Antifungal Activity of Silver Colloidal Nanoparticles against Phytopathogenic Fungus (Phomopsis sp.) in Soybean Seeds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Antifungal Activity of Silver Colloidal Nanoparticles against Phytopathogenic Fungus (Phomopsis sp.) in Soybean Seeds

Authors: J. E. Mendes, L.Abrunhosa, J. A. Teixeira, E. R. de Camargo, C. P. de Souza, J. D. C. Pessoa

Abstract:

Among the many promising nanomaterials with antifungal properties, metal nanoparticles (silver nanoparticles) stand out due to their high chemical activity. Therefore, the aim of this study was to evaluate the effect of silver nanoparticles (AgNPs) against Phomopsis sp. AgNPs were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. The synthesized AgNPs have further been characterized by UV/Visible spectroscopy, Biophysical techniques like Dynamic light scattering (DLS) and Scanning Electron Microscopy (SEM). The average diameter of the prepared silver colloidal nanoparticles was about 52 nm. Absolute inhibitions (100%) were observed on treated with a 270 and 540 µg ml-1 concentration of AgNPs. The results from the study of the AgNPs antifungal effect are significant and suggest that the synthesized silver nanoparticles may have an advantage compared with conventional fungicides.

Keywords: Antifungal activity, Phomopsis sp., Seeds, Silver Nanoparticles, Soybean.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1095981

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078

References:


[1] CONAB - National Supply Company. Brazilian crop assessment: grain, www.conab.gov.br/OlalaCMS/uploads/arquivos/13_10_16_14_32_01_boletim_portugues_-_setembro_2013.pdf Accessed: 24-Jan-2014.
[2] S. W. Kim, J. H. Jung, K. Lamasal, Y. S. Kim, J. S. Min and Y. S. Lee, "Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi,” Mycobiology, vol. 40,pp. 53–58, 2012.
[3] D. Spadaro, A. Garibaldi and G. F. Martines, "Control of Penicilliumexpansum and Botrytis cinerea on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda, or ethanol application,” Postharvest Biol. Technol., vol. 33, pp. 141–151, 2004.
[4] P. A. Backman, D. B. Weaver and G.Morgan-Jones, "Soybean stem canker: an emerging disease problem,” Plant Disease, vol. 69, pp. 641–647, 1985.
[5] F. A. Fernández, D. V. Phillips, J. S. Russin and J. C. Rupe, "Stem canker,” in G. L. Hartman, J. B. Sinclair and J. C. Rupe, Compendium of soybean diseases, USA: 4th edn American Phytopathological Society, 1999, pp. 33– 35.
[6] J. T. Yorinori, "Cancro da haste da soja: epidemiologia e controle,” in Londrina: Embrapa-CNPSo, vol. 14, p. 78, 1996.
[7] K. T. Kmetz, A. F. Schmitthenner and C. W. Ellett, "Soybean seed decay - prevalence of infection and symptom expression caused by Phomopsis sp., Diaporthephaseolorum var. sojae, and Diaporthephaseolorumvar. caulivora,” Phytopathology, vol. 6, pp. 836–840, 1978.
[8] W. L. Mayhew and C. E. Caviness, "Seed quality and yield of early-planted, short-season soybean genotypes,” Agron. J., vol. 86, pp. 16–19, 1994.
[9] A. Mengistu, J. R. Smith, N. Bellaloui, R. L. Paris andJ. A. Wrather, "Irrigation and time of harvest effects on evaluation of selected soybean accessions against Phomopsislongicolla,” Crop Sci., vol. 50, pp. 2055–2064, 2010.
[10] D. M. Tekrony, D. B. Egli, J. Balles, L. Tomes and R. E. Stuckey, "Effect of date of harvest maturity on soybean seed quality and Phomopsis sp. seed infection,” Crop Sci., vol. 24, pp. 189–193, 1984.
[11] Y. K. Jo, B. H. Kim and G. Jung, "Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi,” Plant Disease, vol. 93, pp. 1037–1043, 2009.
[12] J. L. Clement and P. S. Jarret, "Antimicrobial silver,” Metal-Based Drugs, vol. 1, pp. 467-482, 1994.
[13] H. J. Park, S. H. Kim, H. J. Kim and S. H. Choi, "A New Composition of nanosized silica-silver for control of various plant diseases,” Plant pathology, vol. 22, pp.295-302, 2006.
[14] J. Turkevich, P.C. Stevenson and S. Hiller, "A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc., vol. 11, p. 55, 1951
[15] L. F. Gorup, E. Longo, E. R. Leite and E. R. de Camargo, ": Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method,”J. Colloid Interface Sci., vol. 360, pp. 355–358, 2011.
[16] D. R. Monteiro, L. F. Gorup, S. Silva, M. Negri, E. R. de Camargo, R. Oliveira, D. B. Barbosa and M. Henriques, "Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata,”Biofouling, vol.27, pp. 711–719, 2011.
[17] L. Kvitek, A. Panacek, J. Soukupova, M. Kolar, R. Vecerova, R. Prucek, M. Holecováand R. Zbořil, "Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs),” J. Phys. Chem., vol. 112, pp. 5825–5834, 2008.
[18] D. Mahl, J. Diendorf, W. Meyer-Zaika and M. Epple, "Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles,” Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 377, pp. 386–392, 2011.
[19] K. .J. Sreeram, R. Indumathy, A. Rajaram, B. U. Nair, T. Ramasami, "Template synthesis of highly crystalline and monodisperse iron oxide pigments of nanosize,” Mater. Res. Bull., vol. 41, pp. 1875–1881, 2006.
[20] D. R. Monteiro, S. Silva, M. Negri, L. F. Gorup, E. R. de Camargo, R. Oliveira, D. B. Barbosa and M. Henriques, "Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabratabiofilms,” Lett. Appl. Microbiol., vol. 54, pp. 383–391, 2012.
[21] T. Klaus, R. Joerger, E. Olsson and C. G. Granqvist, "Silver-based crystalline nanoparticles, microbially fabricated,” Proc. Natl. Acad. Sci., vol. 96, pp. 13611–13614, 1999.
[22] S.P. Hawser and L. J. Douglas, "Resistance of Candida albicans biofilms to antifungal agents in vitro,” Antimicrob. Agents Chemother., vol. 39, pp. 2128–2131, 1995.
[23] V. W. Chambers, C. M. Proctor and P. W. Kabler, "Bactericidal effects of low concentrations of silver,” J. Am. Water Works Assoc., vol. 54, pp. 208–216, 1962.
[24] J. H. Kim, "Nano silver chemotherapeutic agents and its applications,” News Inf. Chem. Eng., vol. 22, pp. 655–660, 2004.
[25] Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim and J. O. Kim, "A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus,” J. Biomed. Mater. Res., vol. 52, pp. 662–668, 2000.
[26] M. Yamanaka, K. Hara and J. Kudo, "Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy filtering transmission electron microscopy and proteomic analysis,” Appl. Environ. Microbiol., vol. 71, pp. 7589–7593, 2005.
[27] P. D. Bragg and D. J. Rainnie, "The effect of silver ions on the respiratory chains of Escherichia coli,” Can. J. Microbiol., vol. 20, pp. 883–889, 1974.
[28] G. McDonnell and A. D. Russell, "Antiseptics and disinfectants: activity, action, and resistance,” Clin. Microbiol. Rev., vol. 12, pp. 147–179, 1999.
[29] K. J. Kim, W. S. Sung, B. K. Suh, S. K. Moon, J. S. Choi, J. G. Kim and D. G. Lee, "Antifungal activity and mode of action of silver nano-particles on Candida albicans,” Biometals, vol. 22, pp. 235–242, 2009.
[30] J. H. Niazi, B. I. Sang, Y. S. Kim and M. B. Gu, "Global Gene Response in Saccharomyces cerevisiaeexposed to silver nanoparticles,” Appl. Biochem. Biotechnol., vol. 164, pp. 1278–1291, 2011.
[31] M. Rai, A. Yadav, A. Gade, " Silver nanoparticles as a new generation of antimicrobials,” Biotechnol. Adv., vol. 27, pp. 76–83, 2009.
[32] J. R. Morones, J. L. Elechiguerra, A.Camacho, K. Holt, J. B.Kouri,J. T.Ramírez,M. J. Yacaman, "The bactericidal effect of silver nanoparticles,”Nanotechnology, vol. 16, pp. 2346–2353, 2005.
[33] S. Pal, Y. K. Tak, J. M. Song, "Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli,” Appl. Environ. Microbiol., vol. 73, pp. 1712–1720, 2007.
[34] S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, "Characterization of enhanced antibacterial effects of novel silver nanoparticles,” Nanotechnology,vol. 18, pp. 225103–225111, 2007.
[35] W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ou-Yang, Y. B. Chen, "Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli,”Appl. Microbiol. Biotechnol., vol. 85, pp. 1115–1122, 2010.
[36] V. K. Sharma, R. A. Yngard, Y. Lin, "Silver nanoparticles: Green synthesis and their antimicrobial activities,” Adv. Colloid. Interface Sci., vol. 145, pp. 83–96, 2009.