Search results for: fuzzy number.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4415

Search results for: fuzzy number.

4355 Fuzzy Join Dependency in Fuzzy Relational Databases

Authors: P. C. Saxena, D. K. Tayal

Abstract:

The join dependency provides the basis for obtaining lossless join decomposition in a classical relational schema. The existence of Join dependency shows that that the tables always represent the correct data after being joined. Since the classical relational databases cannot handle imprecise data, they were extended to fuzzy relational databases so that uncertain, ambiguous, imprecise and partially known information can also be stored in databases in a formal way. However like classical databases, the fuzzy relational databases also undergoes decomposition during normalization, the issue of joining the decomposed fuzzy relations remains intact. Our effort in the present paper is to emphasize on this issue. In this paper we define fuzzy join dependency in the framework of type-1 fuzzy relational databases & type-2 fuzzy relational databases using the concept of fuzzy equality which is defined using fuzzy functions. We use the fuzzy equi-join operator for computing the fuzzy equality of two attribute values. We also discuss the dependency preservation property on execution of this fuzzy equi- join and derive the necessary condition for the fuzzy functional dependencies to be preserved on joining the decomposed fuzzy relations. We also derive the conditions for fuzzy join dependency to exist in context of both type-1 and type-2 fuzzy relational databases. We find that unlike the classical relational databases even the existence of a trivial join dependency does not ensure lossless join decomposition in type-2 fuzzy relational databases. Finally we derive the conditions for the fuzzy equality to be non zero and the qualification of an attribute for fuzzy key.

Keywords: Fuzzy - equi join, fuzzy functions, fuzzy join dependency, type-1 fuzzy relational database, type-2 fuzzy relational database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
4354 (∈,∈∨q)-Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators

Authors: Yuli Hu, Shaoquan Sun

Abstract:

The aim of this paper is to introduce the concepts of (∈, ∈∨q)-fuzzy subalgebras, (∈,∈∨q)-fuzzy ideals and (∈,∈∨q)-fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.

Keywords: BCI-algebras with operators, (∈, ∈∨q)-fuzzy subalgebras, (∈, ∈∨q)-fuzzy ideals, (∈, ∈∨q)-fuzzy quotient algebras.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 852
4353 Fuzzy Metric Approach for Fuzzy Time Series Forecasting based on Frequency Density Based Partitioning

Authors: Tahseen Ahmed Jilani, Syed Muhammad Aqil Burney, C. Ardil

Abstract:

In the last 15 years, a number of methods have been proposed for forecasting based on fuzzy time series. Most of the fuzzy time series methods are presented for forecasting of enrollments at the University of Alabama. However, the forecasting accuracy rates of the existing methods are not good enough. In this paper, we compared our proposed new method of fuzzy time series forecasting with existing methods. Our method is based on frequency density based partitioning of the historical enrollment data. The proposed method belongs to the kth order and time-variant methods. The proposed method can get the best forecasting accuracy rate for forecasting enrollments than the existing methods.

Keywords: Fuzzy logical groups, fuzzified enrollments, fuzzysets, fuzzy time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3226
4352 2D Structured Non-Cyclic Fuzzy Graphs

Authors: T. Pathinathan, M. Peter

Abstract:

Fuzzy graphs incorporate concepts from graph theory with fuzzy principles. In this paper, we make a study on the properties of fuzzy graphs which are non-cyclic and are of two-dimensional in structure. In particular, this paper presents 2D structure or the structure of double layer for a non-cyclic fuzzy graph whose underlying crisp graph is non-cyclic. In any graph structure, introducing 2D structure may lead to an inherent cycle. We propose relevant conditions for 2D structured non-cyclic fuzzy graphs. These conditions are extended even to fuzzy graphs of the 3D structure. General theoretical properties that are studied for any fuzzy graph are verified to 2D structured or double layered fuzzy graphs. Concepts like Order, Degree, Strong and Size for a fuzzy graph are studied for 2D structured or double layered non-cyclic fuzzy graphs. Using different types of fuzzy graphs, the proposed concepts relating to 2D structured fuzzy graphs are verified.

Keywords: Double layered fuzzy graph, double layered non-cyclic fuzzy graph, strong, order, degree and size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 835
4351 Generalized Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators

Authors: Yuli Hu, Shaoquan Sun

Abstract:

The aim of this paper is to introduce the concepts of generalized fuzzy subalgebras, generalized fuzzy ideals and generalized fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.

Keywords: BCI-algebras with operators, generalized fuzzy subalgebras, generalized fuzzy ideals, generalized fuzzy quotient algebras.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
4350 Intuitionistic Fuzzy Multisets And Its Application in Medical Diagnosis

Authors: Shinoj T. K, Sunil Jacob John

Abstract:

In this paper a new concept named Intuitionistic Fuzzy Multiset is introduced. The basic operations on Intuitionistic Fuzzy Multisets such as union, intersection, addition, multiplication etc. are discussed. An application of Intuitionistic Fuzzy Multiset in Medical diagnosis problem using a distance function is discussed in detail.

Keywords: Intuitionistic Fuzzy set, Multiset, Intuitionistic Fuzzy Multiset

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2939
4349 Fuzzy Ideals in Near-subtraction Semigroups

Authors: D.R Prince Williams

Abstract:

In this paper,we introduce a notion of fuzzy ideals in near-subtraction semigroups and study their related properties.

Keywords: subtraction algebra, subtraction semigroup, an ideal, near-subtraction semigroup, fuzzy level set, fuzzy ideal, fuzzy homomorphism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
4348 Forecasting US Dollar/Euro Exchange Rate with Genetic Fuzzy Predictor

Authors: R. Mechgoug, A. Titaouine

Abstract:

Fuzzy systems have been successfully used for exchange rate forecasting. However, fuzzy system is very confusing and complex to be designed by an expert, as there is a large set of parameters (fuzzy knowledge base) that must be selected, it is not a simple task to select the appropriate fuzzy knowledge base for an exchange rate forecasting. The researchers often look the effect of fuzzy knowledge base on the performances of fuzzy system forecasting. This paper proposes a genetic fuzzy predictor to forecast the future value of daily US Dollar/Euro exchange rate time’s series. A range of methodologies based on a set of fuzzy predictor’s which allow the forecasting of the same time series, but with a different fuzzy partition. Each fuzzy predictor is built from two stages, where each stage is performed by a real genetic algorithm.

Keywords: Foreign exchange rate, time series forecasting, Fuzzy System, and Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
4347 Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals

Authors: Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, Veera Boonjing

Abstract:

Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns.

Keywords: Fuzzy Rule Base, Rule Extraction, Rule Generation, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
4346 Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources

Authors: Jolly Puri, Shiv Prasad Yadav

Abstract:

Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using α cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach.

Keywords: Multi-component DEA, fuzzy multi-component DEA, fuzzy resources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
4345 Classification of Fuzzy Petri Nets, and Their Applications

Authors: M.H.Aziz, Erik L.J.Bohez, Manukid Parnichkun, Chanchal Saha

Abstract:

Petri Net (PN) has proven to be effective graphical, mathematical, simulation, and control tool for Discrete Event Systems (DES). But, with the growth in the complexity of modern industrial, and communication systems, PN found themselves inadequate to address the problems of uncertainty, and imprecision in data. This gave rise to amalgamation of Fuzzy logic with Petri nets and a new tool emerged with the name of Fuzzy Petri Nets (FPN). Although there had been a lot of research done on FPN and a number of their applications have been anticipated, but their basic types and structure are still ambiguous. Therefore, in this research, an effort is made to categorize FPN according to their structure and algorithms Further, literature review of the applications of FPN in the light of their classifications has been done.

Keywords: Discrete event systems, Fuzzy logic, Fuzzy Petri nets, and Petri nets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
4344 Preconditioned Jacobi Method for Fuzzy Linear Systems

Authors: Lina Yan, Shiheng Wang, Ke Wang

Abstract:

A preconditioned Jacobi (PJ) method is provided for solving fuzzy linear systems whose coefficient matrices are crisp Mmatrices and the right-hand side columns are arbitrary fuzzy number vectors. The iterative algorithm is given for the preconditioned Jacobi method. The convergence is analyzed with convergence theorems. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.

Keywords: preconditioning, M-matrix, Jacobi method, fuzzy linear system (FLS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
4343 k-Fuzzy Ideals of Ternary Semirings

Authors: Sathinee Malee, Ronnason Chinram

Abstract:

The notion of k-fuzzy ideals of semirings was introduced by Kim and Park in 1996. In 2003, Dutta and Kar introduced a notion of ternary semirings. This structure is a generalization of ternary rings and semirings. The main purpose of this paper is to introduce and study k-fuzzy ideals in ternary semirings analogous to k-fuzzy ideals in semirings considered by Kim and Park.

Keywords: k-ideals, k-fuzzy ideals, fuzzy k-ideals, ternarysemirings

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
4342 Multivariate High Order Fuzzy Time Series Forecasting for Car Road Accidents

Authors: Tahseen A. Jilani, S. M. Aqil Burney, C. Ardil

Abstract:

In this paper, we have presented a new multivariate fuzzy time series forecasting method. This method assumes mfactors with one main factor of interest. History of past three years is used for making new forecasts. This new method is applied in forecasting total number of car accidents in Belgium using four secondary factors. We also make comparison of our proposed method with existing methods of fuzzy time series forecasting. Experimentally, it is shown that our proposed method perform better than existing fuzzy time series forecasting methods. Practically, actuaries are interested in analysis of the patterns of causalities in road accidents. Thus using fuzzy time series, actuaries can define fuzzy premium and fuzzy underwriting of car insurance and life insurance for car insurance. National Institute of Statistics, Belgium provides region of risk classification for each road. Thus using this risk classification, we can predict premium rate and underwriting of insurance policy holders.

Keywords: Average forecasting error rate (AFER), Fuzziness offuzzy sets Fuzzy, If-Then rules, Multivariate fuzzy time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495
4341 Applications of Trigonometic Measures of Fuzzy Entropy to Geometry

Authors: Om Parkash, C.P.Gandhi

Abstract:

In the literature of fuzzy measures, there exist many well known parametric and non-parametric measures, each with its own merits and limitations. But our main emphasis is on applications of these measures to a variety of disciplines. To extend the scope of applications of these fuzzy measures to geometry, we need some special fuzzy measures. In this communication, we have introduced two new fuzzy measures involving trigonometric functions and simultaneously provided their applications to obtain the basic results already existing in the literature of geometry.

Keywords: Entropy, Uncertainty, Fuzzy Entropy, Concavity, Symmetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
4340 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis

Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen

Abstract:

Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.

Keywords: Hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
4339 Neuro-Fuzzy System for Equalization Channel Distortion

Authors: Rahib H. Abiyev

Abstract:

In this paper the application of neuro-fuzzy system for equalization of channel distortion is considered. The structure and operation algorithm of neuro-fuzzy equalizer are described. The use of neuro-fuzzy equalizer in digital signal transmission allows to decrease training time of parameters and decrease the complexity of the network. The simulation of neuro-fuzzy equalizer is performed. The obtained result satisfies the efficiency of application of neurofuzzy technology in channel equalization.

Keywords: Neuro-fuzzy system, noise equalization, neuro-fuzzy equalizer, neural system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
4338 Using Fuzzy Numbers in Heavy Aggregation Operators

Authors: José M. Merigó, Montserrat Casanovas

Abstract:

We consider different types of aggregation operators such as the heavy ordered weighted averaging (HOWA) operator and the fuzzy ordered weighted averaging (FOWA) operator. We introduce a new extension of the OWA operator called the fuzzy heavy ordered weighted averaging (FHOWA) operator. The main characteristic of this aggregation operator is that it deals with uncertain information represented in the form of fuzzy numbers (FN) in the HOWA operator. We develop the basic concepts of this operator and study some of its properties. We also develop a wide range of families of FHOWA operators such as the fuzzy push up allocation, the fuzzy push down allocation, the fuzzy median allocation and the fuzzy uniform allocation.

Keywords: Aggregation operators, Fuzzy numbers, Fuzzy OWAoperator, Heavy OWA operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
4337 Complex Fuzzy Evolution Equation with Nonlocal Conditions

Authors: Abdelati El Allaoui, Said Melliani, Lalla Saadia Chadli

Abstract:

The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation.

Keywords: Complex fuzzy evolution equations, nonlocal conditions, mild solution, complex fuzzy semigroups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
4336 A Modified Fuzzy C-Means Algorithm for Natural Data Exploration

Authors: Binu Thomas, Raju G., Sonam Wangmo

Abstract:

In Data mining, Fuzzy clustering algorithms have demonstrated advantage over crisp clustering algorithms in dealing with the challenges posed by large collections of vague and uncertain natural data. This paper reviews concept of fuzzy logic and fuzzy clustering. The classical fuzzy c-means algorithm is presented and its limitations are highlighted. Based on the study of the fuzzy c-means algorithm and its extensions, we propose a modification to the cmeans algorithm to overcome the limitations of it in calculating the new cluster centers and in finding the membership values with natural data. The efficiency of the new modified method is demonstrated on real data collected for Bhutan-s Gross National Happiness (GNH) program.

Keywords: Adaptive fuzzy clustering, clustering, fuzzy logic, fuzzy clustering, c-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
4335 S-Fuzzy Left h-Ideal of Hemirings

Authors: D.R Prince Williams

Abstract:

The notion of S-fuzzy left h-ideals in a hemiring is introduced and it's basic properties are investigated.We also study the homomorphic image and preimage of S-fuzzy left h-ideal of hemirings.Using a collection of left h-ideals of a hemiring, S-fuzzy left h-ideal of hemirings are established.The notion of a finite-valued S-fuzzy left h-ideal is introduced,and its characterization is given.S-fuzzy relations on hemirings are discussed.The notion of direct product and S-product are introduced and some properties of the direct product and S-product of S-fuzzy left h-ideal of hemiring are also discussed.

Keywords: hemiring, left h-ideal, anti fuzzy h-ideal, S-fuzzy left hideal, t-conorm , homomorphism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
4334 Neural Network Tuned Fuzzy Controller for MIMO System

Authors: Seema Chopra, R. Mitra, Vijay Kumar

Abstract:

In this paper, a neural network tuned fuzzy controller is proposed for controlling Multi-Input Multi-Output (MIMO) systems. For the convenience of analysis, the structure of MIMO fuzzy controller is divided into single input single-output (SISO) controllers for controlling each degree of freedom. Secondly, according to the characteristics of the system-s dynamics coupling, an appropriate coupling fuzzy controller is incorporated to improve the performance. The simulation analysis on a two-level mass–spring MIMO vibration system is carried out and results show the effectiveness of the proposed fuzzy controller. The performance though improved, the computational time and memory used is comparatively higher, because it has four fuzzy reasoning blocks and number may increase in case of other MIMO system. Then a fuzzy neural network is designed from a set of input-output training data to reduce the computing burden during implementation. This control strategy can not only simplify the implementation problem of fuzzy control, but also reduce computational time and consume less memory.

Keywords: Fuzzy Control, Neural Network, MIMO System, Optimization of Membership functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3211
4333 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets

Authors: O. Poleshchuk, E.Komarov

Abstract:

This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.

Keywords: Interval type-2 fuzzy sets, fuzzy regression, weighted interval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
4332 A Comparison of Fuzzy Clustering Algorithms to Cluster Web Messages

Authors: Sara El Manar El Bouanani, Ismail Kassou

Abstract:

Our objective in this paper is to propose an approach capable of clustering web messages. The clustering is carried out by assigning, with a certain probability, texts written by the same web user to the same cluster based on Stylometric features and using fuzzy clustering algorithms. Focus in the present work is on comparing the most popular algorithms in fuzzy clustering theory namely, Fuzzy C-means, Possibilistic C-means and Fuzzy Possibilistic C-Means.

Keywords: Authorship detection, fuzzy clustering, profiling, stylometric features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
4331 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem

Authors: E. Koyuncu

Abstract:

The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.

Keywords: Fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
4330 A Neurofuzzy Learning and its Application to Control System

Authors: Seema Chopra, R. Mitra, Vijay Kumar

Abstract:

A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.

Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596
4329 Discovery of Fuzzy Censored Production Rules from Large Set of Discovered Fuzzy if then Rules

Authors: Tamanna Siddiqui, M. Afshar Alam

Abstract:

Censored Production Rule is an extension of standard production rule, which is concerned with problems of reasoning with incomplete information, subject to resource constraints and problem of reasoning efficiently with exceptions. A CPR has a form: IF A (Condition) THEN B (Action) UNLESS C (Censor), Where C is the exception condition. Fuzzy CPR are obtained by augmenting ordinary fuzzy production rule “If X is A then Y is B with an exception condition and are written in the form “If X is A then Y is B Unless Z is C. Such rules are employed in situation in which the fuzzy conditional statement “If X is A then Y is B" holds frequently and the exception condition “Z is C" holds rarely. Thus “If X is A then Y is B" part of the fuzzy CPR express important information while the unless part acts only as a switch that changes the polarity of “Y is B" to “Y is not B" when the assertion “Z is C" holds. The proposed approach is an attempt to discover fuzzy censored production rules from set of discovered fuzzy if then rules in the form: A(X) ÔçÆ B(Y) || C(Z).

Keywords: Uncertainty Quantification, Fuzzy if then rules, Fuzzy Censored Production Rules, Learning algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
4328 Fuzzy T-Neighborhood Groups Acting on Sets

Authors: Hazem. A. Khorshed, Mostafa A. El Gendy, Amer. Abd El-Razik

Abstract:

In this paper, The T-G-action topology on a set acted on by a fuzzy T-neighborhood (T-neighborhood, for short) group is defined as a final T-neighborhood topology with respect to a set of maps. We mainly prove that this topology is a T-regular Tneighborhood topology.

Keywords: Fuzzy set, Fuzzy topology, Triangular norm, Separation axioms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
4327 Fuzzy Approach for Ranking of Motor Vehicles Involved in Road Accidents

Authors: Lazim Abdullah, N orhanadiah Zam

Abstract:

Increasing number of vehicles and lack of awareness among road users may lead to road accidents. However no specific literature was found to rank vehicles involved in accidents based on fuzzy variables of road users. This paper proposes a ranking of four selected motor vehicles involved in road accidents. Human and non-human factors that normally linked with road accidents are considered for ranking. The imprecision or vagueness inherent in the subjective assessment of the experts has led the application of fuzzy sets theory to deal with ranking problems. Data in form of linguistic variables were collected from three authorised personnel of three Malaysian Government agencies. The Multi Criteria Decision Making, fuzzy TOPSIS was applied in computational procedures. From the analysis, it shows that motorcycles vehicles yielded the highest closeness coefficient at 0.6225. A ranking can be drawn using the magnitude of closeness coefficient. It was indicated that the motorcycles recorded the first rank.

Keywords: Road accidents, decision making, closeness coefficient, fuzzy number

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
4326 Applying Fuzzy FP-Growth to Mine Fuzzy Association Rules

Authors: Chien-Hua Wang, Wei-Hsuan Lee, Chin-Tzong Pang

Abstract:

In data mining, the association rules are used to find for the associations between the different items of the transactions database. As the data collected and stored, rules of value can be found through association rules, which can be applied to help managers execute marketing strategies and establish sound market frameworks. This paper aims to use Fuzzy Frequent Pattern growth (FFP-growth) to derive from fuzzy association rules. At first, we apply fuzzy partition methods and decide a membership function of quantitative value for each transaction item. Next, we implement FFP-growth to deal with the process of data mining. In addition, in order to understand the impact of Apriori algorithm and FFP-growth algorithm on the execution time and the number of generated association rules, the experiment will be performed by using different sizes of databases and thresholds. Lastly, the experiment results show FFPgrowth algorithm is more efficient than other existing methods.

Keywords: Data mining, association rule, fuzzy frequent patterngrowth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800