Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 440

Search results for: Rule Generation

440 Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals

Authors: Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, Veera Boonjing

Abstract:

Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns.

Keywords: Fuzzy Rule Base, Rule Extraction, Rule Generation, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
439 Generating Speq Rules based on Automatic Proof of Logical Equivalence

Authors: Katsunori Miura, Kiyoshi Akama, Hiroshi Mabuchi

Abstract:

In the Equivalent Transformation (ET) computation model, a program is constructed by the successive accumulation of ET rules. A method by meta-computation by which a correct ET rule is generated has been proposed. Although the method covers a broad range in the generation of ET rules, all important ET rules are not necessarily generated. Generation of more ET rules can be achieved by supplementing generation methods which are specialized for important ET rules. A Specialization-by-Equation (Speq) rule is one of those important rules. A Speq rule describes a procedure in which two variables included in an atom conjunction are equalized due to predicate constraints. In this paper, we propose an algorithm that systematically and recursively generate Speq rules and discuss its effectiveness in the synthesis of ET programs. A Speq rule is generated based on proof of a logical formula consisting of given atom set and dis-equality. The proof is carried out by utilizing some ET rules and the ultimately obtained rules in generating Speq rules.

Keywords: Equivalent transformation, ET rule, Equation of two variables, Rule generation, Specialization-by-Equation rule

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
438 Association Rule and Decision Tree based Methodsfor Fuzzy Rule Base Generation

Authors: Ferenc Peter Pach, Janos Abonyi

Abstract:

This paper focuses on the data-driven generation of fuzzy IF...THEN rules. The resulted fuzzy rule base can be applied to build a classifier, a model used for prediction, or it can be applied to form a decision support system. Among the wide range of possible approaches, the decision tree and the association rule based algorithms are overviewed, and two new approaches are presented based on the a priori fuzzy clustering based partitioning of the continuous input variables. An application study is also presented, where the developed methods are tested on the well known Wisconsin Breast Cancer classification problem.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
437 Pruning Algorithm for the Minimum Rule Reduct Generation

Authors: Şahin Emrah Amrahov, Fatih Aybar, Serhat Doğan

Abstract:

In this paper we consider the rule reduct generation problem. Rule Reduct Generation (RG) and Modified Rule Generation (MRG) algorithms, that are used to solve this problem, are well-known. Alternative to these algorithms, we develop Pruning Rule Generation (PRG) algorithm. We compare the PRG algorithm with RG and MRG.

Keywords: Rough sets, Decision rules, Rule induction, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
436 Three Computational Mathematics Techniques: Comparative Determination of Area under Curve

Authors: Khalid Pervaiz Akhter, Mahmood Ahmad, Ghulam Murtaza, Ishrat Shafi, Zafar Javed

Abstract:

The objective of this manuscript is to find area under the plasma concentration- time curve (AUC) for multiple doses of salbutamol sulphate sustained release tablets (Ventolin® oral tablets SR 8 mg, GSK, Pakistan) in the group of 18 healthy adults by using computational mathematics techniques. Following the administration of 4 doses of Ventolin® tablets 12 hourly to 24 healthy human subjects and bioanalysis of obtained plasma samples, plasma drug concentration-time profile was constructed. AUC, an important pharmacokinetic parameter, was measured using integrated equation of multiple oral dose regimens. The approximated AUC was also calculated by using computational mathematics techniques such as repeated rectangular, repeated trapezium and repeated Simpson's rule and compared with exact value of AUC calculated by using integrated equation of multiple oral dose regimens to find best computational mathematics method that gives AUC values closest to exact. The exact values of AUC for four consecutive doses of Ventolin® oral tablets were 150.5819473, 157.8131756, 164.4178231 and 162.78 ng.h/ml while the closest values approximated AUC values were 149.245962, 157.336171, 164.2585768 and 162.289224 ng.h/ml, respectively as found by repeated rectangular rule. The errors in the approximated values of AUC were negligible. It is concluded that all computational tools approximated values of AUC accurately but the repeated rectangular rule gives slightly better approximated values of AUC as compared to repeated trapezium and repeated Simpson's rules.

Keywords: Salbutamol sulphate, Area under curve (AUC), repeated rectangular rule, repeated trapezium rule, repeated Simpson's rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
435 A Tree Based Association Rule Approach for XML Data with Semantic Integration

Authors: D. Sasikala, K. Premalatha

Abstract:

The use of eXtensible Markup Language (XML) in web, business and scientific databases lead to the development of methods, techniques and systems to manage and analyze XML data. Semi-structured documents suffer due to its heterogeneity and dimensionality. XML structure and content mining represent convergence for research in semi-structured data and text mining. As the information available on the internet grows drastically, extracting knowledge from XML documents becomes a harder task. Certainly, documents are often so large that the data set returned as answer to a query may also be very big to convey the required information. To improve the query answering, a Semantic Tree Based Association Rule (STAR) mining method is proposed. This method provides intentional information by considering the structure, content and the semantics of the content. The method is applied on Reuter’s dataset and the results show that the proposed method outperforms well.

Keywords: Semi--structured Document, Tree based Association Rule (TAR), Semantic Association Rule Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
434 Specialization-based parallel Processing without Memo-trees

Authors: Hidemi Ogasawara, Kiyoshi Akama, Hiroshi Mabuchi

Abstract:

The purpose of this paper is to propose a framework for constructing correct parallel processing programs based on Equivalent Transformation Framework (ETF). ETF regards computation as In the framework, a problem-s domain knowledge and a query are described in definite clauses, and computation is regarded as transformation of the definite clauses. Its meaning is defined by a model of the set of definite clauses, and the transformation rules generated must preserve meaning. We have proposed a parallel processing method based on “specialization", a part of operation in the transformations, which resembles substitution in logic programming. The method requires “Memo-tree", a history of specialization to maintain correctness. In this paper we proposes the new method for the specialization-base parallel processing without Memo-tree.

Keywords: Parallel processing, Program correctness, Equivalent transformation, Specializer generation rule

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
433 Attractiveness of Cafeteria Systems as Viewed by Generation Z

Authors: Joanna Nieżurawska, Hanna Karaszewska, Anna Dziadkiewicz

Abstract:

Contemporary conditions force companies to constantly implement changes and improvements, which is connected with plasticization of their activity in all spheres. Cafeteria systems are a good example of flexible remuneration systems. Cafeteria systems are well-known and often used in the United States, Great Britain and in Western Europe. In Poland, they are hardly ever used and greater flexibility in remuneration packages refers mainly to senior managers and executives. The main aim of this article is to research the attractiveness of the cafeteria system as viewed by generation Z. The additional aim of the article is to prioritize using the importance index of particular types of cafeteria systems from the generation Z’s perspective, as well as to identify the factors which determine the development of cafeteria systems in Poland. The research was conducted in June 2015 among 185 young employees (generation Z). The paper presents some of the results.

Keywords: Cafeteria, generation X, generation Y, generation Z, flexible remuneration systems, plasticization of remuneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
432 Generation of Sets of Synthetic Classifiers for the Evaluation of Abstract-Level Combination Methods

Authors: N. Greco, S. Impedovo, R.Modugno, G. Pirlo

Abstract:

This paper presents a new technique for generating sets of synthetic classifiers to evaluate abstract-level combination methods. The sets differ in terms of both recognition rates of the individual classifiers and degree of similarity. For this purpose, each abstract-level classifier is considered as a random variable producing one class label as the output for an input pattern. From the initial set of classifiers, new slightly different sets are generated by applying specific operators, which are defined at the purpose. Finally, the sets of synthetic classifiers have been used to estimate the performance of combination methods for abstract-level classifiers. The experimental results demonstrate the effectiveness of the proposed approach.

Keywords: Abstract-level Classifier, Dempster-Shafer Rule, Multi-expert Systems, Similarity Index, System Evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
431 Eclectic Rule-Extraction from Support Vector Machines

Authors: Nahla Barakat, Joachim Diederich

Abstract:

Support vector machines (SVMs) have shown superior performance compared to other machine learning techniques, especially in classification problems. Yet one limitation of SVMs is the lack of an explanation capability which is crucial in some applications, e.g. in the medical and security domains. In this paper, a novel approach for eclectic rule-extraction from support vector machines is presented. This approach utilizes the knowledge acquired by the SVM and represented in its support vectors as well as the parameters associated with them. The approach includes three stages; training, propositional rule-extraction and rule quality evaluation. Results from four different experiments have demonstrated the value of the approach for extracting comprehensible rules of high accuracy and fidelity.

Keywords: Data mining, hybrid rule-extraction algorithms, medical diagnosis, SVMs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
430 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules

Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima

Abstract:

Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.

Keywords: Box-Jenkins’s problem, Double-input rule module, Fuzzy inference model, Obstacle avoidance, Single-input rule module.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
429 Chaotic Behavior in Monetary Systems: Comparison among Different Types of Taylor Rule

Authors: Reza Moosavi Mohseni, Wenjun Zhang, Jiling Cao

Abstract:

The aim of the present study is to detect the chaotic behavior in monetary economic relevant dynamical system. The study employs three different forms of Taylor rules: current, forward, and backward looking. The result suggests the existence of the chaotic behavior in all three systems. In addition, the results strongly represent that using expectations in policy rule especially rational expectation hypothesis can increase complexity of the system and leads to more chaotic behavior.

Keywords: Chaos theory, GMM estimator, Lyapunov Exponent, Monetary System, Taylor Rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
428 Concepts Extraction from Discharge Notes using Association Rule Mining

Authors: Basak Oguz Yolcular

Abstract:

A large amount of valuable information is available in plain text clinical reports. New techniques and technologies are applied to extract information from these reports. In this study, we developed a domain based software system to transform 600 Otorhinolaryngology discharge notes to a structured form for extracting clinical data from the discharge notes. In order to decrease the system process time discharge notes were transformed into a data table after preprocessing. Several word lists were constituted to identify common section in the discharge notes, including patient history, age, problems, and diagnosis etc. N-gram method was used for discovering terms co-Occurrences within each section. Using this method a dataset of concept candidates has been generated for the validation step, and then Predictive Apriori algorithm for Association Rule Mining (ARM) was applied to validate candidate concepts.

Keywords: association rule mining, otorhinolaryngology, predictive apriori, text mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
427 Social, Group and Individual Mind extracted from Rule Bases of Multiple Agents

Authors: P. Cermak

Abstract:

This paper shows possibility of extraction Social, Group and Individual Mind from Multiple Agents Rule Bases. Types those Rule bases are selected as two fuzzy systems, namely Mambdani and Takagi-Sugeno fuzzy system. Their rule bases are describing (modeling) agent behavior. Modifying of agent behavior in the time varying environment will be provided by learning fuzzyneural networks and optimization of their parameters with using genetic algorithms in development system FUZNET. Finally, extraction Social, Group and Individual Mind from Multiple Agents Rule Bases are provided by Cognitive analysis and Matching criterion.

Keywords: Mind, Multi-agent system, Cognitive analysis, Fuzzy system, Neural network, Genetic algorithm, Rule base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
426 Extending E-learning systems based on Clause-Rule model

Authors: Keisuke Nakamura, Kiyoshi Akama, Hiroshi Mabuchi

Abstract:

E-Learning systems are used by many learners and teachers. The developer is developing the e-Learning system. However, the developer cannot do system construction to satisfy all of users- demands. We discuss a method of constructing e-Learning systems where learners and teachers can design, try to use, and share extending system functions that they want to use; which may be nally added to the system by system managers.

Keywords: Clause-Rule-Model, database-access, e-Learning, Web-Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
425 A Hybrid Approach for Quantification of Novelty in Rule Discovery

Authors: Vasudha Bhatnagar, Ahmed Sultan Al-Hegami, Naveen Kumar

Abstract:

Rule Discovery is an important technique for mining knowledge from large databases. Use of objective measures for discovering interesting rules lead to another data mining problem, although of reduced complexity. Data mining researchers have studied subjective measures of interestingness to reduce the volume of discovered rules to ultimately improve the overall efficiency of KDD process. In this paper we study novelty of the discovered rules as a subjective measure of interestingness. We propose a hybrid approach that uses objective and subjective measures to quantify novelty of the discovered rules in terms of their deviations from the known rules. We analyze the types of deviation that can arise between two rules and categorize the discovered rules according to the user specified threshold. We implement the proposed framework and experiment with some public datasets. The experimental results are quite promising.

Keywords: Knowledge Discovery in Databases (KDD), Data Mining, Rule Discovery, Interestingness, Subjective Measures, Novelty Measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
424 A Rule-based Approach for Anomaly Detection in Subscriber Usage Pattern

Authors: Rupesh K. Gopal, Saroj K. Meher

Abstract:

In this report we present a rule-based approach to detect anomalous telephone calls. The method described here uses subscriber usage CDR (call detail record) data sampled over two observation periods: study period and test period. The study period contains call records of customers- non-anomalous behaviour. Customers are first grouped according to their similar usage behaviour (like, average number of local calls per week, etc). For customers in each group, we develop a probabilistic model to describe their usage. Next, we use maximum likelihood estimation (MLE) to estimate the parameters of the calling behaviour. Then we determine thresholds by calculating acceptable change within a group. MLE is used on the data in the test period to estimate the parameters of the calling behaviour. These parameters are compared against thresholds. Any deviation beyond the threshold is used to raise an alarm. This method has the advantage of identifying local anomalies as compared to techniques which identify global anomalies. The method is tested for 90 days of study data and 10 days of test data of telecom customers. For medium to large deviations in the data in test window, the method is able to identify 90% of anomalous usage with less than 1% false alarm rate.

Keywords: Subscription fraud, fraud detection, anomalydetection, maximum likelihood estimation, rule based systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
423 Application of Association Rule Mining in Supplier Selection Criteria

Authors: A. Haery, N. Salmasi, M. Modarres Yazdi, H. Iranmanesh

Abstract:

In this paper the application of rule mining in order to review the effective factors on supplier selection is reviewed in the following three sections 1) criteria selecting and information gathering 2) performing association rule mining 3) validation and constituting rule base. Afterwards a few of applications of rule base is explained. Then, a numerical example is presented and analyzed by Clementine software. Some of extracted rules as well as the results are presented at the end.

Keywords: Association rule mining, data mining, supplierselection criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
422 Simulating and Forecasting Qualitative Marcoeconomic Models Using Rule-Based Fuzzy Cognitive Maps

Authors: Spiros Mazarakis, George Matzavinos, Peter P. Groumpos

Abstract:

Economic models are complex dynamic systems with a lot of uncertainties and fuzzy data. Conventional modeling approaches using well known methods and techniques cannot provide realistic and satisfactory answers to today-s challenging economic problems. Qualitative modeling using fuzzy logic and intelligent system theories can be used to model macroeconomic models. Fuzzy Cognitive maps (FCM) is a new method been used to model the dynamic behavior of complex systems. For the first time FCMs and the Mamdani Model of Intelligent control is used to model macroeconomic models. This new model is referred as the Mamdani Rule-Based Fuzzy Cognitive Map (MBFCM) and provides the academic and research community with a new promising integrated advanced computational model. A new economic model is developed for a qualitative approach to Macroeconomic modeling. Fuzzy Controllers for such models are designed. Simulation results for an economic scenario are provided and extensively discussed

Keywords: Macroeconomic Models, Mamdani Rule Based- FCMs(MBFCMs), Qualitative and Dynamics System, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
421 Parallel and Distributed Mining of Association Rule on Knowledge Grid

Authors: U. Sakthi, R. Hemalatha, R. S. Bhuvaneswaran

Abstract:

In Virtual organization, Knowledge Discovery (KD) service contains distributed data resources and computing grid nodes. Computational grid is integrated with data grid to form Knowledge Grid, which implements Apriori algorithm for mining association rule on grid network. This paper describes development of parallel and distributed version of Apriori algorithm on Globus Toolkit using Message Passing Interface extended with Grid Services (MPICHG2). The creation of Knowledge Grid on top of data and computational grid is to support decision making in real time applications. In this paper, the case study describes design and implementation of local and global mining of frequent item sets. The experiments were conducted on different configurations of grid network and computation time was recorded for each operation. We analyzed our result with various grid configurations and it shows speedup of computation time is almost superlinear.

Keywords: Association rule, Grid computing, Knowledge grid, Mobility prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
420 An Application of the Data Mining Methods with Decision Rule

Authors: Xun Ge, Jianhua Gong

Abstract:

 

ankings for output of Chinese main agricultural commodity in the world for 1978, 1980, 1990, 2000, 2006, 2007 and 2008 have been released in United Nations FAO Database. Unfortunately, where the ranking of output of Chinese cotton lint in the world for 2008 was missed. This paper uses sequential data mining methods with decision rules filling this gap. This new data mining method will be help to give a further improvement for United Nations FAO Database.

Keywords: Ranking, output of the main agricultural commodity, gross domestic product, decision table, information system, data mining, decision rule

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
419 A Diagnostic Fuzzy Rule-Based System for Congenital Heart Disease

Authors: Ersin Kaya, Bulent Oran, Ahmet Arslan

Abstract:

In this study, fuzzy rule-based classifier is used for the diagnosis of congenital heart disease. Congenital heart diseases are defined as structural or functional heart disease. Medical data sets were obtained from Pediatric Cardiology Department at Selcuk University, from years 2000 to 2003. Firstly, fuzzy rules were generated by using medical data. Then the weights of fuzzy rules were calculated. Two different reasoning methods as “weighted vote method" and “singles winner method" were used in this study. The results of fuzzy classifiers were compared.

Keywords: Congenital heart disease, Fuzzy rule-basedclassifiers, Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
418 Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network

Authors: Paul Lajbcygier, Seng Lee

Abstract:

Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from Australian Bank Bill futures are forecast and traded using various exogenous input variables combined with neural networks. The choice of the optimal exogenous input variables chosen for each neural network, undertaken in previous work [1], is validated by comparing the forecasts and corresponding profitability of each, using a trading strategy.

Keywords: Artificial neural networks, co-integration, forecasting, trading rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
417 Bubble Point Pressures of CO2+Ethyl Palmitate by a Cubic Equation of State and the Wong-Sandler Mixing Rule

Authors: M. A. Sedghamiz, S. Raeissi

Abstract:

This study presents three different approaches to estimate bubble point pressures for the binary system of CO2 and ethyl palmitate fatty acid ethyl ester. The first method involves the Peng-Robinson (PR) Equation of State (EoS) with the conventional mixing rule of Van der Waals. The second approach involves the PR EOS together with the Wong Sandler (WS) mixing rule, coupled with the UNIQUAC GE model. In order to model the bubble point pressures with this approach, the volume and area parameter for ethyl palmitate were estimated by the Hansen group contribution method. The last method involved the Peng-Robinson, combined with the Wong-Sandler method, but using NRTL as the GE model. Results using the Van der Waals mixing rule clearly indicated that this method has the largest errors among all three methods, with errors in the range of 3.96-6.22%. The PR-WS-UNIQUAC method exhibited small errors, with average absolute deviations between 0.95 to 1.97 percent. The PR-WS-NRTL method led to the least errors, where average absolute deviations ranged between 0.65-1.7%.

Keywords: Bubble pressure, Gibbs excess energy model, mixing rule, CO2 solubility, ethyl palmitate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
416 Analyzing the Relation of Community Group for Research Paper Bookmarking by Using Association Rule

Authors: P. Jomsri

Abstract:

Currently searching through internet is very popular especially in a field of academic. A huge of educational information such as research papers are overload for user. So community-base web sites have been developed to help user search information more easily from process of customizing a web site to need each specifies user or set of user. In this paper propose to use association rule analyze the community group on research paper bookmarking. A set of design goals for community group frameworks is developed and discussed. Additionally Researcher analyzes the initial relation by using association rule discovery between the antecedent and the consequent of a rule in the groups of user for generate the idea to improve ranking search result and development recommender system.

Keywords: association rule, information retrieval, research paper bookmarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
415 Automatic Generation Control of Interconnected Power System with Generation Rate Constraintsby Hybrid Neuro Fuzzy Approach

Authors: Gayadhar Panda, Sidhartha Panda, C. Ardil

Abstract:

The design of Automatic Generation Control (AGC) system plays a vital role in automation of power system. This paper proposes Hybrid Neuro Fuzzy (HNF) approach for AGC of two-area interconnected reheat thermal power system with the consideration of Generation Rate Constraint (GRC). The advantage of proposed controller is that it can handle the system non-linearities and at the same time the proposed approach is faster than conventional controllers. The performance of HNF controller has been compared with that of both conventional Proportional Integral (PI) controller as well as Fuzzy Logic Controller (FLC) both in the absence and presence of Generation Rate Constraint (GRC). System performance is examined considering disturbance in each area of interconnected power system.

Keywords: Automatic Generation Control (AGC), Dynamic Response, Generation Rate Constraint (GRC), Proportional Integral(PI) Controller, Fuzzy Logic Controller (FLC), Hybrid Neuro-Fuzzy(HNF) Control, MATLAB/SIMULINK.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
414 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.

Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
413 Rule-Based Fuzzy Logic Controller with Adaptable Reference

Authors: Sheroz Khan, I. Adam, A. H. M. Zahirul Alam, Mohd Rafiqul Islam, Othman O. Khalifa

Abstract:

This paper attempts to model and design a simple fuzzy logic controller with Variable Reference. The Variable Reference (VR) is featured as an adaptability element which is obtained from two known variables – desired system-input and actual system-output. A simple fuzzy rule-based technique is simulated to show how the actual system-input is gradually tuned in to a value that closely matches the desired input. The designed controller is implemented and verified on a simple heater which is controlled by PIC Microcontroller harnessed by a code developed in embedded C. The output response of the PIC-controlled heater is analyzed and compared to the performances by conventional fuzzy logic controllers. The novelty of this work lies in the fact that it gives better performance by using less number of rules compared to conventional fuzzy logic controllers.

Keywords: Fuzzy logic controller, Variable reference, Adaptability, Rule-based.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
412 Analysis of Student Motivation Behavior on e-Learning Based on Association Rule Mining

Authors: Kunyanuth Kularbphettong, Phanu Waraporn, Cholticha Tongsiri

Abstract:

This research aims to create a model for analysis of student motivation behavior on e-Learning based on association rule mining techniques in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The model was created under association rules, one of the data mining techniques with minimum confidence. The results showed that the student motivation behavior model by using association rule technique can indicate the important variables that influence the student motivation behavior on e-Learning.

Keywords: Motivation behavior, e-learning, moodle log, association rule mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
411 Cavity-Type Periodically-Poled LiNbO3 Device for Highly-Efficient Third-Harmonic Generation

Authors: Isao Tomita

Abstract:

We develop a periodically-poled LiNbO3 (PPLN) device for highly-efficient third-harmonic generation (THG), where the THG efficiency is enhanced with a cavity. THG can usually be produced via χ(3)-nonlinear materials by optical pumping with very high pump-power. Instead, we here propose THG by moderate-power pumping through a specially-designed PPLN device containing only χ(2)-nonlinearity, where sum-frequency generation in the χ(2) process is employed for the mixing of a pump beam and a second-harmonic-generation (SHG) beam produced from the pump beam. The cavity is designed to increase the SHG power with dichroic mirrors attached to both ends of the device that perfectly reflect the SHG beam back to the device and yet let the pump and THG beams pass through the mirrors. This brings about a THG-power enhancement because of THG power proportional to the enhanced SHG power. We examine the THG-efficiency dependence on the mirror reflectance and show that very high THG-efficiency is obtained at moderate pump-power when compared with that of a cavity-free PPLN device.

Keywords: Cavity, periodically-poled LiNbO3, sum-frequency generation, third-harmonic generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF