there has been a few reports on Eu3+, Nd3+, Pr3+,Er3+, Ce3+, Tm3+ doped YPO4. The 4fn- « 4fn-1 5d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggesting to study on a very specific class of inorganic material that are orthophosphate doped with rare earth ions. This study focused on the effect of Ce3+ concentration on the structural and optical properties of Ce3+ doped YPO4 yttrium orthophosphate with powder form prepared by the Sol Gel method.
Keywords: YPO4, Ce3+, 4fn- <->4fn-1 5d transitions, scintillator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27331447 Barrier Properties of Starch - Ethylene Vinyl Alcohol Nanocomposites
Authors: Farid Amidi-Fazli, Neda Amidi-Fazli
Abstract:
Replacement of plastics used in the food industry seems to be a serious issue to overcome mainly the environmental problems in recent years. This study investigates the hydrophilicity and permeability properties of starch biopolymer which ethylene vinyl alcohol (EVOH) (0-10%) and nanocrystalline cellulose (NCC) (1-15%) were used to enhance its properties. Starch -EVOH nanocomposites were prepared by casting method in different formulations. NCC production by acid hydrolysis was confirmed by scanning electron microscopy. Solubility, water vapor permeability, water vapor transmission rate and moisture absorbance were measured on each of the nanocomposites. The results were analyzed by SAS software. The lowest moisture absorbance was measured in pure starch nanocomposite containing 8% NCC. The lowest permeability to water vapor belongs to starch nanocomposite containing 8% NCC and the sample containing 7.8% EVOH and 13% NCC. Also the lowest solubility was observed in the composite contains the highest amount of EVOH. Applied Process resulted in production of bio films which have good resistance to water vapor permeability and solubility in water. The use of NCC and EVOH leads to reduced moisture absorbance property of the biofilms.
Keywords: Starch, EVOH, nanocrystalline cellulose, Hydrophilicity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29941446 Simulation Model of an Ultra-Light Overhead Conveyor System; Analysis of the Process in the Warehouse
Authors: Batin Latif Aylak, Bernd Noche, M. Baran Cantepe, Aydin Karakaya
Abstract:
Ultra-light overhead conveyor systems are rope-based conveying systems with individually driven vehicles. The vehicles can move automatically on the rope and this can be realized by energy and signals. The ultra-light overhead conveyor systems always must be integrated with a logistical process by finding a best way for a cheaper material flow in order to guarantee precise and fast workflows. This paper analyzes the process of an ultra-light overhead conveyor system using necessary assumptions. The analysis consists of three scenarios. These scenarios are based on raising the vehicle speeds with equal increments at each case. The correlation between the vehicle speed and system throughput is investigated. A discrete-event simulation model of an ultra-light overhead conveyor system is constructed using DOSIMIS-3 software to implement three scenarios. According to simulation results; the optimal scenario, hence the optimal vehicle speed, is found out among three scenarios. This simulation model demonstrates the effect of increased speed on the system throughput.
Keywords: Logistics, material flow, simulation, ultra-light overhead conveyor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25641445 Simulation of the Effect of Sea Water Using Ground Tank to the Flexural Capacity of GFRP Sheet Reinforced Concrete Beams
Authors: Rudy Djamaluddin, Arbain Tata, Rita Irmawaty
Abstract:
The study conducted a simulation of the effect of sea water to the bonding capacity of GFRP sheet on the concrete beams using a simulation tank. Fiber reinforced polymer (FRP) has been developed and applied in many fields civil engineering structures on the new structures and also for strengthening of the deteriorated structures. The FRP has advantages such as its corrosion resistance as well as high tensile strength to weight ratio. Compared to the other FRP materials, Glass composed FRP (GFRP) is relatively cheaper. GFRP sheet is applied externally by bonding it on the concrete surface. The studies regarding the application of GFRP sheet have been conducted such as strengthening system, bonding behavior of GFRP sheet including the application as reinforcement in new structures. For application to the structures with direct contact to sea environment, a study regarding the effect of sea water to the bonding capacity of GFRP sheet is important to be clarified. To achieve the objective of the study, a series of concrete beams strengthened with GFRP sheet on extreme tension surface were prepared. The beams then were stored on the sea water tank for six months. Results indicated the bonding capacity decreased after six month exposed to the sea water.Keywords: GFRP sheet, sea water, concrete beams, bonding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18681444 Application of Rapid Prototyping to Create Additive Prototype Using Computer System
Authors: Meftah O. Bashir, Fatma A. Karkory
Abstract:
Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimise the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.Keywords: Rapid prototyping, wax, manufacturing processes, additive prototyping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16781443 Stress versus Strain Behavior of Geopolymer Cement under Triaxial Stress Conditions in Saline and Normal Water
Authors: Haider M. Giasuddin, Jay G. Sanjayan, P. G. Ranjith
Abstract:
Geopolymer cement was evaluated as wellbore sealing material for carbon dioxide geosequestration application. Curing of cement system in saline water and strength testing in triaxial stress state condition under lateral confinement is relevant to primary cementing in CO2 geosequestration wellbore in saline aquifer. Geopolymer cement was cured in saline water (both at ambient conditions for 28 days and heated (60°C) conditions for 12 hours) and tested for triaxial strength at different levels of lateral confinement. Normal water and few other curing techniques were also studied both for geopolymer and API ‘G’ cement. Results reported were compared to evaluate the suitability of saline water for curing of geopolymer cement. Unconfined compression test results showed higher strength for curing in saline water than normal water. Besides, testing strength under lateral confinement demonstrated the material failure behavior from brittle to plastic.
Keywords: Fly ash, Geopolymer, Geosequestration, Saline water, Strength, Traiaxial test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24141442 Capacity of Anchors in Structural Connections
Authors: T. Cornelius, G. Secilmis
Abstract:
When dealing with safety in structures, the connections between structural components play an important role. Robustness of a structure as a whole depends both on the load- bearing capacity of the structural component and on the structures capacity to resist total failure, even though a local failure occurs in a component or a connection between components. To avoid progressive collapse it is necessary to be able to carry out a design for connections. A connection may be executed with anchors to withstand local failure of the connection in structures built with prefabricated components. For the design of these anchors, a model is developed for connections in structures performed in prefabricated autoclaved aerated concrete components. The design model takes into account the effect of anchors placed close to the edge, which may result in splitting failure. Further the model is developed to consider the effect of reinforcement diameter and anchor depth. The model is analytical and theoretically derived assuming a static equilibrium stress distribution along the anchor. The theory is compared to laboratory test, including the relevant parameters and the model is refined and theoretically argued analyzing the observed test results. The method presented can be used to improve safety in structures or even optimize the design of the connectionsKeywords: Robustness, anchors, connections, aircrete, prefabricated components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20231441 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model
Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl
Abstract:
Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the workpiece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.Keywords: Dexel, process stability, material removal, milling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22611440 Development of 3D Coordinates and Damaged Point Detection System for Ducts using IMU
Authors: Ki-Tae Park, Young-Joon Yu, Chin-Hyung Lee, Woosang Lee
Abstract:
Recently, as the scale of construction projects has increases, more ground excavation for foundations is carried out than ever before. Consequently, damage to underground ducts (gas, water/sewage or oil pipelines, communication cables or power cable ducts) or superannuated pipelines frequently cause serious accidents resulting in damage to life and property. (In Korea, the total length of city water pipelines was approximately 2,000 km as of the end of 2009.) In addition, large amounts of damage caused by fractures, water and gas leakage caused by superannuation or damage to underground ducts in construction has been reported. Therefore, a system is required to precisely detect defects and deterioration in underground pipelines and the locations of such defects, for timely and accurate maintenance or replacement of the ducts. In this study, a system was developed which can locate underground structures (gas and water pipelines, power cable ducts, etc.) in 3D-coordinates and monitor the degree and position of defects using an Inertial Measurement Unit (IMU) sensing technique. The system can prevent damage to underground ducts and superannuated pipelines during construction, and provide reliable data for maintenance. The utility of the IMU sensing technique used in aircraft and ships in civil applications was verified.Keywords: IMU, Pipelines, 3D-Coordinate, monitor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18591439 Gypseous Soil Improvement using Fuel Oil
Authors: Hussein Yousif Aziz, Jianlin Ma
Abstract:
This research investigates the suitability of fuel oil in improving gypseous soil. A detailed laboratory tests were carried-out on two soils (soil I with 51.6% gypsum content, and soil II with 26.55%), where the two soils were obtained from Al-Therthar site (Al-Anbar Province-Iraq). This study examines the improvement of soil properties using the gypsum material which is locally available with low cost to minimize the effect of moisture on these soils by using the fuel oil. This study was conducted on two models of the soil gypsum, from the Tharthar area. The first model was sandy soil with Gypsum content of (51.6%) and the second is clayey soil and the content of Gypsum is (26.55%). The program included tests measuring the permeability and compressibility of the soil and their collapse properties. The shear strength of the soil and the amounts of weight loss of fuel oil due to drying had been found. These tests have been conducted on the treated and untreated soils to observe the effect of soil treatment on the engineering properties when mixed with varying degrees of fuel oil with the equivalent of the water content. The results showed that fuel oil is a good material to modify the basic properties of the gypseous soil of collapsibility and permeability, which are the main problems of this soil and retained the soil by an appropriate amount of the cohesion suitable for carrying the loads from the structure.Keywords: Collapsibility, Enhancement of Gypseous Soils, Geotechnical Engineering, Gypseous soil, Shear Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26321438 Toward Strengthening Social Resilience: A Case Study on Recovery of Capture Fisheries after Asia's Tsunami in Aceh, Indonesia
Authors: Zulhamsyah Imran, Masahiro Yamao
Abstract:
Social resilience has role to govern the local community and coastal fisheries resources toward sustainable fisheries development in tsunami affected area. This paper asses, explore and investigates of indigenous institutions, external and internal facilitators toward strengthening social resilience. Identification of the genuine organizations role had been conducted twice by using Rapid Assessment Appraisal, Focus Group Discussion, and in-depth interview for collecting primary and secondary data. Local wisdom had a contribution and adaptable to rebound social resilience. The Panglima Laot Lhok (sea commander) had determined and adapted role on recovery of the fishing community, particularly facilitated aid delivery to fishermen, as shown in anchovy fisheries relief case in Krueng Raya Bay. Toke Bangku (financial trader) had stimulated for reinforcement of advance payment and market channel. The other institutions supported upon linking and bridging connectivity among stakeholders. Collaborative governance can avoid conflict, reduce donor dependency and strengthen social resilience within fishing community.
Keywords: Fishing community, indigenous institution, adaptive role, collaborative, social resilience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25951437 Development and Characterization of Bio-Tribological, Nano-Multilayer Coatings for Medical Tools Application
Authors: L. Major, J. M. Lackner, M. Dyner, B. Major
Abstract:
Development of new generation bio-tribological, multilayer coatings opens an avenue for fabrication of future hightech functional surfaces. In the presented work, nano-composite, Cr/CrN+[Cr/ a-C:H implanted by metallic nanocrystals] multilayer coatings have been developed for surface protection of medical tools. Thin films were fabricated by a hybrid Pulsed Laser Deposition technique. Complex microstructure analysis of nanomultilayer coatings, subjected to mechanical and biological tests, were performed by means of transmission electron microscopy (TEM). Microstructure characterization revealed the layered arrangement of Cr23C6 nanoparticles in multilayer structure. Influence of deposition conditions on bio-tribological properties of the coatings was studied. The bio-tests were used as a screening tool for the analyzed nanomultilayer coatings before they could be deposited on medical tools. Bio-medical tests were done using fibroblasts. The mechanical properties of the coatings were investigated by means of a ball-ondisc mechanical test. The micro hardness was done using Berkovich indenter. The scratch adhesion test was done using Rockwell indenter. From the bio-tribological point of view, the optimal properties had the C106_1 material.Keywords: Bio-tribological coatings, cell-material interaction, hybrid PLD, tribology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19961436 Steel Dust as a Coating Agent for Iron Ore Pellets at Ironmaking
Authors: M. Bahgat, H. Hanafy, H. Al-Tassan
Abstract:
Cluster formation is an essential phenomenon during direct reduction processes at shaft furnaces. Decreasing the reducing temperature to avoid this problem can cause a significant drop in throughput. In order to prevent sticking of pellets, a coating material basically inactive under the reducing conditions prevailing in the shaft furnace, should be applied to cover the outer layer of the pellets. In the present work, steel dust is used as coating material for iron ore pellets to explore dust coating effectiveness and determines the best coating conditions. Steel dust coating is applied for iron ore pellets in various concentrations. Dust slurry concentrations of 5.0-30% were used to have a coated steel dust amount of 1.0-5.0 kg per ton iron ore. Coated pellets with various concentrations were reduced isothermally in weight loss technique with simulated gas mixture to the composition of reducing gases at shaft furnaces. The influences of various coating conditions on the reduction behavior and the morphology were studied. The optimum reduced samples were comparatively applied for sticking index measurement. It was found that the optimized steel dust coating condition that achieve higher reducibility with lower sticking index was 30% steel dust slurry concentration with 3.0 kg steel dust/ton ore.Keywords: Ironmaking, coating, steel dust, reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9391435 Effect of Azespirilium Bacteria in Reducing Nitrogen Fertilizers (Urea) and the Interaction of it with Stereptomyces Sp due the Biological Control on the Wheat (Triticum Asstivum) Sustinibelation Culture
Authors: Omid Alizadeh, Ali Parsaeimehr, Barmak.jaefary Hagheghy
Abstract:
An experiment was conducted in October 2008 due the ability replacement plant associate biofertilizers by chemical fertilizers and the qualifying rate of chemical N fertilizers at the moment of using this biofertilizers and the interaction of this biofertilizer on each other. This field experiment has been done in Persepolis (Throne of Jamshid) and arrange by using factorial with the basis of randomized complete block design, in three replication Azespirilium SP bacteria has been admixed with consistence 108 cfu/g and inoculated with seeds of wheat, The streptomyces SP has been used in amount of 550 gr/ha and concatenated on clay and for the qualifying range of chemical fertilizer 4 level of N chemical fertilizer from the source of urea (N0=0, N1=60, N2=120, N3=180) has been used in this experiment. The results indicated there were Significant differences between levels of Nitrogen fertilizer in the entire characteristic which has been measured in this experiment. The admixed Azespirilium SP showed significant differences between their levels in the characteristics such as No. of fertile ear, No. of grain per ear, grain yield, grain protein percentage, leaf area index and the agronomic fertilizer use efficiency. Due the interaction streptomyses with Azespirilium SP bacteria this actinomycet didn-t show any statistically significant differences between it levels.
Keywords: AzetobacterSP, AzespiriliumSP, StreptomycesSP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16811434 Analysis of the Communication Methods of an iCIM 3000 System within the Frame of Research Purpose
Authors: Radovan Holubek, Daynier Rolando Delgado Sobrino, Roman Ruzarovsky
Abstract:
Current trends in manufacturing are characterized by production broadening, innovation cycle shortening, and the products having a new shape, material and functions. The production strategy focused on time needed change from the traditional functional production structure to flexible manufacturing cells and lines. Production by automated manufacturing system (AMS) is one of the most important manufacturing philosophies in the last years. The main goals of the project we are involved in lies on building a laboratory in which will be located a flexible manufacturing system consisting of at least two production machines with NC control (milling machines, lathe). These machines will be linked to a transport system and they will be served by industrial robots. Within this flexible manufacturing system a station for the quality control consisting of a camera system and rack warehouse will be also located. The design, analysis and improvement of this manufacturing system, specially with a special focus on the communication among devices constitute the main aims of this paper. The key determining factors for the manufacturing system design are: the product, the production volume, the used machines, the disposable manpower, the disposable infrastructure and the legislative frame for the specific cases.Keywords: Paperless manufacturing, flexible manufacturing, robotized manufacturing, material flow, iCIM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18041433 Geometrically Non-Linear Axisymmetric Free Vibration Analysis of Functionally Graded Annular Plates
Authors: Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali
Abstract:
In this paper, the non-linear free axisymmetric vibration of a thin annular plate made of functionally graded material (FGM) has been studied by using the energy method and a multimode approach. FGM properties vary continuously as well as non-homogeneity through the thickness direction of the plate. The theoretical model is based on the classical plate theory and the Von Kármán geometrical non-linearity assumptions. An approximation has been adopted in the present work consisting of neglecting the in-plane deformation in the formulation. Hamilton’s principle is used to derive the governing equation of motion. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to 1.5 times the plate thickness. The numerical results are given for the first axisymmetric non-linear mode shape for a wide range of vibration amplitudes and they are presented either in tabular form or in graphical form to show the effect that the vibration amplitude and the variation in material properties have significant effects on the frequencies and the bending stresses in large amplitude vibration of the functionally graded annular plate.
Keywords: Non-linear vibrations, Annular plates, Large amplitudes, FGM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21811432 Experimental Investigation to Find Transition Temperature of VG-30 Binder
Authors: D. Latha, V. Sunitha, Samson Mathew
Abstract:
In India, most of the pavement is laid by bituminous road and the consumption of binder is high for pavement construction and also modified binders are used to satisfy any specific pavement requirement. Since the binders are visco-elastic material which is having the mechanical properties of binder transition from viscoelastic solid to visco-elastic fluid. In this paper, two different protocols were used to measure the viscosity property of binder using a Brookfield Viscometer and there is a need to find the appropriate mixing and compaction temperatures of various types of binders which can result in complete aggregate coating and adequate field density of HMA mixtures. The aim of this work is to find the transition temperature from Non-Newtonian behavior to Newtonian behavior of the binder by adopting a steady shear protocol and the shear rate ramp protocol. The transition from non-Newtonian to Newtonian can occur through an increase of temperature and shear of the material. The test has been conducted for unmodified binder VG 30. The transition temperature was found in the unmodified binder VG is 120oC. Therefore, the application of both modified binder and unmodified binder in the pavement construction needs to be studied properly by considering temperature and traffic loading factors of the respective project site.Keywords: Unmodified and modified binders, Brookfield Viscometer, transition temperature, steady shear, shear rate protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18761431 Shear Strength Characteristics of Sand-Particulate Rubber Mixture
Authors: Firas Daghistani, Hossam Abuel Naga
Abstract:
Waste tyres is an ongoing global problem that has a negative effect on the environment. Waste tyres are discarded in stockpiles where they provide harm to the environment in many ways. Finding applications to these materials can help in reducing this global problem. One of these applications is recycling these waste materials and using them in geotechnical engineering. Recycled waste tyre particulates can be mixed with sand to form a lightweight material with varying shear strength characteristics. This research further investigates the inclusion of particulate rubber to sand and whether it can increase or decrease the shear strength characteristics of the mixture. For the experiment, a series of direct shear tests was performed on a poorly graded sand with a mean particle size of 0.32 mm mixed with recycled poorly graded particulate rubber with a mean particle size of 0.51 mm. The shear tests were performed on four normal stresses 30, 55, 105, 200 kPa at a shear rate of 1 mm/minute. Different percentages of particulate rubber content were used in the mixture i.e., 10%, 20%, 30% and 50% of sand dry weight at three density states namely loose, slight dense, and dense state. The size ratio of the mixture, which is the mean particle size of the particulate rubber divided by the mean particle size of the sand, was 1.59. The results identified multiple parameters that can influence the shear strength of the mixture. The parameters were: normal stress, particulate rubber content, mixture gradation, mixture size ratio, and the mixture’s density. The inclusion of particulate rubber to sand showed a decrease to the internal friction angle, and an increase to the apparent cohesion. Overall, the inclusion of particulate rubber did not have a significant influence on the shear strength of the mixture. For all the dense states at the low normal stresses 30, and 55 kPa, the inclusion of particulate rubber showed a slight increase in the shear strength where the peak was at 20-30% rubber content of the sand’s dry weight. On the other hand, at the high normal stresses 105, and 200 kPa, there was a slight decrease in the shear strength.
Keywords: Direct shear, granular material, sand-rubber mixture, shear strength, waste material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3601430 Advanced Energy Absorbers Used in Blast Resistant Systems
Authors: Martina Drdlová, Michal Frank, Radek Řídký, Jaroslav Buchar, Josef Krátký
Abstract:
The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. This paper describes experimental investigation on the response of new advanced materials to low and high velocity load. Blast wave energy absorbers were designed using two types of porous lightweight raw particle materials based on expanded glass and ceramics with dimensions of 0.5-1 mm, combined with polymeric binder. The effect of binder amount on the static and dynamic properties of designed materials was observed. Prism shaped specimens were prepared and loaded to obtain physicomechanical parameters – bulk density, compressive and flexural strength under quasistatic load, the dynamic response was determined using Split Hopkinson Pressure bar apparatus. Numerical investigation of the material behaviour in sandwich structure was performed using implicit/explicit solver LS-Dyna. As the last step, the developed material was used as the interlayer of blast resistant litter bin, and it´s functionality was verified by real field blast tests.
Keywords: Blast energy absorber, SHPB, expanded glass, expanded ceramics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2439