Search results for: digital signal processors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2094

Search results for: digital signal processors

1224 An Efficient Architecture for Interleaved Modular Multiplication

Authors: Ahmad M. Abdel Fattah, Ayman M. Bahaa El-Din, Hossam M.A. Fahmy

Abstract:

Modular multiplication is the basic operation in most public key cryptosystems, such as RSA, DSA, ECC, and DH key exchange. Unfortunately, very large operands (in order of 1024 or 2048 bits) must be used to provide sufficient security strength. The use of such big numbers dramatically slows down the whole cipher system, especially when running on embedded processors. So far, customized hardware accelerators - developed on FPGAs or ASICs - were the best choice for accelerating modular multiplication in embedded environments. On the other hand, many algorithms have been developed to speed up such operations. Examples are the Montgomery modular multiplication and the interleaved modular multiplication algorithms. Combining both customized hardware with an efficient algorithm is expected to provide a much faster cipher system. This paper introduces an enhanced architecture for computing the modular multiplication of two large numbers X and Y modulo a given modulus M. The proposed design is compared with three previous architectures depending on carry save adders and look up tables. Look up tables should be loaded with a set of pre-computed values. Our proposed architecture uses the same carry save addition, but replaces both look up tables and pre-computations with an enhanced version of sign detection techniques. The proposed architecture supports higher frequencies than other architectures. It also has a better overall absolute time for a single operation.

Keywords: Montgomery multiplication, modular multiplication, efficient architecture, FPGA, RSA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
1223 Students’ Perceptions of Communication Design in Media: Case Study of Portuguese and Spanish Communication Students

Authors: Fátima Gonçalves, Joaquim Brigas, Jorge Gonçalves

Abstract:

The proliferation of mobile devices in society enables the media to disseminate information and knowledge more rapidly. Higher education students access these contents and share them with each other, in the most diverse platforms, allowing the ubiquity in access to information. This article presents the results and respective quantitative analysis of a survey applied to communication students of two higher education institutions: one in Portugal and another in Spain. The results show that, in this sample, higher education students regularly access news content believing traditional news sources to be more credible. Regarding online sources, it was verified that the access was mostly to free news contents. This study intends to promote the knowledge about the changes that occur in the relationship of higher education students with the media, characterizing how news consumption is processed by these students, considering the resulting effects of the digital media evolution. It is intended to present not only the news sources they use, but also to know some of their habits and relationship with the news media.

Keywords: Students’ perceptions, communication design, mass media, higher education, digital media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
1222 End-to-End Pyramid Based Method for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.

Keywords: Accelerate MRI scans, image reconstruction, pyramid network, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 336
1221 Person Identification by Using AR Model for EEG Signals

Authors: Gelareh Mohammadi, Parisa Shoushtari, Behnam Molaee Ardekani, Mohammad B. Shamsollahi

Abstract:

A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960-s; and it opens a new research area in the science. This paper focuses on the person identification based on feature extracted from the EEG which can show a direct connection between EEG and the genetic information of subjects. In this work the full EO EEG signal of healthy individuals are estimated by an autoregressive (AR) model and the AR parameters are extracted as features. Here for feature vector constitution, two methods have been proposed; in the first method the extracted parameters of each channel are used as a feature vector in the classification step which employs a competitive neural network and in the second method a combination of different channel parameters are used as a feature vector. Correct classification scores at the range of 80% to 100% reveal the potential of our approach for person classification/identification and are in agreement to the previous researches showing evidence that the EEG signal carries genetic information. The novelty of this work is in the combination of AR parameters and the network type (competitive network) that we have used. A comparison between the first and the second approach imply preference of the second one.

Keywords: Person Identification, Autoregressive Model, EEG, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
1220 An Approach to Measure Snow Depth of Winter Accumulation at Basin Scale Using Satellite Data

Authors: M. Geetha Priya, D. Krishnaveni

Abstract:

Snow depth estimation and monitoring studies have been carried out for decades using empirical relationship or extrapolation of point measurements carried out in field. With the development of advanced satellite based remote sensing techniques, a modified approach is proposed in the present study to estimate the winter accumulated snow depth at basin scale. Assessment of snow depth by differencing Digital Elevation Model (DEM) generated at the beginning and end of winter season can be experimented for the region of interest (Himalayan and polar regions) accounting for winter accumulation (solid precipitation). The proposed approach is based on existing geodetic method that is being used for glacier mass balance estimation. Considering the satellite datasets purely acquired during beginning and end of winter season, it is possible to estimate the change in depth or thickness for the snow that is accumulated during the winter as it takes one year for the snow to get transformed into firn (snow that has survived one summer or one-year old snow).

Keywords: Digital elevation model, snow depth, geodetic method, snow cover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716
1219 Method of Intelligent Fault Diagnosis of Preload Loss for Single Nut Ball Screws through the Sensed Vibration Signals

Authors: Yi-Cheng Huang, Yan-Chen Shin

Abstract:

This paper proposes method of diagnosing ball screw preload loss through the Hilbert-Huang Transform (HHT) and Multiscale entropy (MSE) process. The proposed method can diagnose ball screw preload loss through vibration signals when the machine tool is in operation. Maximum dynamic preload of 2 %, 4 %, and 6 % ball screws were predesigned, manufactured, and tested experimentally. Signal patterns are discussed and revealed using Empirical Mode Decomposition(EMD)with the Hilbert Spectrum. Different preload features are extracted and discriminated using HHT. The irregularity development of a ball screw with preload loss is determined and abstracted using MSE based on complexity perception. Experiment results show that the proposed method can predict the status of ball screw preload loss. Smart sensing for the health of the ball screw is also possible based on a comparative evaluation of MSE by the signal processing and pattern matching of EMD/HHT. This diagnosis method realizes the purposes of prognostic effectiveness on knowing the preload loss and utilizing convenience.

Keywords: Empirical Mode Decomposition, Hilbert-Huang Transform, Multi-scale Entropy, Preload Loss, Single-nut Ball Screw

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843
1218 Contrast Enhancement in Digital Images Using an Adaptive Unsharp Masking Method

Authors: Z. Mortezaie, H. Hassanpour, S. Asadi Amiri

Abstract:

Captured images may suffer from Gaussian blur due to poor lens focus or camera motion. Unsharp masking is a simple and effective technique to boost the image contrast and to improve digital images suffering from Gaussian blur. The technique is based on sharpening object edges by appending the scaled high-frequency components of the image to the original. The quality of the enhanced image is highly dependent on the characteristics of both the high-frequency components and the scaling/gain factor. Since the quality of an image may not be the same throughout, we propose an adaptive unsharp masking method in this paper. In this method, the gain factor is computed, considering the gradient variations, for individual pixels of the image. Subjective and objective image quality assessments are used to compare the performance of the proposed method both with the classic and the recently developed unsharp masking methods. The experimental results show that the proposed method has a better performance in comparison to the other existing methods.

Keywords: Unsharp masking, blur image, sub-region gradient, image enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
1217 Adaptive Non-linear Filtering Technique for Image Restoration

Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, S. K. Nayak, C. Ardil

Abstract:

Removing noise from the any processed images is very important. Noise should be removed in such a way that important information of image should be preserved. A decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented in this paper. The algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels. Removal of these artifacts is achieved without damaging edges and details. However, the restricted window size renders median operation less effective whenever noise is excessive in that case the proposed algorithm automatically switches to mean filtering. The performance of the algorithm is analyzed in terms of Mean Square Error [MSE], Peak-Signal-to-Noise Ratio [PSNR], Signal-to-Noise Ratio Improved [SNRI], Percentage Of Noise Attenuated [PONA], and Percentage Of Spoiled Pixels [POSP]. This is compared with standard algorithms already in use and improved performance of the proposed algorithm is presented. The advantage of the proposed algorithm is that a single algorithm can replace several independent algorithms which are required for removal of different artifacts.

Keywords: Filtering, Decision Based Algorithm, noise, imagerestoration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
1216 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition

Authors: Fawaz S. Al-Anzi, Dia AbuZeina

Abstract:

Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.

Keywords: Speech recognition, acoustic features, Mel Frequency Cepstral Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
1215 RADAR Imaging to Develop an Enhanced Fog Vision System for Collision Avoidance

Authors: Saswata Chakraborty, R.P.Chatterjee, S. Majumder, Anup Kr. Bhattacharjee

Abstract:

The scattering effect of light in fog improves the difficulty in visibility thus introducing disturbances in transport facilities in urban or industrial areas causing fatal accidents or public harassments, therefore, developing an enhanced fog vision system with radio wave to improvise the way outs of these severe problems is really a big challenge for researchers. Series of experimental studies already been done and more are in progress to know the weather effect on radio frequencies for different ranges. According to Rayleigh scattering Law, the propagating wavelength should be greater than the diameter of the particle present in the penetrating medium. Direct wave RF signal thus have high chance of failure to work in such weather for detection of any object. Therefore an extensive study was required to find suitable region in the RF band that can help us in detecting objects with proper shape. This paper produces some results on object detection using 912 MHz band with successful detection of the persistence of any object coming under the trajectory of a vehicle navigating in indoor and outdoor environment. The developed images are finally transformed to video signal to enable continuous monitoring.

Keywords: RADAR Imaging, Fog vision system, Objectdetection, Jpeg to Mpeg conversion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2880
1214 A High-Speed Multiplication Algorithm Using Modified Partial Product Reduction Tree

Authors: P. Asadee

Abstract:

Multiplication algorithms have considerable effect on processors performance. A new high-speed, low-power multiplication algorithm has been presented using modified Dadda tree structure. Three important modifications have been implemented in inner product generation step, inner product reduction step and final addition step. Optimized algorithms have to be used into basic computation components, such as multiplication algorithms. In this paper, we proposed a new algorithm to reduce power, delay, and transistor count of a multiplication algorithm implemented using low power modified counter. This work presents a novel design for Dadda multiplication algorithms. The proposed multiplication algorithm includes structured parts, which have important effect on inner product reduction tree. In this paper, a 1.3V, 64-bit carry hybrid adder is presented for fast, low voltage applications. The new 64-bit adder uses a new circuit to implement the proposed carry hybrid adder. The new adder using 80 nm CMOS technology has been implemented on 700 MHz clock frequency. The proposed multiplication algorithm has achieved 14 percent improvement in transistor count, 13 percent reduction in delay and 12 percent modification in power consumption in compared with conventional designs.

Keywords: adder, CMOS, counter, Dadda tree, encoder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
1213 Application of Mutual Information based Least dependent Component Analysis (MILCA) for Removal of Ocular Artifacts from Electroencephalogram

Authors: V Krishnaveni, S Jayaraman, K Ramadoss

Abstract:

The electrical potentials generated during eye movements and blinks are one of the main sources of artifacts in Electroencephalogram (EEG) recording and can propagate much across the scalp, masking and distorting brain signals. In recent times, signal separation algorithms are used widely for removing artifacts from the observed EEG data. In this paper, a recently introduced signal separation algorithm Mutual Information based Least dependent Component Analysis (MILCA) is employed to separate ocular artifacts from EEG. The aim of MILCA is to minimize the Mutual Information (MI) between the independent components (estimated sources) under a pure rotation. Performance of this algorithm is compared with eleven popular algorithms (Infomax, Extended Infomax, Fast ICA, SOBI, TDSEP, JADE, OGWE, MS-ICA, SHIBBS, Kernel-ICA, and RADICAL) for the actual independence and uniqueness of the estimated source components obtained for different sets of EEG data with ocular artifacts by using a reliable MI Estimator. Results show that MILCA is best in separating the ocular artifacts and EEG and is recommended for further analysis.

Keywords: Electroencephalogram, Ocular Artifacts (OA), Independent Component Analysis (ICA), Mutual Information (MI), Mutual Information based Least dependent Component Analysis(MILCA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
1212 Carbon-Based Electrodes for Parabens Detection

Authors: Aniela Pop, Ianina Birsan, Corina Orha, Rodica Pode, Florica Manea

Abstract:

Carbon nanofiber-epoxy composite electrode has been investigated through voltammetric and amperometric techniques in order to detect parabens from aqueous solutions. The occurrence into environment as emerging pollutants of these preservative compounds has been extensively studied in the last decades, and consequently, a rapid and reliable method for their quantitative quantification is required. In this study, methylparaben (MP) and propylparaben (PP) were chosen as representatives for paraben class. The individual electrochemical detection of each paraben has been successfully performed. Their electrochemical oxidation occurred at the same potential value. Their simultaneous quantification should be assessed electrochemically only as general index of paraben class as a cumulative signal corresponding to both MP and PP from solution. The influence of pH on the electrochemical signal was studied. pH ranged between 1.3 and 9.0 allowed shifting the detection potential value to smaller value, which is very desired for the electroanalysis. Also, the signal is better-defined and higher sensitivity is achieved. Differential-pulsed voltammetry and square-wave voltammetry were exploited under the optimum pH conditions to improve the electroanalytical performance for the paraben detection. Also, the operation conditions were selected, i.e., the step potential, modulation amplitude and the frequency. Chronomaprometry application as the easiest electrochemical detection method led to worse sensitivity, probably due to a possible fouling effect of the electrode surface. The best electroanalytical performance was achieved by pulsed voltammetric technique but the selection of the electrochemical technique is related to the concrete practical application. A good reproducibility of the voltammetric-based method using carbon nanofiber-epoxy composite electrode was determined and no interference effect was found for the cation and anion species that are common in the water matrix. Besides these characteristics, the long life-time of the electrode give to carbon nanofiber-epoxy composite electrode a great potential for practical applications.

Keywords: Carbon nanofiber-epoxy composite electrode, electroanalysis, methylparaben, propylparaben.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
1211 Fuzzy Power Controller Design for Purdue University Research Reactor-1

Authors: Oktavian Muhammad Rizki, Appiah Rita, Lastres Oscar, Miller True, Chapman Alec, Tsoukalas Lefteri H.

Abstract:

The Purdue University Research Reactor-1 (PUR-1) is a 10 kWth pool-type research reactor located at Purdue University’s West Lafayette campus. The reactor was recently upgraded to use entirely digital instrumentation and control systems. However, currently, there is no automated control system to regulate the power in the reactor. We propose a fuzzy logic controller as a form of digital twin to complement the existing digital instrumentation system to monitor and stabilize power control using existing experimental data. This work assesses the feasibility of a power controller based on a Fuzzy Rule-Based System (FRBS) by modelling and simulation with a MATLAB algorithm. The controller uses power error and reactor period as inputs and generates reactivity insertion as output. The reactivity insertion is then converted to control rod height using a logistic function based on information from the recorded experimental reactor control rod data. To test the capability of the proposed fuzzy controller, a point-kinetic reactor model is utilized based on the actual PUR-1 operation conditions and a Monte Carlo N-Particle simulation result of the core to numerically compute the neutronics parameters of reactor behavior. The Point Kinetic Equation (PKE) was employed to model dynamic characteristics of the research reactor since it explains the interactions between the spatial and time varying input and output variables efficiently. The controller is demonstrated computationally using various cases: startup, power maneuver, and shutdown. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the reactor power to follow demand power without compromising nuclear safety measures.

Keywords: Fuzzy logic controller, power controller, reactivity, research reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
1210 Design of Regular Communication Area for Infrared Electronic-Toll-Collection Systems

Authors: Wern-Yarng Shieh, Chao Qian, Bingnan Pei

Abstract:

A design of communication area for infrared electronic-toll-collection systems to provide an extended communication interval in the vehicle traveling direction and regular boundary between contiguous traffic lanes is proposed. By utilizing two typical low-cost commercial infrared LEDs with different half-intensity angles Φ1/2 = 22◦ and 10◦, the radiation pattern of the emitter is designed to properly adjust the spatial distribution of the signal power. The aforementioned purpose can be achieved with an LED array in a three-piece structure with appropriate mounting angles. With this emitter, the influence of the mounting parameters, including the mounting height and mounting angles of the on-board unit and road-side unit, on the system performance in terms of the received signal strength and communication area are investigated. The results reveal that, for our emitter proposed in this paper, the ideal ”long-and-narrow” characteristic of the communication area is very little affected by these mounting parameters. An optimum mounting configuration is also suggested.

Keywords: Dedicated short-range communication (DSRC), electronic toll collection (ETC), infrared communication, intelligent transportation system (ITS), multilane free flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
1209 Motor Imagery Signal Classification for a Four State Brain Machine Interface

Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan

Abstract:

Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification

Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
1208 Orchestra/Percussion Classification Algorithm for United Speech Audio Coding System

Authors: Yueming Wang, Rendong Ying, Sumxin Jiang, Peilin Liu

Abstract:

Unified Speech Audio Coding (USAC), the latest MPEG standardization for unified speech and audio coding, uses a speech/audio classification algorithm to distinguish speech and audio segments of the input signal. The quality of the recovered audio can be increased by well-designed orchestra/percussion classification and subsequent processing. However, owing to the shortcoming of the system, introducing an orchestra/percussion classification and modifying subsequent processing can enormously increase the quality of the recovered audio. This paper proposes an orchestra/percussion classification algorithm for the USAC system which only extracts 3 scales of Mel-Frequency Cepstral Coefficients (MFCCs) rather than traditional 13 scales of MFCCs and use Iterative Dichotomiser 3 (ID3) Decision Tree rather than other complex learning method, thus the proposed algorithm has lower computing complexity than most existing algorithms. Considering that frequent changing of attributes may lead to quality loss of the recovered audio signal, this paper also design a modified subsequent process to help the whole classification system reach an accurate rate as high as 97% which is comparable to classical 99%.

Keywords: ID3 Decision Tree, MFCC, Orchestra/Percussion Classification, USAC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
1207 Automatic Distance Compensation for Robust Voice-based Human-Computer Interaction

Authors: Randy Gomez, Keisuke Nakamura, Kazuhiro Nakadai

Abstract:

Distant-talking voice-based HCI system suffers from performance degradation due to mismatch between the acoustic speech (runtime) and the acoustic model (training). Mismatch is caused by the change in the power of the speech signal as observed at the microphones. This change is greatly influenced by the change in distance, affecting speech dynamics inside the room before reaching the microphones. Moreover, as the speech signal is reflected, its acoustical characteristic is also altered by the room properties. In general, power mismatch due to distance is a complex problem. This paper presents a novel approach in dealing with distance-induced mismatch by intelligently sensing instantaneous voice power variation and compensating model parameters. First, the distant-talking speech signal is processed through microphone array processing, and the corresponding distance information is extracted. Distance-sensitive Gaussian Mixture Models (GMMs), pre-trained to capture both speech power and room property are used to predict the optimal distance of the speech source. Consequently, pre-computed statistic priors corresponding to the optimal distance is selected to correct the statistics of the generic model which was frozen during training. Thus, model combinatorics are post-conditioned to match the power of instantaneous speech acoustics at runtime. This results to an improved likelihood in predicting the correct speech command at farther distances. We experiment using real data recorded inside two rooms. Experimental evaluation shows voice recognition performance using our method is more robust to the change in distance compared to the conventional approach. In our experiment, under the most acoustically challenging environment (i.e., Room 2: 2.5 meters), our method achieved 24.2% improvement in recognition performance against the best-performing conventional method.

Keywords: Human Machine Interaction, Human Computer Interaction, Voice Recognition, Acoustic Model Compensation, Acoustic Speech Enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
1206 Novel Security Strategy for Real Time Digital Videos

Authors: Prakash Devale, R. S. Prasad, Amol Dhumane, Pritesh Patil

Abstract:

Now a days video data embedding approach is a very challenging and interesting task towards keeping real time video data secure. We can implement and use this technique with high-level applications. As the rate-distortion of any image is not confirmed, because the gain provided by accurate image frame segmentation are balanced by the inefficiency of coding objects of arbitrary shape, with a lot factors like losses that depend on both the coding scheme and the object structure. By using rate controller in association with the encoder one can dynamically adjust the target bitrate. This paper discusses about to keep secure videos by mixing signature data with negligible distortion in the original video, and to keep steganographic video as closely as possible to the quality of the original video. In this discussion we propose the method for embedding the signature data into separate video frames by the use of block Discrete Cosine Transform. These frames are then encoded by real time encoding H.264 scheme concepts. After processing, at receiver end recovery of original video and the signature data is proposed.

Keywords: Data Hiding, Digital Watermarking, video coding H.264, Rate Control, Block DCT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
1205 Relation of Optimal Pilot Offsets in the Shifted Constellation-Based Method for the Detection of Pilot Contamination Attacks

Authors: Dimitriya A. Mihaylova, Zlatka V. Valkova-Jarvis, Georgi L. Iliev

Abstract:

One possible approach for maintaining the security of communication systems relies on Physical Layer Security mechanisms. However, in wireless time division duplex systems, where uplink and downlink channels are reciprocal, the channel estimate procedure is exposed to attacks known as pilot contamination, with the aim of having an enhanced data signal sent to the malicious user. The Shifted 2-N-PSK method involves two random legitimate pilots in the training phase, each of which belongs to a constellation, shifted from the original N-PSK symbols by certain degrees. In this paper, legitimate pilots’ offset values and their influence on the detection capabilities of the Shifted 2-N-PSK method are investigated. As the implementation of the technique depends on the relation between the shift angles rather than their specific values, the optimal interconnection between the two legitimate constellations is investigated. The results show that no regularity exists in the relation between the pilot contamination attacks (PCA) detection probability and the choice of offset values. Therefore, an adversary who aims to obtain the exact offset values can only employ a brute-force attack but the large number of possible combinations for the shifted constellations makes such a type of attack difficult to successfully mount. For this reason, the number of optimal shift value pairs is also studied for both 100% and 98% probabilities of detecting pilot contamination attacks. Although the Shifted 2-N-PSK method has been broadly studied in different signal-to-noise ratio scenarios, in multi-cell systems the interference from the signals in other cells should be also taken into account. Therefore, the inter-cell interference impact on the performance of the method is investigated by means of a large number of simulations. The results show that the detection probability of the Shifted 2-N-PSK decreases inversely to the signal-to-interference-plus-noise ratio.

Keywords: Channel estimation, inter-cell interference, pilot contamination attacks, wireless communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677
1204 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System

Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas

Abstract:

Paper presents an comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in speaker dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signal to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients gives best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfy the real-time requirements and is suitable for applications in embedded systems.

Keywords: Isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3540
1203 Objective Assessment of Psoriasis Lesion Thickness for PASI Scoring using 3D Digital Imaging

Authors: M.H. Ahmad Fadzil, Hurriyatul Fitriyah, Esa Prakasa, Hermawan Nugroho, S.H. Hussein, Azura Mohd. Affandi

Abstract:

Psoriasis is a chronic inflammatory skin condition which affects 2-3% of population around the world. Psoriasis Area and Severity Index (PASI) is a gold standard to assess psoriasis severity as well as the treatment efficacy. Although a gold standard, PASI is rarely used because it is tedious and complex. In practice, PASI score is determined subjectively by dermatologists, therefore inter and intra variations of assessment are possible to happen even among expert dermatologists. This research develops an algorithm to assess psoriasis lesion for PASI scoring objectively. Focus of this research is thickness assessment as one of PASI four parameters beside area, erythema and scaliness. Psoriasis lesion thickness is measured by averaging the total elevation from lesion base to lesion surface. Thickness values of 122 3D images taken from 39 patients are grouped into 4 PASI thickness score using K-means clustering. Validation on lesion base construction is performed using twelve body curvature models and show good result with coefficient of determinant (R2) is equal to 1.

Keywords: 3D digital imaging, base construction, PASI, psoriasis lesion thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
1202 Simulation for Squat Exercise of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, feedback delay and signal noise were added to a simulation model of an active controlled vibration isolation and stabilization system to regulate the movement of the exercise platform. Two additional simulation tools used in this study were Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. Simulation results obtained from these three tools were very similar. All simulation results support the hypothesis that an active controlled vibration isolation and stabilization system outperforms a passive controlled system even with the addition of feedback delay and signal noise to the active controlled system. In this paper, squat exercise was used in creating excited force to the simulation model. The exciter force from squat exercise was calculated from motion capture of an exerciser. The simulation results demonstrate much greater transmitted force reduction in the active controlled system than the passive controlled system.

Keywords: Astronaut, counterweight, stabilization, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 461
1201 Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models

Authors: A. Shebani, C. Pislaru

Abstract:

The wear measuring and wear modelling are fundamental issues in the industrial field, mainly correlated to the economy and safety. Therefore, there is a need to study the wear measurements and wear estimation. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin is made of steel with a tip, positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument. The Talysurf profilometer was used to measure the pin/disc wear scar depth, digital microscope was used to measure the diameter and width of wear scar, and the alicona was used to measure the pin wear and disc wear. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling. Simulation results were implemented by using the Matlab program. This paper focuses on how the alicona can be used for wear measurements and how the neural network can be used for wear estimation.

Keywords: Wear measuring, Wear modelling, Neural Network, Alicona.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4278
1200 Remote Vital Signs Monitoring in Neonatal Intensive Care Unit Using a Digital Camera

Authors: Fatema-Tuz-Zohra Khanam, Ali Al-Naji, Asanka G. Perera, Kim Gibson, Javaan Chahl

Abstract:

Conventional contact-based vital signs monitoring sensors such as pulse oximeters or electrocardiogram (ECG) may cause discomfort, skin damage, and infections, particularly in neonates with fragile, sensitive skin. Therefore, remote monitoring of the vital sign is desired in both clinical and non-clinical settings to overcome these issues. Camera-based vital signs monitoring is a recent technology for these applications with many positive attributes. However, there are still limited camera-based studies on neonates in a clinical setting. In this study, the heart rate (HR) and respiratory rate (RR) of eight infants at the Neonatal Intensive Care Unit (NICU) in Flinders Medical Centre were remotely monitored using a digital camera applying color and motion-based computational methods. The region-of-interest (ROI) was efficiently selected by incorporating an image decomposition method. Furthermore, spatial averaging, spectral analysis, band-pass filtering, and peak detection were also used to extract both HR and RR. The experimental results were validated with the ground truth data obtained from an ECG monitor and showed a strong correlation using the Pearson correlation coefficient (PCC) 0.9794 and 0.9412 for HR and RR, respectively. The root mean square errors (RMSE) between camera-based data and ECG data for HR and RR were 2.84 beats/min and 2.91 breaths/min, respectively. A Bland Altman analysis of the data also showed a close correlation between both data sets with a mean bias of 0.60 beats/min and 1 breath/min, and the lower and upper limit of agreement -4.9 to + 6.1 beats/min and -4.4 to +6.4 breaths/min for both HR and RR, respectively. Therefore, video camera imaging may replace conventional contact-based monitoring in NICU and has potential applications in other contexts such as home health monitoring.

Keywords: Neonates, NICU, digital camera, heart rate, respiratory rate, image decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 578
1199 Assessment of the Administration and Services of Public Access Computers in Academic Libraries in Kaduna State, Nigeria

Authors: Usman Ahmed Adam, Umar Ibrahim, Ezra S. Gbaje

Abstract:

This study is posed to explore the practice of Public Access Computers (PACs) in academic libraries in Kaduna State, Nigeria. The study aimed to determine the computers and other tools available, their services and challenges of the practices. Three questions were framed to identify number of public computers and tools available, their services and problems faced during the practice. The study used qualitative research design along with semi-constructed interview and observation as tools for data collection. Descriptive analysis was employed to analyze the data. The sample size of the study comprises 52 librarian and IT staff from the seven academic institutions in Kaduna State. The findings revealed that, PACs were provided for access to the Internet, digital resources, library catalogue and training services. The study further explored that, despite the limit number of the computers, users were not allowed to enjoy many services. The study recommends that libraries in Kaduna state should provide more public computers to be able to cover the population of their users; libraries should allow users to use the computers without limitations and restrictions.

Keywords: Academic libraries, computers in the library, digital libraries, public computers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 615
1198 Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles

Authors: Kalthoum Riahi, Max T. Rietberg, Javier Perez y Perez, Corné Dijkstra, Bennie ten Haken, Lejla Alic

Abstract:

Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.

Keywords: Magnetic nanoparticles, MNPs, Differential magnetic susceptibility, DMS, Magnetic particle imaging, MPI, magnetic relaxation, Synomag®-D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710
1197 Impact of Modeling Different Fading Channels on Wireless MAN Fixed IEEE802.16d OFDM System with Diversity Transmission Technique

Authors: Shanar Askar, Shahzad Memon, LachhmanDas, MSKalhoro

Abstract:

Wimax (Worldwide Interoperability for Microwave Access) is a promising technology which can offer high speed data, voice and video service to the customer end, which is presently, dominated by the cable and digital subscriber line (DSL) technologies. The performance assessment of Wimax systems is dealt with. The biggest advantage of Broadband wireless application (BWA) over its wired competitors is its increased capacity and ease of deployment. The aims of this paper are to model and simulate the fixed OFDM IEEE 802.16d physical layer under variant combinations of digital modulation (BPSK, QPSK, and 16-QAM) over diverse combination of fading channels (AWGN, SUIs). Stanford University Interim (SUI) Channel serial was proposed to simulate the fixed broadband wireless access channel environments where IEEE 802.16d is to be deployed. It has six channel models that are grouped into three categories according to three typical different outdoor Terrains, in order to give a comprehensive effect of fading channels on the overall performance of the system.

Keywords: WIMAX, OFDM, Additive White Gaussian Noise, Fading Channel, SUI, Doppler Effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
1196 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30d B SNR as a reference for voice activity.

Keywords: Atomic Decomposition, Gabor, Gammatone, Matching Pursuit, Voice Activity Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
1195 Multi-Objective Optimization Contingent on Subcarrier-Wise Beamforming for Multiuser MIMO-OFDM Interference Channels

Authors: R. Vedhapriya Vadhana, Ruba Soundar, K. G. Jothi Shalini

Abstract:

We address the problem of interference over all the channels in multiuser MIMO-OFDM systems. This paper contributes three beamforming strategies designed for multiuser multiple-input and multiple-output by way of orthogonal frequency division multiplexing, in which the transmit and receive beamformers are acquired repetitious by secure-form stages. In the principal case, the transmit (TX) beamformers remain fixed then the receive (RX) beamformers are computed. This eradicates one interference span for every user by means of extruding the transmit beamformers into a null space of relevant channels. Formerly, by gratifying the orthogonality condition to exclude the residual interferences in RX beamformer for every user is done by maximizing the signal-to-noise ratio (SNR). The second case comprises mutually optimizing the TX and RX beamformers from controlled SNR maximization. The outcomes of first case is used here. The third case also includes combined optimization of TX-RX beamformers; however, uses the both controlled SNR and signal-to-interference-plus-noise ratio maximization (SINR). By the standardized channel model for IEEE 802.11n, the proposed simulation experiments offer rapid beamforming and enhanced error performance.

Keywords: Beamforming, interference channels, MIMO-OFDM, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126