(*E*,*E*Vq)-Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators

Yuli Hu, Shaoquan Sun

Abstract—The aim of this paper is to introduce the concepts of $(\epsilon, \epsilon \lor q)$ -fuzzy subalgebras, $(\epsilon, \epsilon \lor q)$ -fuzzy ideals and $(\epsilon, \epsilon \lor q)$ -fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.

Keywords—BCI-algebras with operators, $(\epsilon, \epsilon \lor q)$ -fuzzy subalgebras, $(\epsilon, \epsilon \lor q)$ -fuzzy ideals, $(\epsilon, \epsilon \lor q)$ -fuzzy quotient algebras.

I. INTRODUCTION

THE fuzzy set is a generalization of the classical set and was used afterwards by several authors such as Imai [1], Iseki [2] and Xi [3], in various branches of mathematics. Particularly, in the area of fuzzy topology, after the introduction of fuzzy sets by Zadeh [15], much research has been carried out: the concept of fuzzy subalgebras and fuzzy ideals of BCK-algebras, and their some properties.

BCK-algebras and BCI-algebras are two important classes of logical algebras, which were introduced by Imai and Iseki [1], [2]. In 1991, Xi [3] applied the fuzzy sets to BCKalgebras and discussed some properties about fuzzy subalgebras and fuzzy ideals. From then on, fuzzy BCK/BCIalgebras have been widely investigated by some researchers. Jun et al. [4], [5] raised the notions of fuzzy positive implicative ideals and fuzzy commutative ideals of BCKalgebras. Ming and Ming [12] introduced the neighbourhood structure of a fuzzy point in 1980; Jun et al. [6] introduced the concept of $(\in, \in \lor q)$ -ideals of BCI-algebras. In 1993, Zheng [7] defined operators in BCK-algebras and introduced the concept of BCI-algebras with operators and gave some isomorphism theorems of it. Then, Liu [9] introduced the university property of direct products of BCI-algebras. In 2002, Liu [8] introduced the notion of the fuzzy quotient algebras of BCI-algebras. In 2004, Jun [10] introduced the (α,β) -fuzzy ideals of BCK/BCI-algebras and established the characterizations of $(\in, \in \lor q)$ -fuzzy ideals. Next, Pan [13] introduced fuzzy ideals of sub-algebra and fuzzy H-ideals of sub-algebra. In 2011, Liu and Sun [11] introduced the concept of generalized fuzzy ideals of BCI-algebra and investigated some basic properties. In 2017, we [14] also introduced the fuzzy subalgebras and fuzzy ideals of BCI-algebras with operators.

In this paper, we introduce the concepts of $(\in, \in \lor q)$ -fuzzy subalgebras, $(\in, \in \lor q)$ -fuzzy ideals and $(\in, \in \lor q)$ -fuzzy quotient algebras of BCI-algebras with operators. Moreover, the basic properties were discussed and several results have been obtained.

II. PRELIMINARIES

Some definitions and propositions were recalled which may be needed.

An algebra $\langle X; *, 0 \rangle$ of type (2,0) is called a BCI-algebra, if for all $x, y, z \in X$, it satisfies:

$$(1)((x*y)*(x*z))*(z*y)=0;$$

$$(2)(x*(x*y))*y=0;$$

(3) x * x = 0;

(4) x * y = 0 and y * x = 0 imply x = y.

We can define x * y = 0 if and only if $x \le y$, and the above conditions can be written as:

1.
$$(x*y)*(x*z) \le z*y$$

$$2. \quad x * (x * y) \le y;$$

3.
$$x \leq x$$
;

428

4. $x \le y$ and $y \le x$ imply x = y.

A BCI-algebra is called a BCK-algebra if it satisfies 0 * x = 0.

Definition 1. [5] $\langle X; *, 0 \rangle$ is a BCI-algebra, a fuzzy subset *A* of *X* is called a fuzzy ideal of *X* if it satisfies:

$$(1)A(0) \ge A(x), \forall x \in X,$$

 $(2)A(x) \ge A(x * y) \land A(y), \forall x, y \in X.$

Definition 2. [4] $\langle X; *, 0 \rangle$ is a BCI-algebra, a fuzzy subset *A* of *X* is called a fuzzy subalgebra of *X* if it satisfies:

$$A(x * y) \ge A(x) * A(y), \forall x, y \in X.$$

Definition 3. [12] $\langle X;*,0\rangle$ is a BCI-algebra, a fuzzy subset A of X of the form

$$A(y) = \begin{cases} t(\neq 0), \ y = x, \\ 0, \ y \neq x, \end{cases}$$

is said to be a fuzzy point with support x and value t, and is

Yuli Hu is with the College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, China (phone: 178-06259520; e-mail:1198260194@qq.com).

Shaoquan Sun is with the College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, China (phone: 185-61681686; e-mail: qdsunsaoquan@163.com).

denoted by x_i .

Definition 4. [12] If x_t is a fuzzy point, it is said to belong to (resp.be quasi-coincident with) a fuzzy subset A, written as $x_t \in A$ (resp. x_tqA) if $A(x) \ge t$ (resp. A(x)+t>1). If $x_t \in A$ or x_tqA , then we write $x_t \in \lor qA$. The symbol $\overline{\in \lor q}$ (resp. $\overline{\in}$ or \overline{q}) means $\in \lor q$ (resp. \in or q) does not hold.

Definition 5. [10] $\langle X; *, 0 \rangle$ is a BCI-algebra, a fuzzy set A of X is called an $(\in, \in \lor q)$ -fuzzy ideal of X if for all $t, r \in (0, 1]$ and $x, y \in X$, it satisfies:

1. $x_t \in A \Longrightarrow 0_t \in \lor qA$,

2. $(x * y)_r \in A$ and $y_r \in A \Rightarrow x_m \in \lor qA$.

Definition 6. [10] A fuzzy set A is an $(\in, \in \lor q)$ -fuzzy ideal of X if and only if it satisfies:

 $(1)A(0) \ge A(x) \land 0.5, \forall x \in X,$

 $(2)A(x) \ge A(x*y) \land A(y) \land 0.5, \forall x, y \in X.$

Definition 7. [7] $\langle X; *, 0 \rangle$ is a BCI-algebra, M is a non-empty set, if there exists a mapping $(m, x) \rightarrow mx$ from $M \times X$ to X which satisfies

$$m(x*y) = (mx)*(my), \forall x, y \in X, m \in M,$$

then *M* is called a left operator of *X*, *X* is called BCIalgebra with left operator *M*, or *M* – BCI-algebra for short. **Proposition 1.** [6] Let $\langle X; *, 0 \rangle$ be a BCI-algebra, if *A* is an

 $(\in, \in \lor q)$ -fuzzy ideal of it, and $x * y \le z$, then

$$A(x) \ge A(y) \land A(z) \land 0.5, \forall x, y, z \in X.$$

Definition 8. [13] Let A and B be fuzzy sets of set X, then the direct product $A \times B$ of A and B is a fuzzy subset of $X \times X$, define $A \times B$ by

$$A \times B(x, y) = A(x) \wedge B(y), \forall x, y \in X.$$

Definition 9. [7] Let $\langle X; *, 0 \rangle$ and $\langle \overline{X}; *, 0 \rangle$ be two M – BCIalgebras, if for all $x \in X, m \in M$, f(mx) = mf(x), and f is a homomorphism from $\langle X; *, 0 \rangle$ to $\langle \overline{X}; *, 0 \rangle$, then f is called a homomorphism with operators.

Definition 10. [13] $\langle X; *, 0 \rangle$ is an M – BCI-algebra, let B be a fuzzy set of X, and A be a fuzzy relation of B, if it satisfies:

$$A_{B}(x, y) = B(x) \wedge B(y), \forall x, y \in X,$$

then A is called a strong fuzzy relation of B.

Definition 11. [14] If $\langle X; *, 0 \rangle$ is an M – BCI-algebra, A is a

non-empty subset of X, and $mx \in A$ for all $x \in A, m \in M$, then $\langle A; *, 0 \rangle$ is called a M-subalgebra of $\langle X; *, 0 \rangle$.

In this paper, X always means a M-BCI-algebra unless otherwise specified.

III. $(\in, \in \lor q)$ -Fuzzy Subalgebras of BCI-Algebras with Operators

Definition 12. $\langle X; *, 0 \rangle$ is a BCI-algebra, a fuzzy set A of X is called a $M - (\in, \in \lor q)$ -fuzzy subalgebra of X if for all $t, r \in (0,1]$ and $x, y \in X$, it satisfies:

1.
$$x_t \in A$$
 and $y_r \in A \Longrightarrow (x * y)_{tor} \in \lor qA$,

2.
$$x_t \in A \Longrightarrow (mx)_t \in \lor qA$$
.

Proposition 2. $\langle X; *, 0 \rangle$ is a BCI-algebra, a fuzzy set A of X is an $M - (\in, \in \lor q)$ -fuzzy subalgebra of X if and only if it satisfies: (1) $A(x * y) \ge A(x) \land A(y) \land 0.5, \forall x, y \in X$, (2) $A(mx) \ge A(x) \land 0.5, \forall x \in X$.

Proof. Suppose that A is an $M - (\in, \in \lor q)$ -fuzzy subalgebra of X. (1) Let $x, y \in X$, suppose that $A(x) \wedge A(y) < 0.5$, then $A(x \ast y) \ge A(x) \land A(y),$ if not, then we have $A(x * y) < t < A(x) \land A(y), \exists t \in (0, 0.5);$ it follows that $x_t \in A$ and $y_t \in A$, but $(x * y)_{t \to t} = (x * y)_t \overline{\in \lor q}A$, which is a contradiction, then whenever $A(x) \wedge A(y) < 0.5$. We have $A(x*y) \ge A(x) \land A(y)$. If $A(x) \land A(y) \ge 0.5$, then $(x)_{0.5} \in A$ and $y_{0.5} \in A$, which implies that $(x * y)_{0.5} = (x * y)_{0.5 \land 0.5} \in \lor qA$, therefore $A(x*y) \ge 0.5$, because if A(x*y) < 0.5, then A(x * y) + 0.5 < 0.5 + 0.5 = 1, which is a contradiction, hence

$$A(x * y) \ge A(x) \land A(y) \land 0.5, \forall x, y \in X.$$

(2) Let $x \in X$ and assume that A(x) < 0.5. If A(mx) < A(x), then we have A(mx) < t < A(x), $\exists t \in (0, 0.5)$, and we have $x_t \in A$ and $(mx)_t \in A$, since A(mx)+t < 1, we have $(mx)_t = qA$; it follows that $(mx)_t \in \sqrt{q}A$, which is a contradiction, hence $A(mx) \ge A(x)$. Now if $A(x) \ge 0.5$, then $x_{0.5} \in A$, thus $(mx)_{0.5} \in \sqrt{q}A$, hence $A(mx) \ge 0.5$, otherwise A(mx)+0.5 < 0.5+0.5=1, which is a contradiction, consequently, $A(mx) \ge A(x) \land 0.5, \forall x \in X$. Conversely, assume that A satisfies condition (1), (2). (1) Let $x, y \in X$ and $t_1, t_2 \in (0, 1]$ be such that $x_{t_1} \in A$ and

 $y_{t_2} \in A, \text{ then } A(x) \ge t_1 \text{ and } A(y) \ge t_2. \text{ Suppose that}$ $A(x*y) < t_1 \land t_2, \text{ if } A(x) \land A(y) < 0.5, \text{ then } A(x*y) \ge A(x) \land A(y) \land 0.5 = A(x) \land A(y) \ge t_1 \land t_2, \text{ this is a contradiction, so we have } A(x) \land A(y) \ge 0.5, \text{ it follows that}$

$$A(x * y) + t_1 \wedge t_2 > 2A(x * y) \ge 2(A(x) \wedge A(y) \wedge 0.5) = 1,$$

so that $(x * y)_{t_1 \wedge t_2} \in \lor qA$.

(2) Let $x \in X$ and $t \in (0,1]$ be such that $x_t \in A$, then we have $A(x) \ge t$. Suppose that A(mx) < t, if A(x) < 0.5, then $A(mx) \ge A(x) \land 0.5 = A(x) \ge t$, this is a contradiction, hence we know that $A(x) \ge 0.5$, and we have

$$A(mx) + t > 2A(mx) \ge 2(A(x) \land 0.5) = 1,$$

then $(mx)_t \in \lor qA$. Consequently, A is an $M - (\in, \in \lor q)$ -fuzzy subalgebra.

Example 1. If A is an $M - (\in, \in \lor q)$ -fuzzy subalgebra of X, then X_A is an $M - (\in, \in \lor q)$ -fuzzy subalgebra of X, define X_A by

$$X_A: X \to [0,1], X_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A. \end{cases}$$

Proof. (1) For all $x, y \in X$, if $x, y \in A$, then $x * y \in A$, then we have

$$X_A(x * y) = 1 \ge X_A(x) \wedge X_A(y) \wedge 0.5,$$

if there exists at least one which does not belong to A between x and y, for example $x \notin A$, thus

$$X_A(x*y) \ge 0 = X_A(x) \wedge X_A(y) \wedge 0.5.$$

(2) For all $x \in X$, $m \in M$, if $x \in A$, then $mx \in A$, therefore

$$X_A(mx) = 1 \ge X_A(x) \land 0.5$$

if $x \notin A$, then $X_A(mx) \ge 0 = X_A(x) \land 0.5$, therefore X_A is an $M - (\in, \in \lor q)$ -fuzzy subalgebra of X.

Proposition 3. A is an $M - (\in, \in \lor q)$ -fuzzy subalgebra of X if and only if A_i is an M-subalgebra of X, where A_i is a non-empty set, define X_A by

$$A_{t} = \{x \mid x \in X, A(x) \ge t\}, \forall t \in [0, 0.5].$$

Proof. Suppose A is an $M - (\in, \in \lor q)$ -fuzzy subalgebra of X, A_t is a non-empty set, $t \in [0, 0.5]$, then we have $A(x*y) \ge A(x) \land A(y) \land 0.5$. If $x \in A_t$, $y \in A_t$, then $A(x) \ge t$, $A(y) \ge t$, thus

$$A(x*y) \ge A(x) \land A(y) \land 0.5 \ge t,$$

then we have $x * y \in A_i$. If A is an $M - (\in, \in \lor q)$ -fuzzy subalgebra of X, then $A(mx) \ge A(x) \land 0.5 \ge t, \forall x \in X, m \in M$, then we have $mx \in A_i$. Therefore A_i is an M-subalgebra of X. Conversely, suppose A_i is an M-subalgebra of X, then we have $x * y \in A_i$. Let A(x) = t, then

$$A(x * y) \ge t = A(x) \ge A(x) \land A(y) \land 0.5.$$

If A_t is an M – subalgebra of X, then we have

$$A(mx) \ge t = A(x) \ge A(x) \land 0.5, \forall x \in X, m \in M,$$

therefore A is an $M - (\in, \in \lor q)$ -fuzzy subalgebra of X.

Proposition 4. Suppose X, Y are M-BCI-algebras, f is a mapping from X to Y, if A is an $M - (\epsilon, \epsilon \lor q)$ -fuzzy subalgebra of the Y, then $f^{-1}(A)$ is a $M - (\epsilon, \epsilon \lor q)$ -fuzzy subalgebra of X.

Proof. Let $y \in Y$, suppose f is an epimorphism, and we have $y = f(x), \exists x \in X$. If A is an $M - (\in, \in \lor q)$ -fuzzy subalgebra of Y, then we have

$$A(x*y) \ge A(x) \land A(y) \land 0.5, A(mx) \ge A(x) \land 0.5.$$

For all $x, y \in X, m \in M$, we have $(1)f^{-1}(A)(x*y) = A(f(x)*f(y)) \ge A(f(x)) \land A(f(Y)) \land 0.5$ $= f^{-1}(A)(x) \land f^{-1}(A)(y) \land 0.5;$ $(2)f^{-1}(A)(mx) = A(f(mx)) = A(mf(x))$ $\ge A(f(x)) \land 0.5 = f^{-1}(A)(x) \land 0.5.$ Then $f^{-1}(A)$ is an $M - (\in, \in \lor q)$ -fuzzy subalgebra of X.

IV.
$$(\epsilon, \epsilon \lor q)$$
 - Fuzzy Ideals of BCI-algebras with Operators

Definition 13. $\langle X; *, 0 \rangle$ is a BCI-algebra, a fuzzy set A of X is called an $M - (\in, \in \lor q)$ -fuzzy ideal of X if for all $t, r \in (0,1]$ and $x, y \in X$, it satisfies:

1. $x_t \in A \Longrightarrow 0_t \in \lor qA$, 2. $(x * y)_t \in A$ and $y_t \in A \Longrightarrow x_{t \land r} \in \lor qA$, 3. $x_t \in A \Longrightarrow (mx)_t \in \lor qA$.

Proposition 5. [13] $\langle X; *, 0 \rangle$ is a BCI-algebra, a fuzzy set A is an $M - (\in, \in \lor q)$ -fuzzy ideal of X if and only if it satisfies:

$$(1)A(0) \ge A(x) \land 0.5, \forall x \in X,$$

$$(2)A(x) \ge A(x * y) \land A(y) \land 0.5, \forall x, y \in X,$$

$$(3)A(mx) \ge A(x) \land 0.5, \forall x \in X.$$

Proof. Suppose that A is an $M - (\in, \in \lor q)$ -fuzzy ideal of X.

(1) Let $x \in X$ and assume that A(x) < 0.5. If A(0) < A(x), then we have A(0) < t < A(x), $\exists t \in (0, 0.5)$, and we have $x_t \in A$ and $0, \in A$, since A(0)+t < 1, we have 0, qA, it follows that $0, \in \sqrt{q}A$, which is a contradiction, then $A(0) \ge A(x)$. Now if $A(x) \ge 0.5$, then $x_{0.5} \in A$, then we have $0_{0.5} \in \sqrt{q}A$, hence $A(0) \ge 0.5$, otherwise, A(0)+0.5 < 0.5+0.5=1, which is a contradiction, consequently,

$$A(0) \ge A(x) \land 0.5, \forall x \in X.$$

(2) Let $x, y \in X$ and suppose that $A(x*y) \wedge A(y) < 0.5$, then $A(x) \ge A(x * y) \land A(y),$ if not, then we have $A(x) < t < A(x * y) \land A(y), \exists t \in (0, 0.5), \quad \text{it follows}$ that $(x * y)_{t \in A}$ and $y_{t} \in A$, but $x_{t \wedge t} = x_t \in \nabla q A$, which is a contradiction, hence whenever $A(x*y) \wedge A(y) < 0.5$, we have $A(x * y) \wedge A(y) \ge 0.5,$ $A(x) \ge A(x * y) \land A(y).$ If then $(x * y)_{0.5} \in A$ and $y_{0.5} \in A$, which implies that $x_{0.5} = x_{0.5 \land 0.5} \in \lor qA$, therefore $A(x) \ge 0.5$, because if A(x) < 0.5, then A(x) + 0.5 < 0.5 + 0.5 = 1, which is a contradiction, then

$$A(x) \ge A(x * y) \land A(y) \land 0.5, \forall x, y \in X.$$

(3) Let $x \in X$ and assume that A(x) < 0.5. If A(mx) < A(x), then we have $A(mx) < t < A(x), \exists t \in (0, 0.5)$, and we have $x_t \in A$ and $(mx) \in A$, since A(mx)+t < 1, we have $(mx) \in \overline{qA}$, it follows that $(mx)_{i} \in \sqrt{q}A$, which is a contradiction, then $A(mx) \ge A(x)$. Now if $A(x) \ge 0.5$, then $x_{0.5} \in A$, thus $(mx)_{0.5} \in \lor qA$, hence $A(mx) \ge 0.5$, otherwise A(mx) + 0.5 < 0.5 + 0.5 = 1, which is a contradiction, consequently, $A(mx) \ge A(x) \land 0.5, \forall x \in X$. Conversely, suppose that A satisfies (1), (2), (3) of the Proposition 5, then we have (1) Let $x \in X$ and $t \in (0,1]$ be such that $x_t \in A$, then we have A(x) > t, suppose that A(0) < t, if A(x) < 0.5, then $A(0) \ge A(x) \land 0.5 = A(x) \ge t$, which is a contradiction, then we know that $A(x) \ge 0.5,$ and have we $A(0) + t > 2A(0) \ge 2(A(x) \land 0.5) = 1$, thus $0_t \in \lor qA$.

(2) Let $x, y \in X$ and $t_1, t_2 \in (0, 1]$ be such that $(x * y)_{t_1} \in A$ and $y_{t_2} \in A$, then $A(x * y) \ge t_1$ and $A(y) \ge t_2$, suppose that $A(x) < t_1 \land t_2$, if $A(x * y) \land A(y) < 0.5$, then

$$A(x) \ge A(x * y) \land A(y) \land 0.5 = A(x * y) \land A(y) \ge t_1 \land t_2,$$

This is a contradiction, so we have $A(x*y) \wedge A(y) \ge 0.5$, it

follows that

$$A(x) + t_1 \wedge t_2 > 2A(x) \ge 2(A(x * y) \wedge A(y) \wedge 0.5) = 1,$$

so that $x_{t_1 \wedge t_2} \in \lor qA$.

(3) Let $x \in X$ and $t \in (0,1]$ be such that $x_t \in A$, then $A(x) \ge t$, suppose that A(mx) < t, if A(x) < 0.5,then $A(mx) \ge A(x) \land 0.5 = A(x) \ge t$, which is a contradiction, then we know that $A(x) \ge 0.5,$ and we have $A(mx) + t > 2A(mx) \ge 2(A(x) \land 0.5) = 1,$ thus $(mx)_{i} \in \lor qA.$ Consequently, A is an $M - (\in, \in \lor q)$ -fuzzy ideal.

Example 2. If A is an $_{M-(\in,\in \lor q)}$ -fuzzy ideal of X, then X_A is an $M-(\in,\in\lor q)$ -fuzzy ideal of X, define X_A by

$$X_A: X \to [0,1], X_A(x) = \begin{cases} 1, x \in A\\ 0, x \notin A \end{cases}$$

Proof. (1) For all $x, y \in X$, if $x, y \in A$, then $x * y \in A$, thus

$$X_{A}(0) = 1 \ge X_{A}(x) \land 0.5,$$

$$X_{A}(x) = 1 \ge X_{A}(x * y) \land X_{A}(y) \land 0.5,$$

if there exists at least one between x and y which does not belong to A, for example $x \notin A$, thus

$$\begin{split} X_{A}(0) &= 1 \ge X_{A}(x) \land 0.5, \\ X_{A}(x) &\ge X_{A}(x * y) \land X_{A}(y) \land 0.5 = 0, \end{split}$$

therefore X_A is a $(\in, \in \lor q)$ -fuzzy ideal of X.

(2) For all $x \in X$, $m \in M$, if $x \in A$, then $mx \in A$, therefore $X_A(mx) = 1 \ge X_A(x) \land 0.5$. If $x \notin A$, then $X_A(mx) \ge 0 = X_A(x) \land 0.5$, therefore X_A is an $M - (\in, \in \lor q)$ -fuzzy ideal of X.

Proposition 6. A is an $M - (\in, \in \lor q)$ -fuzzy ideal of X if and only if A_t is an M-ideal of X, where A_t is non-empty set, define A_t by

$$A_{t} = \{x \mid x \in X, A(x) \ge t\}, \forall t \in [0, 0.5].$$

Proof. Suppose A is an $M - (\in, \in \lor q)$ -fuzzy ideal of X, A_t is non-empty set, $t \in [0, 0.5]$, then we have $A(0) \ge A(x) \land 0.5 \ge t$, then we have $0 \in A_t$. If $x * y \in A_t$, $y \in A_t$, then $A(x*y) \ge t, A(y) \ge t$, thus $A(x) \ge A(x*y) \land A(y) \land 0.5 \ge t$, then we have $x \in A_t$. For all $x \in X$, $m \in M$, if A is an $M - (\in, \in \lor q)$ fuzzy ideal of X, hence $A(mx) \ge A(x) \land 0.5 \ge t$, thus $mx \in A_t$, therefore A_t is an M - ideal of X. Conversely, suppose A_t is an M-ideal of X, then we have $0 \in A_t, A(0) \ge t$. Let A(x) = t, thus $x \in A_t$, we have $A(0) \ge t = A(x)$, suppose there is no $A(x) \ge A(x * y) \land A(y) \land 0.5$, then there exist $x_0, y_0 \in X$, we have $A(x_0) < A(x_0 * y_0) \land A(y_0) \land 0.5$, let $t_0 = A(x_0 * y_0) \land A(y_0) \land 0.5$, then $A(x_0) < t_0 = A(x_0 * y_0) \land A(y_0) \land 0.5$, if $x_0 * y_0 \in A_{t_0}, y_0 \in A_{t_0}$, then we have $x_0 \in A_{t_0}$, then $A(x_0) \ge t_0$, which is inconsistent with $A(x_0) < t_0 = A(x_0 * y_0) \land A(y_0) \land 0.5$, then we have $A(x) \ge A(x * y) \land A(y) \land 0.5$. If A_t is an M-ideal of X, then we have $A(mx) \ge t = t \land 0.5 = A(x) \land 0.5, \forall x \in X, m \in M$, therefore A is an M-($\epsilon, \epsilon \lor q$)-fuzzy ideal of X.

Proposition 7. Suppose X, Y are M-BCI-algebras, f is a mapping from X to Y, A is an $_{M-(\in, \in \lor q)}$ -fuzzy ideal of Y, then $f^{-1}(A)$ is an $_{M-(\in, \in \lor q)}$ -fuzzy ideal of X.

Proof. Let $y \in Y$, suppose f is an epimorphism, then we have $y = f(x), \exists x \in X$. If A is an $M - (\in, \in \lor q)$ -fuzzy ideal of Y, then we have

$$A(0) \ge A(x) \land 0.5,$$

$$A(x) \ge A(x*y) \land A(y) \land 0.5,$$

$$A(mx) \ge A(x) \land 0.5.$$

For all $x, y \in X, m \in M$, we have (1) $f^{-1}(A)(0) = A(f(0)) = A(0) \ge A(f(x)) \land 0.5 = f^{-1}(A)(x) \land 0.5;$ (2) $f^{-1}(A)(x) = A(f(x)) \ge A(f(x)*f(y)) \land A(f(y)) \land 0.5$ $= A(f(x*y)) \land A(f(y)) \land 0.5 = f^{-1}(A)(x*y) \land f^{-1}(A)(y) \land 0.5;$ (3) $f^{-1}(A)(mx) = A(f(mx)) = A(mf(x))$ $\ge A(f(x)) \land 0.5 = f^{-1}(A)(x) \land 0.5.$ Therefore $f^{-1}(A)$ is an $M_{-(\in,\in \lor q)}$ -fuzzy ideal of X.

V.
$$(\epsilon, \epsilon \lor q)$$
 - Fuzzy Quotient BCI-Algebras with
Operators

Definition 14. Let A be an $M - (\in, \in \lor q)$ -fuzzy ideal of X, for all $a \in X$, fuzzy set A_a on X defined as: $A_a : X \to [0,1]$

$$A_a(x) = A(a * x) \land A(x * a) \land 0.5, \forall x \in X.$$

Denote $X/A = \{A_a : a \in X\}.$

Proposition 8. Let $A_a, A_b \in X/A$, then $A_a = A_b$ if and only if $A(a*b) \wedge A(b*a) \wedge 0.5 = A(0) \wedge 0.5.$

Proof. Let $A_a = A_b$, then we have $A_a(b) = A_b(b)$, thus

$$A(a*b) \land A(b*a) \land 0.5 = A(b*b) \land A(b*b) \land 0.5 = A(0) \land 0.5,$$

that is $A(a*b) \wedge A(b*a) \wedge 0.5 = A(0) \wedge 0.5$. Conversely, suppose

that $A(a*b) \wedge A(b*a) \wedge 0.5 = A(0) \wedge 0.5$. For all $x \in X$, since

$$(a*x)*(b*x) \le a*b, (x*a)*(x*b) \le b*a.$$

It follows from Proposition 1 that

$$A(a*x) \ge A(b*x) \land A(a*b) \land 0.5,$$

$$A(x*a) \ge A(x*b) \land A(b*a) \land 0.5.$$

Hence

$$A_{a}(x) = A(a*x) \wedge A(x*a) \wedge 0.5$$

$$\geq A(b*x) \wedge A(x*b) \wedge A(a*b) \wedge A(b*a) \wedge 0.5$$

$$= A(b*x) \wedge A(x*b) \wedge A(0) \wedge 0.5$$

$$= A(b*x) \wedge A(x*b) \wedge 0.5 = A_{b}(x),$$

that is $A_a \ge A_b$. Similarly, for all $x \in X$, since

 $(b*x)*A(a*x) \le b*a, (x*b)*A(x*a) \le a*b.$

It follows from Proposition 1 that

$$\begin{split} A(b*x) &\geq A(a*x) \wedge A(b*a) \wedge 0.5, \\ A(x*b) &\geq A(x*a) \wedge A(a*b) \wedge 0.5. \end{split}$$

Hence

$$A_b(x) = A(b*x) \wedge A(x*b) \wedge 0.5$$

$$\geq A(a*x) \wedge A(x*a) \wedge A(b*a) \wedge A(a*b) \wedge 0.5$$

$$= A(a*x) \wedge A(x*a) \wedge A(0) \wedge 0.5$$

$$= A(a*x) \wedge A(x*a) \wedge 0.5 = A_a(x),$$

that is $A_b \ge A_a$. Therefore, $A_a = A_b$. We complete the proof. **Proposition 9.** Let $A_a = A_{a'}, A_b = A_{b'}$, then $A_{a*b} = A_{a'*b'}$. **Proof.** Since

$$\begin{split} & ((a*b)*(a'*b'))*(a*a') = ((a*b)*(a*a'))*(a'*b') \\ & \leq (a'*b)*(a'*b') \leq b'*b, \\ & ((a'*b')*(a*b))*(b*b') = ((a'*b')*(b*b'))*(a*b) \\ & \leq (a'*b)*(a*b) \leq a'*a. \end{split}$$

Hence

$$A((a*b)*(a'*b')) \ge A(a*a') \land A(b'*b) \land 0.5, A((a'*b')*(a*b)) \ge A(b*b') \land A(a'*a) \land 0.5.$$

Therefore

$$A((a*b)*(a'*b')) \land A((a'*b')*(a*b)) \land 0.5$$

= $A(a*a') \land A(a'*a) \land 0.5 \land A(b*b') \land A(b'*b) \land 0.5 \land 0.5$
= $A(0) \land 0.5$,

it follows from Proposition 8. that $A_{a*b} = A_{a'*b'}$. We completed the proof.

Let A be an $M - (e, e \lor q)$ -fuzzy ideal of X. The operation "*" of R/A is defined as: $\forall A_a, A_b \in R/A, A_a * A_b = A_{a*b}$. By Proposition 8, the above operation is reasonable. **Proposition 10.** A is an $M - (e, e \lor q)$ -fuzzy ideal of X, then

 $R/A = \{R/A; *, A_0\}$ is an M – BCI-algebra.

Proof. For all $A_x, A_y, A_z \in R/A$, we have

$$\begin{split} \left(\left(A_x * A_y \right) * \left(A_x * A_z \right) \right) * \left(A_z * A_y \right) &= A_{((x*y)*(x*z))*(z*y)} = A_0; \\ \left(A_x * \left(A_x * A_y \right) \right) * A_y &= A_{(x*(x*y))*y} = A_0; \\ A_x * A_x &= A_{x*x} = A_0; \end{split}$$

if $A_x * A_y = A_0, A_y * A_x = A_0$, then $A_{x*y} = A_0, A_{y*x} = A_0$, it follows from Proposition 8 that A(x*y) = A(0), A(y*x) = A(0), hence $A(x*y) \wedge A(y*x) \wedge 0.5 = A(0) \wedge 0.5$, then we have $A_x = A_y$. Therefore $R/A = \{R/A; *, A_0\}$ is a BCI-algebra. For all $A_x \in R/A, m \in M$, we define $mA_x = A_{mx}$. Firstly, we verify that $mA_x = A_{mx}$ is reasonable. If $A_x = A_y$, then we verify $mA_x = mA_y$, that is to verify $A_{mx} = A_{my}$. We have

$$A(mx * my) \land 0.5 = A(m(x * y)) \land 0.5 \ge A(x * y) \land 0.5,$$

$$A(my * mx) \land 0.5 = A(m(y * x)) \land 0.5 \ge A(y * x) \land 0.5,$$

so we have

$$A(mx*my) \wedge A(my*mx) \wedge 0.5 \ge A(x*y) \wedge A(y*x) \wedge 0.5 = A(0) \wedge 0.5,$$

then $A(mx*my) \wedge A(my*mx) \wedge 0.5 = A(0) \wedge 0.5$, that is $A_{mx} = A_{my}$. In addition, for all $m \in M, A_x, A_y \in R/A$, we have

$$m(A_x * A_y) = mA_{x*y} = A_{m(x*y)}$$
$$= A_{(mx)*(my)} = A_{mx} * A_{my} = mA_x * mA_y$$

Therefore $R/A = \{R/A; *, A_0\}$ is an M – BCI-algebra.

Definition 15. Let μ be an $_{M-(\in, \in \lor q)}$ -fuzzy subalgebra of X, and A be an $_{M-(\in, \in \lor q)}$ -fuzzy ideal of X, we define a fuzzy set of X/A as follows:

$$\mu/A: X/A \rightarrow [0,1], \quad \mu/A(A_i) = \sup_{A_i = A_i} \mu(x) \land 0.5, \forall A_i \in X/A.$$

Proposition 11. μ/A is an $_{M-(\epsilon,\epsilon \lor q)}$ -fuzzy subalgebea of X/A.

Proof. For all $A_x, A_y \in X/A$, we have

$$\begin{split} \mu/A(A_x * A_y) &= \mu/A(A_{x*y}) = \sup_{A_z = A_{x*y}} \mu(z) \wedge 0.5 \\ \geq \sup_{A_x = A_x, A_z = A_y} \mu(s*t) \wedge 0.5 \geq \sup_{A_x = A_x, A_z = A_y} \mu(s) \wedge \mu(t) \wedge 0.5 \\ = \sup_{A_x = A_x, \mu} \mu(s) \wedge \sup_{A_z = A_y, \mu} \mu(t) \wedge 0.5 \\ = \mu/A(A_x) \wedge \mu/A(A_y) \wedge 0.5. \end{split}$$

For all $m \in M$, $A_x \in R/A$, we have

$$\mu/A(A_{mx}) = \sup_{A_{mz}=A_{mx}} \mu(mz) \wedge 0.5$$

$$\geq \sup_{A_z=A_x} \mu(z) \wedge 0.5 = \mu/A(A_x) \wedge 0.5.$$

Therefore μ/A is an $M - (\in, \in \lor q)$ -fuzzy subalgebra of X/A.

VI. DIRECT PRODUCTS OF $(\in, \in \lor q)$ - FUZZY IDEALS OF BCI-ALGEBRAS WITH OPERATORS

Proposition 12. Suppose A and B are $M - (\in, \in \lor q)$ -fuzzy ideals of X, then $A \times B$ is an $M - (\in, \in \lor q)$ -fuzzy ideal of $X \times X$.

Proof. (1) Let $(x, y) \in X \times X$, then

$$\begin{aligned} A \times B(0,0) &= A(0) \wedge B(0) \ge A(x) \wedge 0.5 \wedge B(y) \wedge 0.5 \\ &= A(x) \wedge B(y) \wedge 0.5 = A \times B(x,y) \wedge 0.5, \end{aligned}$$

then $A \times B(0,0) \ge A \times B(x, y) \land 0.5, \forall (x, y) \in X \times X;$ (2) For all $(x_1, x_2), (y_1, y_2) \in X \times X$, we have

$$A \times B((x_1, x_2) * (y_1, y_2)) \land A \times B(y_1, y_2) \land 0.5$$

= $A \times B(x_1 * y_1, x_2 * y_2) \land A \times B(y_1, y_2) \land 0.5$
= $(A(x_1 * y_1) \land B(x_2 * y_2)) \land A(y_1) \land B(y_2) \land 0.5$
= $(A(x_1 * y_1) \land A(y_1)) \land (B(x_2 * y_2) \land B(y_2)) \land 0.5$
 $\leq A(x_1) \land B(x_2) = A \times B(x_1, x_2),$

then for all $(x_1, x_2), (y_1, y_2) \in X \times X$, we have

$$A \times B(x_1, x_2) \ge A \times B((x_1, x_2) * (y_1, y_2)) \land A \times B(y_1, y_2) \land 0.5;$$

(3) For all $(x, y) \in X \times X$, we have

$$A \times B(m(x, y)) = A \times B(mx, my) = A(mx) \wedge B(my)$$

$$\geq A(x) \wedge 0.5 \wedge B(y) \wedge 0.5 = A(x) \wedge B(y) \wedge 0.5$$

$$= A \times B(x, y) \wedge 0.5,$$

then we have

$$A \times B(m(x, y)) \ge A \times B(x, y) \land 0.5, \forall (x, y) \in X \times X.$$

Therefore $A \times B$ is an $M - (\in, \in \lor q)$ -fuzzy ideal of $X \times X$.

Proposition 13. Suppose A and B are fuzzy sets of X, if $A \times B$ is an $M - (\in, \in \lor q)$ -fuzzy ideal of $X \times X$, then A or B is an $M - (\in, \in \lor q)$ -fuzzy ideal of X.

Proof. Suppose A and B are $_{M-(\in, \in \lor q)}$ -fuzzy ideals of X, then for all $(x_1, x_2), (y_1, y_2) \in X \times X$, we have

$$A \times B(x_1, x_2) \ge A \times B((x_1, x_2) * (y_1, y_2)) \land A \times B(y_1, y_2) \land 0.5$$

= $A \times B((x_1 * y_1), (x_2 * y_2)) \land A \times B(y_1, y_2) \land 0.5,$

if $x_1 = y_1 = 0$, then

$$A \times B(0, x_2) \ge A \times B(0, x_2 * y_2) \wedge A \times B(0, y_2) \wedge 0.5,$$

then we have

$$A \times B(0, x) = A(0) \wedge B(x) = B(x),$$

thus $B(x_2) \ge B(x_2 * y_2) \land B(y_2) \land 0.5$. If $A \times B$ is an $M - (\in, \in \lor q)$ -fuzzy ideal of X, then

$$A \times B(m(x, y)) \ge A \times B(x, y) \land 0.5, \forall (x, y) \in X \times X,$$

let x = 0, then

$$A \times B(m(x, y)) = A \times B(mx, my) = A(mx) \wedge B(my) = B(my)$$

$$\geq A(x) \wedge B(y) \wedge 0.5 = A(0) \wedge B(y) \wedge 0.5$$

$$= B(y) \wedge 0.5,$$

then we have

 $B(my) \ge B(y) \land 0.5, \forall y \in X, m \in M.$

Therefore *B* is an $M - (\in, \in \lor q)$ -fuzzy ideal of *X*. **Proposition 14.** If *B* is a fuzzy set, *A* is a strong fuzzy relation A_B of *B*, then *B* is an $M - (\in, \in \lor q)$ -fuzzy ideal of *X* if and only if A_B is an $M - (\in, \in \lor q)$ -fuzzy ideal of $X \times X$. **Proof.** If *B* is an $M - (\in, \in \lor q)$ -fuzzy ideals of *X*, then for all $(x, y) \in X \times X$, we have

$$A_B(0,0) = B(0) \land B(0) \ge B(x) \land 0.5 \land B(y) \land 0.5$$
$$= A_B(x, y) \land 0.5;$$

for all $(x_1, x_2), (y_1, y_2) \in X \times X$, we have

$$\begin{aligned} A_B(x_1, x_2) &= B(x_1) \land B(x_2) \\ &\geq (B(x_1 * y_1) \land B(y_1) \land 0.5) \land (B(x_2 * y_2) \land B(y_2) \land 0.5) \\ &= (B(x_1 * y_1) \land B(x_2 * y_2)) \land (B(y_1) \land B(y_2)) \land 0.5 \\ &= A_B(x_1 * y_1, x_2 * y_2) \land A_B(y_1, y_2) \land 0.5 \\ &= A_B((x_1, x_2) * (y_1, y_2)) \land A_B(y_1, y_2) \land 0.5; \end{aligned}$$

for all $(x, y) \in X \times X$, we have

$$A_B(m(x, y)) = A_B(mx, my) = B(mx) \wedge B(my)$$

$$\geq B(x) \wedge 0.5 \wedge B(y) \wedge 0.5 = A_B(x, y) \wedge 0.5.$$

Therefore A_B is an $M - (\in, \in \lor q)$ -fuzzy ideal of $X \times X$. Conversely, suppose A_B is an $M - (\in, \in \lor q)$ -fuzzy ideal of $X \times X$, for all $(x_1, x_2) \in X \times X$, we have

$$B(0) \wedge B(0) = A_B(0,0) \ge A_B(x,x) \wedge 0.5 = B(x) \wedge B(x) \wedge 0.5,$$

for all $(x_1, x_2), (y_1, y_2) \in X \times X$, we have

$$B(x_{1}) \wedge B(x_{2}) = A_{B}(x_{1}, x_{2})$$

$$\geq A_{B}((x_{1}, x_{2}) * (y_{1}, y_{2})) \wedge A_{B}(y_{1}, y_{2}) \wedge 0.5$$

$$= A_{B}(x_{1} * y_{1}, x_{2} * y_{2}) \wedge A_{B}(y_{1}, y_{2}) \wedge 0.5$$

$$= (B(x_{1} * y_{1}) \wedge B(x_{2} * y_{2})) \wedge (B(y_{1}) \wedge B(y_{2})) \wedge 0.5$$

$$= (B(x_{1} * y_{1}) \wedge B(y_{1})) \wedge (B(x_{2} * y_{2}) \wedge B(y_{2})) \wedge 0.5$$

let $x_2 = y_2 = 0$, then

$$B(x_1) \wedge B(0) \geq \left(B(x_1 * y_1) \wedge B(y_1)\right) \wedge B(0) \wedge 0.5,$$

if A_B is an $M - (\in, \in \lor q)$ -fuzzy ideal of $X \times X$, then

$$A_{R}(m(x, y)) \ge A_{R}(x, y), \forall x, y \in X \times X, m \in M,$$

We have

$$B(mx) \wedge B(my) = A_B(mx, my) \ge A_B(x, y) \wedge 0.5 = B(x) \wedge B(y) \wedge 0.5,$$

if x = 0, then

$$B(0) \wedge B(my) = A_B(0, my) \ge A_B(0, y) \wedge 0.5 = B(0) \wedge B(y) \wedge 0.5,$$

namely, $B(my) \ge B(y) \land 0.5$. Therefore B is an $M - (\in, \in \lor q)$ -fuzzy ideal of X.

References

 Y. Imai and K. Iseki, "On axiom system of propositional calculus," Proc Aapan Academy, vol. 42, pp. 26-29, 1966.

- K. Iseki, "On BCI-algebras," Math. Sem. Notes, vol. 8, pp.125-130, [2] 1980.
- O.G. Xi, "Fuzzy BCK-algebras," Math Japon, vol. 36, pp. 935-942, [3] 1991.
- Y.B. Jun, S.M. Hong, J. Meng and X.L. Xin, "Characterizations of fuzzy positives implicative ideals in BCK-algebras", Math. Japon, vol. 40, pp. [4] 503-507, 1994.
- Y.B. Jun and E.H. Roh, "Fuzzy commutative ideals of BCK-algebras," [5] Fuzzy Sets and Systems, vol. 64, pp. 401-405, 1994.
- J. Zhan, Y.B. Jun and B. Davvaz, "On $(\in, \in \lor q)$ -Fuzzy ideals of BCI-[6] algebras," Iranian Journal of Fuzzy Systems, vol. 6, pp. 81-94. 2009.
- W. X. Zheng, "On BCI-algebras with operators and their isomorphism [7]
- theorems," Journal of Qingdao University, vol. 6, pp. 17-22, 1993. Y. L. Liu, "Characterizations of some classes of quotient BCI-algebras" [8] Journal of Quan zhou Normal College (Natural Science Edition), vol. 20, pp. 16-20, 2002.
- J.L, "Universal property of direct products of BCI-Algebra" Journal of [9] Jianghan University, vol. 18, pp. 36-38, 2001.
- [10] Y.B. Jun, "On (α,β) -fuzzy ideals of BCK/BCI-algebras," Sci. Math. Japon. vol. 60, pp. 613-617, 2004.
- [11] J. Liu and S.Q. Sun, "Generalized fuzzy ideals of BCI-algebra," Journal of Qingdao University of Science and Technology (Natural Science Edition), vol. 32, pp. 211-215, 2011.
- [12] P.P. Ming and L.Y. Ming, "Neighbourhood structure of a fuzzy point and Moore-Smith convergence," J. Math. Anal. Appl. vol. 76, pp. 571-599, 1980.
- [13] W.B. Pan, "Fuzzy ideals of sub-algebra and fuzzy H-ideals of subalgebra," Degree of Qingdao University of Science and Technology, vol. 30, pp.468-470, 2009.
- [14] Y.L.Hu and S.Q. Sun, "fuzzy subalgebras and fuzzy ideals of BCI-algebras with operators," International Science Index, Mathematical and Computational Sciences, vol. 11, pp. 220-226, 2017.
- [15] L.A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353, 1965.