Search results for: fuzzy election
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 965

Search results for: fuzzy election

95 New Robust Approach of Direct Field Oriented Control of Induction Motor

Authors: T. Benmiloud, A. Omari

Abstract:

This paper presents a new technique of compensation of the effect of variation parameters in the direct field oriented control of induction motor. The proposed method uses an adaptive tuning of the value of synchronous speed to obtain the robustness for the field oriented control. We show that this adaptive tuning allows having robustness for direct field oriented control to changes in rotor resistance, load torque and rotational speed. The effectiveness of the proposed control scheme is verified by numerical simulations. The numerical validation results of the proposed scheme have presented good performances compared to the usual direct-field oriented control.

Keywords: Induction motor, direct field-oriented control, compensation of variation parameters, fuzzy logic controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
94 ANFIS Modeling of the Surface Roughness in Grinding Process

Authors: H. Baseri, G. Alinejad

Abstract:

The objective of this study is to design an adaptive neuro-fuzzy inference system (ANFIS) for estimation of surface roughness in grinding process. The Used data have been generated from experimental observations when the wheel has been dressed using a rotary diamond disc dresser. The input parameters of model are dressing speed ratio, dressing depth and dresser cross-feed rate and output parameter is surface roughness. In the experimental procedure the grinding conditions are constant and only the dressing conditions are varied. The comparison of the predicted values and the experimental data indicates that the ANFIS model has a better performance with respect to back-propagation neural network (BPNN) model which has been presented by the authors in previous work for estimation of the surface roughness.

Keywords: Grinding, ANFIS, Neural network, Disc dressing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2413
93 Model Discovery and Validation for the Qsar Problem using Association Rule Mining

Authors: Luminita Dumitriu, Cristina Segal, Marian Craciun, Adina Cocu, Lucian P. Georgescu

Abstract:

There are several approaches in trying to solve the Quantitative 1Structure-Activity Relationship (QSAR) problem. These approaches are based either on statistical methods or on predictive data mining. Among the statistical methods, one should consider regression analysis, pattern recognition (such as cluster analysis, factor analysis and principal components analysis) or partial least squares. Predictive data mining techniques use either neural networks, or genetic programming, or neuro-fuzzy knowledge. These approaches have a low explanatory capability or non at all. This paper attempts to establish a new approach in solving QSAR problems using descriptive data mining. This way, the relationship between the chemical properties and the activity of a substance would be comprehensibly modeled.

Keywords: association rules, classification, data mining, Quantitative Structure - Activity Relationship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
92 A CBR System to New Product Development: An Application for Hearing Devices Design

Authors: J.L. Castro, K. Benghazi, M.V. Hurtado, M. Navarro, J.M. Zurita

Abstract:

Nowadays, quick technological changes force companies to develop innovative products in an increasingly competitive environment. Therefore, how to enhance the time of new product development is very important. This design problem often lacks the exact formula for getting it, and highly depends upon human designers- past experiences. For these reasons, in this work, a Casebased reasoning (CBR) system to assist in new product development is proposed. When a case is recovered from the case base, the system will take into account not only the attribute-s specific value and how important it is. It will also take into account if the attribute has a positive influence over the product development. Hence the manufacturing time will be improved. This information will be introduced as a new concept called “adaptability". An application to this method for hearing instrument new design illustrates the proposed approach.

Keywords: Case based reasoning, Fuzzy logic, New product development, Retrieval stage, Similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
91 PSO-based Possibilistic Portfolio Model with Transaction Costs

Authors: Wei Chen, Cui-you Yao, Yue Qiu

Abstract:

This paper deals with a portfolio selection problem based on the possibility theory under the assumption that the returns of assets are LR-type fuzzy numbers. A possibilistic portfolio model with transaction costs is proposed, in which the possibilistic mean value of the return is termed measure of investment return, and the possibilistic variance of the return is termed measure of investment risk. Due to considering transaction costs, the existing traditional optimization algorithms usually fail to find the optimal solution efficiently and heuristic algorithms can be the best method. Therefore, a particle swarm optimization is designed to solve the corresponding optimization problem. At last, a numerical example is given to illustrate our proposed effective means and approaches.

Keywords: Possibility theory, portfolio selection, transaction costs, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
90 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle

Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin

Abstract:

A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.

Keywords: Balance control, synchronization control, two wheel inverted pendulum, TWIP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
89 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects

Authors: Tayfun Çay, Yaşar İnceyol, Abdurrahman Özbeyaz

Abstract:

Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.

Keywords: Genetic algorithm, land consolidation, landholding, land reallocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
88 Evaluating New Service Development Performance Based on Multigranular Linguistic Assessment

Authors: Wen-Pai Wang, Mei-Ching Tang

Abstract:

The service sector continues to grow and the percentage of GDP accounted for by service industries keeps increasing. The growth and importance of service to an economy is not just a phenomenon of advanced economies, service is now a majority of the world gross domestic products. However, the performance evaluation process of new service development problems generally involves uncertain and imprecise data. This paper presents a 2-tuple fuzzy linguistic computing approach to dealing with heterogeneous information and information loss problems while the processes of subjective evaluation integration. The proposed method based on group decision-making scenario to assist business managers in measuring performance of new service development manipulates the heterogeneity integration processes and avoids the information loss effectively.

Keywords: Heterogeneity, Multigranular linguistic computing, New service development, Performance evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
87 Hybrid Modeling Algorithm for Continuous Tamil Speech Recognition

Authors: M. Kalamani, S. Valarmathy, M. Krishnamoorthi

Abstract:

In this paper, Fuzzy C-Means clustering with Expectation Maximization-Gaussian Mixture Model based hybrid modeling algorithm is proposed for Continuous Tamil Speech Recognition. The speech sentences from various speakers are used for training and testing phase and objective measures are between the proposed and existing Continuous Speech Recognition algorithms. From the simulated results, it is observed that the proposed algorithm improves the recognition accuracy and F-measure up to 3% as compared to that of the existing algorithms for the speech signal from various speakers. In addition, it reduces the Word Error Rate, Error Rate and Error up to 4% as compared to that of the existing algorithms. In all aspects, the proposed hybrid modeling for Tamil speech recognition provides the significant improvements for speechto- text conversion in various applications.

Keywords: Speech Segmentation, Feature Extraction, Clustering, HMM, EM-GMM, CSR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
86 Empirical and Indian Automotive Equity Portfolio Decision Support

Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu

Abstract:

A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.

Keywords: Indian Automotive Sector, Stock Market Decisions, Equity Portfolio Analysis, Decision Tree Classifiers, Statistical Data Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
85 ANFIS Approach for Locating Faults in Underground Cables

Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat

Abstract:

This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system.

Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.

Keywords: ANFIS, Fault location, Underground Cable, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739
84 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
83 A Multi-Criteria Evaluation Incorporating Linguistic Computing for Service Innovation Performance

Authors: Wen-Pai Wang

Abstract:

The growing influence of service industries has prompted greater attention being paid to service operations management. However, service managers often have difficulty articulating the veritable effects of their service innovation. Especially, the performance evaluation process of service innovation problems generally involves uncertain and imprecise data. This paper presents a 2-tuple fuzzy linguistic computing approach to dealing with heterogeneous information and information loss problems while the processes of subjective evaluation integration. The proposed method based on group decision-making scenario to assist business managers in measuring performance of service innovation manipulates the heterogeneity integration processes and avoids the information loss effectively.

Keywords: Group decision-making, Heterogeneity, Linguisticcomputing, Multi-criteria, Service innovation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
82 Development of a Pipeline Monitoring System by Bio-mimetic Robots

Authors: Seung You Na, Daejung Shin, Jin Young Kim, Joo Hyun Jung, Yong-Gwan Won

Abstract:

To explore pipelines is one of various bio-mimetic robot applications. The robot may work in common buildings such as between ceilings and ducts, in addition to complicated and massive pipeline systems of large industrial plants. The bio-mimetic robot finds any troubled area or malfunction and then reports its data. Importantly, it can not only prepare for but also react to any abnormal routes in the pipeline. The pipeline monitoring tasks require special types of mobile robots. For an effective movement along a pipeline, the movement of the robot will be similar to that of insects or crawling animals. During its movement along the pipelines, a pipeline monitoring robot has an important task of finding the shapes of the approaching path on the pipes. In this paper we propose an effective solution to the pipeline pattern recognition, based on the fuzzy classification rules for the measured IR distance data.

Keywords: Bio-mimetic robots, Plant pipes monitoring, Pipepattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
81 Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms

Authors: T. S. Chou, K. K. Yen, J. Luo

Abstract:

The network traffic data provided for the design of intrusion detection always are large with ineffective information and enclose limited and ambiguous information about users- activities. We study the problems and propose a two phases approach in our intrusion detection design. In the first phase, we develop a correlation-based feature selection algorithm to remove the worthless information from the original high dimensional database. Next, we design an intrusion detection method to solve the problems of uncertainty caused by limited and ambiguous information. In the experiments, we choose six UCI databases and DARPA KDD99 intrusion detection data set as our evaluation tools. Empirical studies indicate that our feature selection algorithm is capable of reducing the size of data set. Our intrusion detection method achieves a better performance than those of participating intrusion detectors.

Keywords: Intrusion detection, feature selection, k-nearest neighbors, fuzzy clustering, Dempster-Shafer theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
80 A Multi-Agent Intelligent System for Monitoring Health Conditions of Elderly People

Authors: Ayman M. Mansour

Abstract:

In this paper, we propose a multi-agent intelligent system that is used for monitoring the health conditions of elderly people. Monitoring the health condition of elderly people is a complex problem that involves different medical units and requires continuous monitoring. Such expert system is highly needed in rural areas because of inadequate number of available specialized physicians or nurses. Such monitoring must have autonomous interactions between these medical units in order to be effective. A multi-agent system is formed by a community of agents that exchange information and proactively help one another to achieve the goal of elderly monitoring. The agents in the developed system are equipped with intelligent decision maker that arms them with the rule-based reasoning capability that can assist the physicians in making decisions regarding the medical condition of elderly people.

Keywords: Fuzzy Logic, Inference system, Monitoring system, Multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282
79 Mining and Visual Management of XML-Based Image Collections

Authors: Khalil Shihab, Nida Al-Chalabi

Abstract:

This article describes Uruk, the virtual museum of Iraq that we developed for visual exploration and retrieval of image collections. The system largely exploits the loosely-structured hierarchy of XML documents that provides a useful representation method to store semi-structured or unstructured data, which does not easily fit into existing database. The system offers users the capability to mine and manage the XML-based image collections through a web-based Graphical User Interface (GUI). Typically, at an interactive session with the system, the user can browse a visual structural summary of the XML database in order to select interesting elements. Using this intermediate result, queries combining structure and textual references can be composed and presented to the system. After query evaluation, the full set of answers is presented in a visual and structured way.

Keywords: Data-centric XML, graphical user interfaces, information retrieval, case-based reasoning, fuzzy sets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
78 Cognition Technique for Developing a World Music

Authors: Haider Javed Uppal, Javed Yunas Uppal

Abstract:

In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm, and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.

Keywords: Cognition, world music, artificial intelligence, Thayer’s matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149
77 Contractor Selection in Saudi Arabia

Authors: M. A. Bajaber, M. A. Taha

Abstract:

Contractor selection in Saudi Arabia is very important due to the large construction boom and the contractor role to get over construction risks. The need for investigating contractor selection is due to the following reasons; large number of defaulted or failed projects (18%), large number of disputes attributed to contractor during the project execution stage (almost twofold), the extension of the General Agreement on Tariffs and Trade (GATT) into construction industry, and finally the few number of researches. The selection strategy is not perfect and considered as the reason behind irresponsible contractors. As a response, this research was conducted to review the contractor selection strategies as an integral part of a long advanced research to develop a good selection model. Many techniques can be used to form a selection strategy; multi criteria for optimizing decision, prequalification to discover contractor-s responsibility, bidding process for competition, third party guarantee to enhance the selection, and fuzzy techniques for ambiguities and incomplete information.

Keywords: Bidding, Construction industry, Contractor selection, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3140
76 A Graph Theoretic Approach for Quantitative Evaluation of NAAC Accreditation Criteria for the Indian University

Authors: Nameesh Miglani, Rajeev Saha, R. S. Parihar

Abstract:

Estimation of the quality regarding higher education within a university is practically long drawn process besides being difficult to measure primarily due to lack of a standard scale. National Assessment and Accreditation Council (NAAC) evolved a methodology of assessment which involves self-appraisal by each university/college and an assessment of performance by an expert committee. The attributes involved in assessing a university may not be totally independent from each other thereby necessitating the consideration of interdependencies. The present study focuses on evaluation of assessment criteria using graph theoretic approach and fuzzy treatment of data collected from the students. The technique will provide a suitable platform to university management team to cross check assessment of education quality by considering interdependencies of the attributes using graph theory.

Keywords: Graph theory, NAAC accreditation criteria, Indian University accreditation process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
75 A Design for Supply Chain Model by Integrated Evaluation of Design Value and Supply Chain Cost

Authors: Yuan-Jye Tseng, Jia-Shu Li

Abstract:

To design a product with the given product requirement and design objective, there can be alternative ways to propose the detailed design specifications of the product. In the design modeling stage, alternative design cases with detailed specifications can be modeled to fulfill the product requirement and design objective. Therefore, in the design evaluation stage, it is required to perform an evaluation of the alternative design cases for deciding the final design. The purpose of this research is to develop a product evaluation model for evaluating the alternative design cases by integrated evaluating the criteria of functional design, Kansei design, and design for supply chain. The criteria in the functional design group include primary function, expansion function, improved function, and new function. The criteria in the Kansei group include geometric shape, dimension, surface finish, and layout. The criteria in the design for supply chain group include material, manufacturing process, assembly, and supply chain operation. From the point of view of value and cost, the criteria in the functional design group and Kansei design group represent the design value of the product. The criteria in the design for supply chain group represent the supply chain and manufacturing cost of the product. It is required to evaluate the design value and the supply chain cost to determine the final design. For the purpose of evaluating the criteria in the three criteria groups, a fuzzy analytic network process (FANP) method is presented to evaluate a weighted index by calculating the total relational values among the three groups. A method using the technique for order preference by similarity to ideal solution (TOPSIS) is used to compare and rank the design alternative cases according to the weighted index using the total relational values of the criteria. The final decision of a design case can be determined by using the ordered ranking. For example, the design case with the top ranking can be selected as the final design case. Based on the criteria in the evaluation, the design objective can be achieved with a combined and weighted effect of the design value and manufacturing cost. An example product is demonstrated and illustrated in the presentation. It shows that the design evaluation model is useful for integrated evaluation of functional design, Kansei design, and design for supply chain to determine the best design case and achieve the design objective.

Keywords: Design evaluation, functional design, Kansei design, supply chain, design value, manufacturing cost, fuzzy analytic network process, technique for order preference by similarity to ideal solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793
74 Classifier Combination Approach in Motion Imagery Signals Processing for Brain Computer Interface

Authors: Homayoon Zarshenas, Mahdi Bamdad, Hadi Grailu, Akbar A. Shakoori

Abstract:

In this study we focus on improvement performance of a cue based Motor Imagery Brain Computer Interface (BCI). For this purpose, data fusion approach is used on results of different classifiers to make the best decision. At first step Distinction Sensitive Learning Vector Quantization method is used as a feature selection method to determine most informative frequencies in recorded signals and its performance is evaluated by frequency search method. Then informative features are extracted by packet wavelet transform. In next step 5 different types of classification methods are applied. The methodologies are tested on BCI Competition II dataset III, the best obtained accuracy is 85% and the best kappa value is 0.8. At final step ordered weighted averaging (OWA) method is used to provide a proper aggregation classifiers outputs. Using OWA enhanced system accuracy to 95% and kappa value to 0.9. Applying OWA just uses 50 milliseconds for performing calculation.

Keywords: BCI, EEG, Classifier, Fuzzy operator, OWA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
73 Communicative Competence: Novice versus Professional Engineers' Perceptions

Authors: Ena Bhattacharyya

Abstract:

The notion of communicative competence has been deemed fuzzy in communication studies. This fuzziness has led to tensions among engineers across tenures in interpreting what constitutes communicative competence. The study seeks to investigate novice and professional engineers- understanding of the said notion in terms of two main elements of communicative competence: linguistic and rhetorical competence. Novice engineers are final year engineering students, whilst professional engineers represent engineers who have at least 5 years working experience. Novice and professional engineers were interviewed to gauge their perceptions on linguistic and rhetorical features deemed necessary to enhance communicative competence for the profession. Both groups indicated awareness and differences on the importance of the sub-sets of communicative competence, namely, rhetorical explanatory competence, linguistic oral immediacy competence, technical competence and meta-cognitive competence. Such differences, a possible attribute of the learning theory, inadvertently indicate sublime differences in the way novice and professional engineers perceive communicative competence.

Keywords: Communicative competence, technical oral presentation, linguistic competence, rhetorical competence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
72 Risk Level Evaluation for Power System Facilities in Smart Grid

Authors: Sung-Hun Lee, Yun-Seong Lee, Jin-O Kim

Abstract:

Reliability Centered Maintenance(RCM) is one of most widely used methods in the modern power system to schedule a maintenance cycle and determine the priority of inspection. In order to apply the RCM method to the Smart Grid, a precedence study for the new structure of rearranged system should be performed due to introduction of additional installation such as renewable and sustainable energy resources, energy storage devices and advanced metering infrastructure. This paper proposes a new method to evaluate the priority of maintenance and inspection of the power system facilities in the Smart Grid using the Risk Priority Number. In order to calculate that risk index, it is required that the reliability block diagram should be analyzed for the Smart Grid system. Finally, the feasible technical method is discussed to estimate the risk potential as part of the RCM procedure.

Keywords: Expert System, FMECA, Fuzzy Theory, Reliability Centered Maintenance, Risk Priority Number

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
71 Mobile Robot Navigation Using Local Model Networks

Authors: Hamdi. A. Awad, Mohamed A. Al-Zorkany

Abstract:

Developing techniques for mobile robot navigation constitutes one of the major trends in the current research on mobile robotics. This paper develops a local model network (LMN) for mobile robot navigation. The LMN represents the mobile robot by a set of locally valid submodels that are Multi-Layer Perceptrons (MLPs). Training these submodels employs Back Propagation (BP) algorithm. The paper proposes the fuzzy C-means (FCM) in this scheme to divide the input space to sub regions, and then a submodel (MLP) is identified to represent a particular region. The submodels then are combined in a unified structure. In run time phase, Radial Basis Functions (RBFs) are employed as windows for the activated submodels. This proposed structure overcomes the problem of changing operating regions of mobile robots. Read data are used in all experiments. Results for mobile robot navigation using the proposed LMN reflect the soundness of the proposed scheme.

Keywords: Mobile Robot Navigation, Neural Networks, Local Model Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
70 Mapping the Digital Landscape: An Analysis of Party Differences between Conventional and Digital Policy Positions

Authors: Daniel Schwarz, Jan Fivaz, Alessia Neuroni

Abstract:

Although digitization is a buzzword in almost every election campaign, the political parties leave voters largely in the dark about their specific positions on digital issues. In the run-up to the 2019 elections in Switzerland, the ‘Digitization Monitor’ project (DMP) was launched in order to change this situation. Within the framework of the DMP, all 4,736 candidates were surveyed about their digital policy positions and values. The DMP is designed as a digital policy supplement to the existing ‘smartvote’ voting advice application. This enabled a direct comparison of the digital policy attitudes according to the DMP with the topics of the ‘smartvote’ questionnaire which are comprehensive in content but mainly related to conventional policy areas. This paper’s main research goal is to analyze and visualize possible differences between conventional and digital policy areas in terms of response patterns between and within political parties. The analysis is based on dimensionality reduction methods (multidimensional scaling and principal component analysis) for the visualization of inter-party differences, and on standard deviation as a measure of variation for the evaluation of intra-party unity. The results reveal that digital issues show a lower degree of inter-party polarization compared to conventional policy areas. Thus, the parties have more common ground in issues on digitization than in conventional policy areas. In contrast, the study reveals a mixed picture regarding intra-party unity. Homogeneous parties show a lower degree of unity in digitization issues whereas parties with heterogeneous positions in conventional areas have more united positions in digital areas. All things considered, the findings are encouraging as less polarized conditions apply to the debate on digital development compared to conventional politics. For the future, it would be desirable if in further countries similar projects to the DMP could emerge to broaden the basis for conclusions.

Keywords: Comparison of political issue dimensions, digital awareness of candidates, digital policy space, party positions on digital issues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644
69 Connectionist Approach to Generic Text Summarization

Authors: Rajesh S.Prasad, U. V. Kulkarni, Jayashree.R.Prasad

Abstract:

As the enormous amount of on-line text grows on the World-Wide Web, the development of methods for automatically summarizing this text becomes more important. The primary goal of this research is to create an efficient tool that is able to summarize large documents automatically. We propose an Evolving connectionist System that is adaptive, incremental learning and knowledge representation system that evolves its structure and functionality. In this paper, we propose a novel approach for Part of Speech disambiguation using a recurrent neural network, a paradigm capable of dealing with sequential data. We observed that connectionist approach to text summarization has a natural way of learning grammatical structures through experience. Experimental results show that our approach achieves acceptable performance.

Keywords: Artificial Neural Networks (ANN); Computational Intelligence (CI); Connectionist Text Summarizer ECTS (ECTS); Evolving Connectionist systems; Evolving systems; Fuzzy systems (FS); Part of Speech (POS) disambiguation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
68 Comparison of FAHP and TOPSIS for Evacuation Capability Assessment of High-rise Buildings

Authors: Peng Mei, Yan-Jun Qi, Yu Cui, Song Lu, He-Ping Zhang

Abstract:

A lot of computer-based methods have been developed to assess the evacuation capability (EC) of high-rise buildings. Because softwares are time-consuming and not proper for on scene applications, we adopted two methods, fuzzy analytic hierarchy process (FAHP) and technique for order preference by similarity to an ideal solution (TOPSIS), for EC assessment of a high-rise building in Jinan. The EC scores obtained with the two methods and the evacuation time acquired with Pathfinder 2009 for floors 47-60 of the building were compared with each other. The results show that FAHP performs better than TOPSIS for EC assessment of high-rise buildings, especially in the aspect of dealing with the effect of occupant type and distance to exit on EC, tackling complex problem with multi-level structure of criteria, and requiring less amount of computation. However, both FAHP and TOPSIS failed to appropriately handle the situation where the exit width changes while occupants are few.

Keywords: Evacuation capability assessment, FAHP, high-rise buildings, TOPSIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
67 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking

Authors: Shiuh-Jer Huang, Yu-Sheng Hsu

Abstract:

On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.

Keywords: Vehicle auto-parking, parking space detection, parking path tracking, intelligent fuzzy controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
66 An Improved C-Means Model for MRI Segmentation

Authors: Ying Shen, Weihua Zhu

Abstract:

Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.

Keywords: Magnetic Resonance Image, C-means model, image segmentation, information entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917