Search results for: light scattering
886 Symbolic Analysis of Power Spectrum of CMOS Cross Couple Oscillator
Authors: Kittipong Tripetch
Abstract:
This paper proposes for the first time symbolic formula of the power spectrum of CMOS Cross Couple Oscillator and its modified circuit. Many principles existed to derived power spectrum in microwave textbook such as impedance, admittance parameters, ABCD, H parameters, etc. It can be compared by graph of power spectrum which methodology is the best from the point of view of practical measurement setup such as condition of impedance parameter which used superposition of current to derived (its current injection at the other port of the circuit is zero, which is impossible in reality). Four graphs of impedance parameters of cross couple oscillator are proposed. After that four graphs of scattering parameters of CMOS cross coupled oscillator will be shown.Keywords: Optimization, power spectrum, impedance parameter, scattering parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547885 Chemical Characterization of Submicron Aerosol in Kanpur Region: a Source Apportionment Study
Authors: A. Chakraborty, T. Gupta
Abstract:
Several studies have shown the association between ambient particulate matter (PM) and adverse health effects and climate change, thus highlighting the need to limit the anthropogenic sources of PM. PM Exposure is commonly monitored as mass concentration of PM10 (particle aerodynamic diameter < 10μm) or PM2.5 (particle aerodynamic diameter < 2.5μm), although increasing toxicity with decreasing aerodynamic diameter has been reported due to increased surface area and enhanced chemical reactivity with other species. Additionally, the light scattering properties of PM increases with decreasing size. Hence, it is important to study the chemical characterization of finer fraction of the particulate matter and to identify their sources so that they can be controlled appropriately to a large extent at the sources before reaching to the receptors.Keywords: PM1, PCA, source apportionment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651884 Radiative Reactions Analysis at the Range of Astrophysical Energies
Authors: A. Amar
Abstract:
Analysis of the elastic scattering of protons on 10B nuclei has been done in the framework of the optical model and single folding model at the beam energies up to 17 MeV. We could enhance the optical potential parameters using Esis88 Code, as well as SPI GENOA Code. Linear relationship between volume real potential (V0) and proton energy (Ep) has been obtained. Also, surface imaginary potential WD is proportional to the proton energy (Ep) in the range 0.400 and 17 MeV. The radiative reaction 10B(p,γ)11C has been analyzed using potential model. A comparison between 10B(p,γ)11C and 6Li(p,γ)7Be has been made. Good agreement has been found between theoretical and experimental results in the whole range of energy. The radiative resonance reaction 7Li(p,γ)8Be has been studied.
Keywords: Elastic scattering of protons on 10B nuclei, optical potential parameters, potential model, radiative reaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864883 Increasing Directional Intensity of Output Light Beam from Photonic Crystal Slab Outlet Including Micro Cavity Resonators
Authors: A. Mobini, K. Saghafi, V. Ahmadi
Abstract:
in this paper we modified a simple two-dimensional photonic crystal waveguide by creating micro cavity resonators in order to increase the output light emission which can be applicable to photonic integrated circuits. The micro cavity resonators are constructed by removing two tubes close to the waveguide output. Coupling emitted light from waveguide with those micro cavities, results increasing intensity of waveguide output light. Inserting a tube in last row of waveguide, we have improved directionality of output light beam.Keywords: photonic crystal, waveguide, micro cavity resonators, directional emission
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323882 Synergistic Impacts and Optimization of Gas Flow Rate, Concentration of CO2, and Light Intensity on CO2 Biofixation in Wastewater Medium by Chlorella vulgaris
Authors: Ahmed Arkoazi, Hussein Znad, Ranjeet Utikar
Abstract:
The synergistic impact and optimization of gas flow rate, concentration of CO2, and light intensity on CO2 biofixation rate were investigated using wastewater as a medium to cultivate Chlorella vulgaris under different conditions (gas flow rate 1-8 L/min), CO2 concentration (0.03-7%), and light intensity (150-400 µmol/m2.s)). Response Surface Methodology and Box-Behnken experimental Design were applied to find optimum values for gas flow rate, CO2 concentration, and light intensity. The optimum values of the three independent variables (gas flow rate, concentration of CO2, and light intensity) and desirability were 7.5 L/min, 3.5%, and 400 µmol/m2.s, and 0.904, respectively. The highest amount of biomass produced and CO2 biofixation rate at optimum conditions were 5.7 g/L, 1.23 gL-1d-1, respectively. The synergistic effect between gas flow rate and concentration of CO2, and between gas flow rate and light intensity was significant on the three responses, while the effect between CO2 concentration and light intensity was less significant on CO2 biofixation rate. The results of this study could be highly helpful when using microalgae for CO2 biofixation in wastewater treatment.
Keywords: Synergistic impact, optimization, CO2 biofixation, airlift reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 738881 Effect of Channel Estimation on Capacity of MIMO System Employing Circular or Linear Receiving Array Antennas
Authors: Xia Liu, Marek E. Bialkowski
Abstract:
This paper reports on investigations into capacity of a Multiple Input Multiple Output (MIMO) wireless communication system employing a uniform linear array (ULA) at the transmitter and either a uniform linear array (ULA) or a uniform circular array (UCA) antenna at the receiver. The transmitter is assumed to be surrounded by scattering objects while the receiver is postulated to be free from scattering objects. The Laplacian distribution of angle of arrival (AOA) of a signal reaching the receiver is postulated. Calculations of the MIMO system capacity are performed for two cases without and with the channel estimation errors. For estimating the MIMO channel, the scaled least square (SLS) and minimum mean square error (MMSE) methods are considered.Keywords: MIMO, channel capacity, channel estimation, ULA, UCA, spatial correlation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365880 Comparison Mechanical and Chemical Treatments on Properties of Low Yield Bagasse Pulp During Recycling
Authors: Parizad Sheikhi, Mohammad Talaeipour
Abstract:
the effects of refining and alkaline chemicals on potential of recycling bleached chemical pulp of bagasse were investigated in this study. Recycling was done until three times. Handsheet properties such as, apparent density, light scattering coefficient, tear index, burst index, breaking length, and fold number according to TAPPI standard were measured. Water retention value also was used to considering the treatments during recycling. Refining enhanced the strength of recycled pulp by increasing fiber flexibility and swelling ability, whereas by applying chemical treatment didn't observe any improvement. The morphology of recycled fiber was considered with scanning electron microscopy (SEM).
Keywords: Bagasse pulp, chemical treatment, recycling, refining, scanning electron microscopy, water retention value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2682879 Antifungal Activity of Silver Colloidal Nanoparticles against Phytopathogenic Fungus (Phomopsis sp.) in Soybean Seeds
Authors: J. E. Mendes, L.Abrunhosa, J. A. Teixeira, E. R. de Camargo, C. P. de Souza, J. D. C. Pessoa
Abstract:
Among the many promising nanomaterials with antifungal properties, metal nanoparticles (silver nanoparticles) stand out due to their high chemical activity. Therefore, the aim of this study was to evaluate the effect of silver nanoparticles (AgNPs) against Phomopsis sp. AgNPs were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. The synthesized AgNPs have further been characterized by UV/Visible spectroscopy, Biophysical techniques like Dynamic light scattering (DLS) and Scanning Electron Microscopy (SEM). The average diameter of the prepared silver colloidal nanoparticles was about 52 nm. Absolute inhibitions (100%) were observed on treated with a 270 and 540 µg ml-1 concentration of AgNPs. The results from the study of the AgNPs antifungal effect are significant and suggest that the synthesized silver nanoparticles may have an advantage compared with conventional fungicides.
Keywords: Antifungal activity, Phomopsis sp., Seeds, Silver Nanoparticles, Soybean.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122878 Modeling Thermo-Photo-Voltaic Selective Emitter Based on a Semi-Transparent Emitter with Integrated Narrow Band-Pass Pre-Filter
Authors: F. Stake
Abstract:
This work is a parametric study combining simple and well known optical theories. These simple theories are arranged to form part of one answer to the question: “Can a semi-transparent Thermo-Photo-Voltaic (TPV) emitter have an optical extinction spectrum so much greater than its optical absorption spectrum that it becomes its own band-pass pre-filter, and if so, how well might it be expected to suppress light of undesired wavelengths?” In the report, hypothetical materials and operating temperatures will be used for comparative analyses only. Thermal emission properties of these hypothetical materials were created using two openly available FORTRAN programs. Results indicate that if using highly transparent materials it may be possible to create a thermal emitter that is its own band-pass pre-filter.Keywords: Christensen effect, DISORT, index of refraction, scattering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602877 Li-Fi Technology: Data Transmission through Visible Light
Authors: Shahzad Hassan, Kamran Saeed
Abstract:
People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.
Keywords: Communication, LED, Li-Fi, Wi-Fi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169876 Teaching Light Polarization by Putting Art and Physics Together
Authors: Fabrizio Logiurato
Abstract:
Light Polarization has many technological applications, and its discovery was crucial to reveal the transverse nature of the electromagnetic waves. However, despite its fundamental and practical importance, in high school, this property of light is often neglected. This is a pity not only for its conceptual relevance, but also because polarization gives the possibility to perform many brilliant experiments with low cost materials. Moreover, the treatment of this matter lends very well to an interdisciplinary approach between art, biology and technology, which usually makes things more interesting to students. For these reasons, we have developed, and in this work, we introduce a laboratory on light polarization for high school and undergraduate students. They can see beautiful pictures when birefringent materials are set between two crossed polarizing filters. Pupils are very fascinated and drawn into by what they observe. The colourful images remind them of those ones of abstract painting or alien landscapes. With this multidisciplinary teaching method, students are more engaged and participative, and also, the learning process of the respective physics concepts is more effective.
Keywords: Light polarization, optical activity, multidisciplinary education, science and art.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095875 Microwave LNA Design Based On Adaptive Network Fuzzy Inference and Evolutionary Optimization
Authors: Samad Nejatian, Vahideh Rezaie, Vahid Asadpour
Abstract:
This paper presents a novel approach for the design of microwave circuits using Adaptive Network Fuzzy Inference Optimizer (ANFIO). The method takes advantage of direct synthesis of subsections of the amplifier using very fast and accurate ANFIO models based on exact simulations using ADS. A mapping from course space to fine space known as space mapping is also used. The proposed synthesis approach takes into account the noise and scattering parameters due to parasitic elements to achieve optimal results. The overall ANFIO system is capable of designing different LNAs at different noise and scattering criteria. This approach offers significantly reduced time in the design of microwave amplifiers within the validity range of the ANFIO system. The method has been proven to work efficiently for a 2.4GHz LNA example. The S21 of 10.1 dB and noise figure (NF) of 2.7 dB achieved for ANFIO while S21 of 9.05 dB and NF of 2.6 dB achieved for ANN.Keywords: fuzzy system, low noise amplifier, microwaveamplifier, space mapping
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796874 Synthesis and Characterization of PEG-Silane Functionalized Iron Oxide Nanoparticle as MRI T2 Contrast Agent
Authors: Mu-Jen Young, Cheng-Yen Wu, Wen-Yuan Hsieh
Abstract:
Iron oxide nanoparticle was synthesized by reactive-precipitation method followed by high speed centrifuge and phase transfer in order to stabilized nanoparticles in the solvent. Particle size of SPIO was 8.2 nm by SEM, and the hydraulic radius was 17.5 nm by dynamic light scattering method. Coercivity and saturated magnetism were determined by VSM (vibrating sample magnetometer), coercivity of nanoparticle was lower than 10 Hc, and the saturated magnetism was higher than 65 emu/g. Stabilized SPIO was then transferred to aqueous phase by reacted with excess amount of poly (ethylene glycol) (PEG) silane. After filtration and dialysis, the SPIO T2 contrast agent was ready to use. The hydraulic radius of final product was about 70~100 nm, the relaxation rates R2 (1/T2) measured by magnetic resonance imaging (MRI) was larger than 200(sec-1).
Keywords: Contrast Agent, Iron Oxide Nanoparticle, Magnetic Resonance Imaging, Nanoparticle Stabilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3212873 Impact of Zn/Cr Ratio on ZnCrOx-SAPO-34 Bifunctional Catalyst for Direct Conversion of Syngas to Light Olefins
Authors: Yuxuan Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying
Abstract:
Light olefins are important building blocks for chemical industry. Direct conversion of syngas to light olefins has been investigated for decades. Meanwhile, the limit for light olefins selectivity described by Anderson-Schulz-Flory (ASF) distribution model is still a great challenge to conventional Fischer-Tropsch synthesis. The emerging strategy called oxide-zeolite concept (OX-ZEO) is a promising way to get rid of this limit. ZnCrOx was prepared by co-precipitation method and (NH4)2CO3 was used as precipitant. SAPO-34 was prepared by hydrothermal synthesis, and Tetraethylammonium hydroxide (TEAOH) was used as template, while silica sol, pseudo-boehmite, and phosphoric acid were Al, Si and P source, respectively. The bifunctional catalyst was prepared by mechanical mixing of ZnCrOx and SAPO-34. Catalytic reactions were carried out under H2/CO=2, 380 ℃, 1 MPa and 6000 mL·gcat-1·h-1 in a fixed-bed reactor with a quartz lining. Catalysts were characterized by XRD, N2 adsorption-desorption, NH3-TPD, H2-TPR, and CO-TPD. The addition of Al as structure promoter enhances CO conversion and selectivity to light olefins. Zn/Cr ratio, which decides the active component content and chemisorption property of the catalyst, influences CO conversion and selectivity to light olefins at the same time. C2-4= distribution of 86% among hydrocarbons at CO conversion of 14% was reached when Zn/Cr=1.5.
Keywords: Light olefins, OX-ZEO, syngas, ZnCrOx.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1021872 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy
Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko
Abstract:
In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.
Keywords: Inverse problems, multi-component solutions, neural networks, Raman spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927871 Microwave-Assisted Fabrication of Visible-Light Activated BiOBr-Nanoplate Photocatalyst
Authors: Meichen Lee, Michael K. H. Leung
Abstract:
In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160°C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation.
Keywords: Microwave solvothermal process, nanoplates, solar energy, visible-light photocatalysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001870 Zinc Oxide Nanoparticles Modified with Galactose as Potential Drug Carrier with Reduced Releasing of Zinc Ions
Authors: Jolanta Pulit-Prociak, Olga Długosz, Marcin Banach
Abstract:
The toxicity of bare zinc oxide nanoparticles used as drug carriers may be the result of releasing zinc ions. Thus, zinc oxide nanoparticles modified with galactose were obtained. The process of their formation was conducted in the microwave field. The physicochemical properties of the obtained products were studied. The size and electrokinetic potential were defined by using dynamic light scattering technique. The crystalline properties were assessed by X-ray diffractometry. In order to confirm the formation of the desired products, Fourier-transform infrared spectroscopy was used. Releasing of zinc ions from the prepared products when comparing to the bare oxide was analyzed. It was found out that modification of zinc oxide nanoparticles with galactose limits the releasing of zinc ions which are responsible for the toxic effect of the whole carrier-drug conjugate.
Keywords: Nanomaterials, zinc oxide, drug delivery system, toxicity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 554869 Electrochemical Performance of Al-Mn2O3 Based Electrode Materials
Authors: Noor Ul Ain Bhatti, M. Junaid Khan, Javed Ahmad, Murtaza Saleem, Shahid M. Ramay, Saadat A. Siddiqi
Abstract:
Manganese oxide is being recently used as electrode material for rechargeable batteries. In this study, Al incorporated Mn2O3 compositions were synthesized to study the effect of Al doping on electrochemical performance of host material. Structural studies were carried out using X-ray diffraction analysis to confirm the phase stability and explore the lattice parameters, crystallite size, lattice strain, density and cell volume. Morphology and composition were analyzed using field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Dynamic light scattering analysis was performed to observe the average particle size of the compositions. FTIR measurements exhibit the O-Al-O and O-Mn-O and Al-O bonding and with increasing the concentration of Al, the vibrational peaks of Mn-O become sharper. An enhanced electrochemical performance was observed in compositions with higher Al content.
Keywords: Mn2O3, electrode materials, energy storage and conversion, electrochemical performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860868 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution
Authors: A. Amar
Abstract:
A new model namely, the crystal model, has been modified to calculate radius and density distribution of light nuclei up to 8Be. The crystal model has been modified according to solid state physics which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has been obtained from the analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in general form. The equation used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in 6Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+6,7Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both radius and density distribution of light nuclei. The model failed to calculate the radius of 9Be, so modifications should be done to overcome discrepancy.
Keywords: nuclear lattice, crystal model, light nuclei, nuclear density distributions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 430867 Face Texture Reconstruction for Illumination Variant Face Recognition
Authors: Pengfei Xiong, Lei Huang, Changping Liu
Abstract:
In illumination variant face recognition, existing methods extracting face albedo as light normalized image may lead to loss of extensive facial details, with light template discarded. To improve that, a novel approach for realistic facial texture reconstruction by combining original image and albedo image is proposed. First, light subspaces of different identities are established from the given reference face images; then by projecting the original and albedo image into each light subspace respectively, texture reference images with corresponding lighting are reconstructed and two texture subspaces are formed. According to the projections in texture subspaces, facial texture with normal light can be synthesized. Due to the combination of original image, facial details can be preserved with face albedo. In addition, image partition is applied to improve the synthesization performance. Experiments on Yale B and CMUPIE databases demonstrate that this algorithm outperforms the others both in image representation and in face recognition.Keywords: texture reconstruction, illumination, face recognition, subspaces
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482866 Simulation Model of an Ultra-Light Overhead Conveyor System; Analysis of the Process in the Warehouse
Authors: Batin Latif Aylak, Bernd Noche, M. Baran Cantepe, Aydin Karakaya
Abstract:
Ultra-light overhead conveyor systems are rope-based conveying systems with individually driven vehicles. The vehicles can move automatically on the rope and this can be realized by energy and signals. The ultra-light overhead conveyor systems always must be integrated with a logistical process by finding a best way for a cheaper material flow in order to guarantee precise and fast workflows. This paper analyzes the process of an ultra-light overhead conveyor system using necessary assumptions. The analysis consists of three scenarios. These scenarios are based on raising the vehicle speeds with equal increments at each case. The correlation between the vehicle speed and system throughput is investigated. A discrete-event simulation model of an ultra-light overhead conveyor system is constructed using DOSIMIS-3 software to implement three scenarios. According to simulation results; the optimal scenario, hence the optimal vehicle speed, is found out among three scenarios. This simulation model demonstrates the effect of increased speed on the system throughput.
Keywords: Logistics, material flow, simulation, ultra-light overhead conveyor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564865 Improved Root-Mean-Square-Gain-Combining for SIMO Channels
Authors: Rania Minkara, Jean-Pierre Dubois
Abstract:
The major problem that wireless communication systems undergo is multipath fading caused by scattering of the transmitted signal. However, we can treat multipath propagation as multiple channels between the transmitter and receiver to improve the signal-to-scattering-noise ratio. While using Single Input Multiple Output (SIMO) systems, the diversity receivers extract multiple signal branches or copies of the same signal received from different channels and apply gain combining schemes such as Root Mean Square Gain Combining (RMSGC). RMSGC asymptotically yields an identical performance to that of the theoretically optimal Maximum Ratio Combining (MRC) for values of mean Signal-to- Noise-Ratio (SNR) above a certain threshold value without the need for SNR estimation. This paper introduces an improvement of RMSGC using two different issues. We found that post-detection and de-noising the received signals improve the performance of RMSGC and lower the threshold SNR.Keywords: Bit error rate, de-noising, pre-detection, root-meansquare gain combining, single-input multiple-output channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339864 Effect of Fractional Flow Curves on the Heavy Oil and Light Oil Recoveries in Petroleum Reservoirs
Authors: Abdul Jamil Nazari, Shigeo Honma
Abstract:
This paper evaluates and compares the effect of fractional flow curves on the heavy oil and light oil recoveries in a petroleum reservoir. Fingering of flowing water is one of the serious problems of the oil displacement by water and another problem is the estimation of the amount of recover oil from a petroleum reservoir. To address these problems, the fractional flow of heavy oil and light oil are investigated. The fractional flow approach treats the multi-phases flow rate as a total mixed fluid and then describes the individual phases as fractional of the total flow. Laboratory experiments are implemented for two different types of oils, heavy oil, and light oil, to experimentally obtain relative permeability and fractional flow curves. Application of the light oil fractional curve, which exhibits a regular S-shape, to the water flooding method showed that a large amount of mobile oil in the reservoir is displaced by water injection. In contrast, the fractional flow curve of heavy oil does not display an S-shape because of its high viscosity. Although the advance of the injected waterfront is faster than in light oil reservoirs, a significant amount of mobile oil remains behind the waterfront.
Keywords: Fractional flow curve, oil recovery, relative permeability, water fingering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473863 Stimulation of Stevioside Accumulation on Stevia rebaudiana (Bertoni) Shoot Culture Induced with Red LED Light in TIS RITA® Bioreactor System
Authors: Vincent Alexander, Rizkita Esyanti
Abstract:
Leaves of Stevia rebaudiana contain steviol glycoside which mainly comprise of stevioside, a natural sweetener compound that is 100-300 times sweeter than sucrose. Current cultivation method of Stevia rebaudiana in Indonesia has yet to reach its optimum efficiency and productivity to produce stevioside as a safe sugar substitute sweetener for people with diabetes. An alternative method that is not limited by environmental factor is in vitro temporary immersion system (TIS) culture method using recipient for automated immersion (RITA®) bioreactor. The aim of this research was to evaluate the effect of red LED light induction towards shoot growth and stevioside accumulation in TIS RITA® bioreactor system, as an endeavour to increase the secondary metabolite synthesis. The result showed that the stevioside accumulation in TIS RITA® bioreactor system induced with red LED light for one hour during night was higher than that in TIS RITA® bioreactor system without red LED light induction, i.e. 71.04 ± 5.36 μg/g and 42.92 ± 5.40 μg/g respectively. Biomass growth rate reached as high as 0.072 ± 0.015/day for red LED light induced TIS RITA® bioreactor system, whereas TIS RITA® bioreactor system without induction was only 0.046 ± 0.003/day. Productivity of Stevia rebaudiana shoots induced with red LED light was 0.065 g/L medium/day, whilst shoots without any induction was 0.041 g/L medium/day. Sucrose, salt, and inorganic consumption in both bioreactor media increased as biomass increased. It can be concluded that Stevia rebaudiana shoot in TIS RITA® bioreactor induced with red LED light produces biomass and accumulates higher stevioside concentration, in comparison to bioreactor without any light induction.
Keywords: LED, Stevia rebaudiana, Stevioside, TIS RITA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759862 Visualization of Latent Sweat Fingerprints Deposit on Paper by Infrared Radiation and Blue Light
Authors: Xiaochun Huang, Xuejun Zhao, Yun Zou, Feiyu Yang, Wenbin Liu, Nan Deng, Ming Zhang, Nengbin Cai
Abstract:
A simple device termed infrared radiation (IR) was developed for rapid visualization of sweat fingerprints deposit on paper with blue light (450 nm, 11 W). In this approach, IR serves as the pretreatment device before the sweat fingerprints was illuminated by blue light. An annular blue light source was adopted for visualizing latent sweat fingerprints. Sample fingerprints were examined under various conditions after deposition, and experimental results indicate that the recovery rate of the latent sweat fingerprints is in the range of 50%-100% without chemical treatments. A mechanism for the observed visibility is proposed based on transportation and re-impregnation of fluorescer in paper at the region of water. And further exploratory experimental results gave the full support to the visible mechanism. Therefore, such a method as IR-pretreated in detecting latent fingerprints may be better for examination in the case where biological information of samples is needed for consequent testing.
Keywords: Forensic science, visualization, infrared radiation, blue light, latent sweat fingerprints, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463861 An Experimental Study on Holdup Measurement in Fluidized Bed by Light Transmission
Authors: E. Shahbazali, N. Afrasiabi, A. A. Safekordi
Abstract:
Nowadays, fluidized bed plays an important part in industry. The design of this kind of reactor requires knowing the interfacial area between two phases and this interfacial area leads to calculate the solid holdup in the bed. Consequently achieving interfacial area between gas and solid in the bed experimentally is so significant. On interfacial area measurement in fluidized bed with gas has been worked, but light transmission technique has been used less. Therefore, in the current research the possibility of using of this technique and its accuracy are investigated. Measuring, a fluidized bed was designed and the problems were averted as far as possible. By using fine solid with equal shape and diameter and installing an optical system, the absorption of light during the time of fluidization has been measured. Results indicate that this method that its validity has been proved in the gas-liquid system, by different reasons have less application in gas-solid system. One important reason could be non-uniformity in such systems.
Keywords: Fluidization, Holdup, Light Transmission, Two phase system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503860 The Determination of Cellulose Spiral Angle by Small-Angle X-Ray Scattering from Structurally Characterized Acacia mangium Cell Wall
Authors: Tamer A. Tabet, Fauziah Abdul Aziz, Shahidan Radiman
Abstract:
The spiral angle of the elementary cellulose fibril in the wood cell wall, often called microfibril angle, (MFA). Microfibril angle in hardwood is one of the key determinants of solid timber performance due to its strong influence on the stiffness, strength, shrinkage, swelling, thermal-dynamics mechanical properties and dimensional stability of wood. Variation of MFA (degree) in the S2 layer of the cell walls among Acacia mangium trees was determined using small-angle X-ray scattering (SAXS). The length and orientation of the microfibrils of the cell walls in the irradiated volume of the thin samples are measured using SAXS and optical microscope for 3D surface measurement. The undetermined parameters in the analysis are the MFA, (M) and the standard deviation (σФ) of the intensity distribution arising from the wandering of the fibril orientation about the mean value. Nine separate pairs of values are determined for nine different values of the angle of the incidence of the X-ray beam relative to the normal to the radial direction in the sample. The results show good agreement. The curve distribution of scattered intensity for the real cell wall structure is compared with that calculated with that assembly of rectangular cells with the same ratio of transverse to radial cell wall length. It is demonstrated that for β = 45°, the peaks in the curve intensity distribution for the real and the rectangular cells coincide. If this peak position is Ф45, then the MFA can be determined from the relation M = tan-1 (tan Ф45 / cos 45°), which is precise for rectangular cells. It was found that 92.93% of the variation of MFA can be attributed to the distance from pith to bark. Here we shall present our results of the MFA in the cell wall with respect to its shape, structure and the distance from pith to park as an important fast check and yet accurate towards the quality of wood, its uses and application.Keywords: Small-Angle X-Ray Scattering, Microfibril Angle, MFA, rectangular cell wall and real cell wall, Acacia mangium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808859 The Influence of Swirl Burner Geometry on the Sugar-Cane Bagasse Injection and Burning
Authors: Juan H. Sosa-Arnao, Daniel J. O. Ferreira, Caice G. Santos, Justo E. Alvarez, Leonardo P. Rangel, Song W. Park
Abstract:
A comprehensive CFD model is developed to represent heterogeneous combustion and two burner designs of supply sugar-cane bagasse into a furnace. The objective of this work is to compare the insertion and burning of a Brazilian south-eastern sugar-cane bagasse using a new swirl burner design against an actual geometry under operation. The new design allows control the particles penetration and scattering inside furnace by adjustment of axial/tangential contributions of air feed without change their mass flow. The model considers turbulence using RNG k-, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The obtained results are favorable to use of new design swirl burner because its axial/tangential control promotes more penetration or more scattering than actual design and allows reproduce the actual design operation without change the overall mass flow supply.Keywords: Comprehensive CFD model, sugar-cane bagasse combustion, swirl burner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433858 Analysis of Reflectance Photoplethysmograph Sensors
Authors: Fu-Hsuan Huang, Po-Jung Yuan, Kang-Ping Lin, Hen-Hong Chang, Cheng-Lun Tsai
Abstract:
Photoplethysmography is a simple measurement of the variation in blood volume in tissue. It detects the pulse signal of heart beat as well as the low frequency signal of vasoconstriction and vasodilation. The transmission type measurement is limited to only a few specific positions for example the index finger that have a short path length for light. The reflectance type measurement can be conveniently applied on most parts of the body surface. This study analyzed the factors that determine the quality of reflectance photoplethysmograph signal including the emitter-detector distance, wavelength, light intensity, and optical properties of skin tissue. Light emitting diodes (LEDs) with four different visible wavelengths were used as the light emitters. A phototransistor was used as the light detector. A micro translation stage adjusts the emitter-detector distance from 2 mm to 15 mm. The reflective photoplethysmograph signals were measured on different sites. The optimal emitter-detector distance was chosen to have a large dynamic range for low frequency drifting without signal saturation and a high perfusion index. Among these four wavelengths, a yellowish green (571nm) light with a proper emitter-detection distance of 2mm is the most suitable for obtaining a steady and reliable reflectance photoplethysmograph signalKeywords: Reflectance photoplethysmograph, Perfusion index, Signal-to-noise ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212857 Extent of Highway Capacity Loss Due to Rainfall
Authors: Hashim Mohammed Alhassan, Johnnie Ben-Edigbe
Abstract:
Traffic flow in adverse weather conditions have been investigated in this study for general traffic, week day and week end traffic. The empirical evidence is strong in support of the view that rainfall affects macroscopic traffic flow parameters. Data generated from a basic highway section along J5 in Johor Bahru, Malaysia was synchronized with 161 rain events over a period of three months. This revealed a 4.90%, 6.60% and 11.32% reduction in speed for light rain, moderate rain and heavy rain conditions respectively. The corresponding capacity reductions in the three rainfall regimes are 1.08% for light rain, 6.27% for moderate rain and 29.25% for heavy rain. In the week day traffic, speed drops of 8.1% and 16.05% were observed for light and heavy conditions. The moderate rain condition speed increased by 12.6%. The capacity drops for week day traffic are 4.40% for light rain, 9.77% for moderate rain and 45.90% for heavy rain. The weekend traffic indicated speed difference between the dry condition and the three rainy conditions as 6.70% for light rain, 8.90% for moderate rain and 13.10% for heavy rain. The capacity changes computed for the weekend traffic were 0.20% in light rain, 13.90% in moderate rain and 16.70% in heavy rain. No traffic instabilities were observed throughout the observation period and the capacities reported for each rain condition were below the norain condition capacity. Rainfall has tremendous impact on traffic flow and this may have implications for shock wave propagation.
Keywords: Highway Capacity, Dry condition, Rainfall Intensity, Rainy condition, Traffic Flow Rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076