Search results for: fractional order bounded variation
5964 A Two-Channel Secure Communication Using Fractional Chaotic Systems
Authors: Long Jye Sheu, Wei Ching Chen, Yen Chu Chen, Wei Tai Weng
Abstract:
In this paper, a two-channel secure communication using fractional chaotic systems is presented. Conditions for chaos synchronization have been investigated theoretically by using Laplace transform. To illustrate the effectiveness of the proposed scheme, a numerical example is presented. The keys, key space, key selection rules and sensitivity to keys are discussed in detail. Results show that the original plaintexts have been well masked in the ciphertexts yet recovered faithfully and efficiently by the present schemes.Keywords: fractional chaotic systems, synchronization, securecommunication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17525963 Process Optimization Regarding Geometrical Variation and Sensitivity Involving Dental Drill- and Implant-Guided Surgeries
Authors: T. Kero, R. Söderberg, M. Andersson, L. Lindkvist
Abstract:
Within dental-guided surgery, there has been a lack of analytical methods for optimizing the treatment of the rehabilitation concepts regarding geometrical variation. The purpose of this study is to find the source of the greatest geometrical variation contributor and sensitivity contributor with the help of virtual variation simulation of a dental drill- and implant-guided surgery process using a methodical approach. It is believed that lower geometrical variation will lead to better patient security and higher quality of dental drill- and implant-guided surgeries. It was found that the origin of the greatest contributor to the most variation, and hence where the foci should be set, in order to minimize geometrical variation was in the assembly category (surgery). This was also the category that was the most sensitive for geometrical variation.Keywords: Variation Simulation, Process Optimization, Guided Surgeries, Dental Prosthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12875962 Complex Dynamics of Bertrand Duopoly Games with Bounded Rationality
Authors: Jixiang Zhang, Guocheng Wang
Abstract:
A dynamic of Bertrand duopoly game is analyzed, where players use different production methods and choose their prices with bounded rationality. The equilibriums of the corresponding discrete dynamical systems are investigated. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability of Nash equilibrium, as some parameters of the model are varied, gives rise to complex dynamics such as cycles of higher order and chaos. On this basis, we discover that an increase of adjustment speed of bounded rational player can make Bertrand market sink into the chaotic state. Finally, the complex dynamics, bifurcations and chaos are displayed by numerical simulation.
Keywords: Bertrand duopoly model, Discrete dynamical system, Heterogeneous expectations, Nash equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26025961 Riemann-Liouville Fractional Calculus and Multiindex Dzrbashjan-Gelfond-Leontiev Differentiation and Integration with Multiindex Mittag-Leffler Function
Authors: U.K. Saha, L.K. Arora
Abstract:
The multiindex Mittag-Leffler (M-L) function and the multiindex Dzrbashjan-Gelfond-Leontiev (D-G-L) differentiation and integration play a very pivotal role in the theory and applications of generalized fractional calculus. The object of this paper is to investigate the relations that exist between the Riemann-Liouville fractional calculus and multiindex Dzrbashjan-Gelfond-Leontiev differentiation and integration with multiindex Mittag-Leffler function.
Keywords: Multiindex Mittag-Leffler function, Multiindex Dzrbashjan-Gelfond-Leontiev differentiation and integration, Riemann-Liouville fractional integrals and derivatives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15365960 Unique Positive Solution of Nonlinear Fractional Differential Equation Boundary Value Problem
Authors: Fengxia Zheng
Abstract:
By using two new fixed point theorems for mixed monotone operators, the positive solution of nonlinear fractional differential equation boundary value problem is studied. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it.
Keywords: Fractional differential equation, boundary value problem, positive solution, existence and uniqueness, fixed point theorem, mixed monotone operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16165959 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.Keywords: Data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12225958 Backstepping Sliding Mode Controller Coupled to Adaptive Sliding Mode Observer for Interconnected Fractional Nonlinear System
Authors: D. Elleuch, T. Damak
Abstract:
Performance control law is studied for an interconnected fractional nonlinear system. Applying a backstepping algorithm, a backstepping sliding mode controller (BSMC) is developed for fractional nonlinear system. To improve control law performance, BSMC is coupled to an adaptive sliding mode observer have a filtered error as a sliding surface. The both architecture performance is studied throughout the inverted pendulum mounted on a cart. Simulation result show that the BSMC coupled to an adaptive sliding mode observer have stable control law and eligible control amplitude than the BSMC.Keywords: Backstepping sliding mode controller, interconnected fractional nonlinear system, adaptive sliding mode observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22965957 Design of Variable Fractional-Delay FIR Differentiators
Authors: Jong-Jy Shyu, Soo-Chang Pei, Min-Han Chang
Abstract:
In this paper, the least-squares design of variable fractional-delay (VFD) finite impulse response (FIR) digital differentiators is proposed. The used transfer function is formulated so that Farrow structure can be applied to realize the designed system. Also, the symmetric characteristics of filter coefficients are derived, which leads to the complexity reduction by saving almost a half of the number of coefficients. Moreover, all the elements of related vectors or matrices for the optimal process can be represented in closed forms, which make the design easier. Design example is also presented to illustrate the effectiveness of the proposed method.
Keywords: Differentiator, variable fractional-delay filter, FIR filter, least-squares method, Farrow structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14205956 Fractional Delay FIR Filters Design with Enhanced Differential Evolution
Authors: Krzysztof Walczak
Abstract:
Fractional delay FIR filters design method based on the differential evolution algorithm is presented. Differential evolution is an evolutionary algorithm for solving a global optimization problems in the continuous search space. In the proposed approach, an evolutionary algorithm is used to determine the coefficients of a fractional delay FIR filter based on the Farrow structure. Basic differential evolution is enhanced with a restricted mating technique, which improves the algorithm performance in terms of convergence speed and obtained solution. Evolutionary optimization is carried out by minimizing an objective function which is based on the amplitude response and phase delay errors. Experimental results show that the proposed algorithm leads to a reduction in the amplitude response and phase delay errors relative to those achieved with the Least-Squares method.Keywords: Fractional Delay Filters, Farrow Structure, Evolutionary Computation, Differential Evolution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18685955 Hardware Description Language Design of Σ-Δ Fractional-N Phase-Locked Loop for Wireless Applications
Authors: Ahmed El Oualkadi, Abdellah Ait Ouahman
Abstract:
This paper discusses a systematic design of a Σ-Δ fractional-N Phase-Locked Loop based on HDL behavioral modeling. The proposed design consists in describing the mixed behavior of this PLL architecture starting from the specifications of each building block. The HDL models of critical PLL blocks have been described in VHDL-AMS to predict the different specifications of the PLL. The effect of different noise sources has been efficiently introduced to study the PLL system performances. The obtained results are compared with transistor-level simulations to validate the effectiveness of the proposed models for wireless applications in the frequency range around 2.45 GHz.
Keywords: Phase-locked loop, frequency synthesizer, fractional-N PLL, Σ-Δ modulator, HDL models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37815954 A Sum Operator Method for Unique Positive Solution to a Class of Boundary Value Problem of Nonlinear Fractional Differential Equation
Authors: Fengxia Zheng, Chuanyun Gu
Abstract:
By using a fixed point theorem of a sum operator, the existence and uniqueness of positive solution for a class of boundary value problem of nonlinear fractional differential equation is studied. An iterative scheme is constructed to approximate it. Finally, an example is given to illustrate the main result.Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14915953 Existence of Solutions for a Nonlinear Fractional Differential Equation with Integral Boundary Condition
Abstract:
This paper deals with a nonlinear fractional differential equation with integral boundary condition of the following form: Dαt x(t) = f(t, x(t),Dβ t x(t)), t ∈ (0, 1), x(0) = 0, x(1) = 1 0 g(s)x(s)ds, where 1 < α ≤ 2, 0 < β < 1. Our results are based on the Schauder fixed point theorem and the Banach contraction principle.
Keywords: Fractional differential equation, Integral boundary condition, Schauder fixed point theorem, Banach contraction principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16675952 The Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation Boundary Value Problem
Authors: Chuanyun Gu, Shouming Zhong
Abstract:
In this paper, the existence and uniqueness of positive solutions for nonlinear fractional differential equation boundary value problem is concerned by a fixed point theorem of a sum operator. Our results can not only guarantee the existence and uniqueness of positive solution, but also be applied to construct an iterative scheme for approximating it. Finally, the example is given to illustrate the main result.
Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14975951 Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation with Integral Boundary Conditions
Authors: Chuanyun Gu
Abstract:
By using fixed point theorems for a class of generalized concave and convex operators, the positive solution of nonlinear fractional differential equation with integral boundary conditions is studied, where n ≥ 3 is an integer, μ is a parameter and 0 ≤ μ < α. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it. Finally, two examples are given to illustrate our results.Keywords: Fractional differential equation, positive solution, existence and uniqueness, fixed point theorem, generalized concave and convex operator, integral boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11345950 Using Fractional Factorial Designs for Variable Importance in Random Forest Models
Authors: Ewa. M. Sztendur, Neil T. Diamond
Abstract:
Random Forests are a powerful classification technique, consisting of a collection of decision trees. One useful feature of Random Forests is the ability to determine the importance of each variable in predicting the outcome. This is done by permuting each variable and computing the change in prediction accuracy before and after the permutation. This variable importance calculation is similar to a one-factor-at a time experiment and therefore is inefficient. In this paper, we use a regular fractional factorial design to determine which variables to permute. Based on the results of the trials in the experiment, we calculate the individual importance of the variables, with improved precision over the standard method. The method is illustrated with a study of student attrition at Monash University.
Keywords: Random Forests, Variable Importance, Fractional Factorial Designs, Student Attrition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20005949 A Robust TVD-WENO Scheme for Conservation Laws
Authors: A. Abdalla, A. Kaltayev
Abstract:
The ultimate goal of this article is to develop a robust and accurate numerical method for solving hyperbolic conservation laws in one and two dimensions. A hybrid numerical method, coupling a cheap fourth order total variation diminishing (TVD) scheme [1] for smooth region and a Robust seventh-order weighted non-oscillatory (WENO) scheme [2] near discontinuities, is considered. High order multi-resolution analysis is used to detect the high gradients regions of the numerical solution in order to capture the shocks with the WENO scheme, while the smooth regions are computed with fourth order total variation diminishing (TVD). For time integration, we use the third order TVD Runge-Kutta scheme. The accuracy of the resulting hybrid high order scheme is comparable with these of WENO, but with significant decrease of the CPU cost. Numerical demonstrates that the proposed scheme is comparable to the high order WENO scheme and superior to the fourth order TVD scheme. Our scheme has the added advantage of simplicity and computational efficiency. Numerical tests are presented which show the robustness and effectiveness of the proposed scheme.
Keywords: WENO scheme, TVD schemes, smoothness indicators, multi-resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20185948 Periodic Solutions for Some Strongly Nonlinear Oscillators by He's Energy Balance Method
Abstract:
In this paper, applying He-s energy balance method to determine frequency formulation relations of nonlinear oscillators with discontinuous term or fractional potential. By calculation and computer simulations, compared with the exact solutions show that the results obtained are of high accuracy.
Keywords: He's energy balance method, periodic solution, nonlinear oscillator, discontinuous, fractional potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13775947 A Mathematical Model Approach Regarding the Children’s Height Development with Fractional Calculus
Authors: Nisa Özge Önal, Kamil Karaçuha, Göksu Hazar Erdinç, Banu Bahar Karaçuha, Ertuğrul Karaçuha
Abstract:
The study aims to use a mathematical approach with the fractional calculus which is developed to have the ability to continuously analyze the factors related to the children’s height development. Until now, tracking the development of the child is getting more important and meaningful. Knowing and determining the factors related to the physical development of the child any desired time would provide better, reliable and accurate results for childcare. In this frame, 7 groups for height percentile curve (3th, 10th, 25th, 50th, 75th, 90th, and 97th) of Turkey are used. By using discrete height data of 0-18 years old children and the least squares method, a continuous curve is developed valid for any time interval. By doing so, in any desired instant, it is possible to find the percentage and location of the child in Percentage Chart. Here, with the help of the fractional calculus theory, a mathematical model is developed. The outcomes of the proposed approach are quite promising compared to the linear and the polynomial method. The approach also yields to predict the expected values of children in the sense of height.
Keywords: Children growth percentile, children physical development, fractional calculus, linear and polynomial model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8655946 A New Quadrature Rule Derived from Spline Interpolation with Error Analysis
Authors: Hadi Taghvafard
Abstract:
We present a new quadrature rule based on the spline interpolation along with the error analysis. Moreover, some error estimates for the reminder when the integrand is either a Lipschitzian function, a function of bounded variation or a function whose derivative belongs to Lp are given. We also give some examples to show that, practically, the spline rule is better than the trapezoidal rule.Keywords: Quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration, Error analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22265945 A Method for Identifying Physical Parameters with Linear Fractional Transformation
Authors: Ryosuke Ito, Goro Obinata, Chikara Nagai, Youngwoo Kim
Abstract:
This paper proposes a new parameter identification method based on Linear Fractional Transformation (LFT). It is assumed that the target linear system includes unknown parameters. The parameter deviations are separated from a nominal system via LFT, and identified by organizing I/O signals around the separated deviations of the real system. The purpose of this paper is to apply LFT to simultaneously identify the parameter deviations in systems with fewer outputs than unknown parameters. As a fundamental example, this method is implemented to one degree of freedom vibratory system. Via LFT, all physical parameters were simultaneously identified in this system. Then, numerical simulations were conducted for this system to verify the results. This study shows that all the physical parameters of a system with fewer outputs than unknown parameters can be effectively identified simultaneously using LFT.Keywords: Identification, Linear Fractional Transformation, Right inverse system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13205944 Are Asia-Pacific Stock Markets Predictable? Evidence from Wavelet-based Fractional Integration Estimator
Authors: Pei. P. Tan, Don. U.A. Galagedera, Elizabeth A.Maharaj
Abstract:
This paper examines predictability in stock return in developed and emergingmarkets by testing long memory in stock returns using wavelet approach. Wavelet-based maximum likelihood estimator of the fractional integration estimator is superior to the conventional Hurst exponent and Geweke and Porter-Hudak estimator in terms of asymptotic properties and mean squared error. We use 4-year moving windows to estimate the fractional integration parameter. Evidence suggests that stock return may not be predictable indeveloped countries of the Asia-Pacificregion. However, predictability of stock return insome developing countries in this region such as Indonesia, Malaysia and Philippines may not be ruled out. Stock return in the Thailand stock market appears to be not predictable after the political crisis in 2008.Keywords: Asia-Pacific stock market, long-memory, return predictability, wavelet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17345943 Robust BIBO Stabilization Analysis for Discrete-time Uncertain System
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
The discrete-time uncertain system with time delay is investigated for bounded input bounded output (BIBO). By constructing an augmented Lyapunov function, three different sufficient conditions are established for BIBO stabilization. These conditions are expressed in the form of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. Two numerical examples are provided to demonstrate the effectiveness of the derived results.
Keywords: Robust BIBO stabilization, delay-dependent stabilization, discrete-time system, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15965942 Oxidation of Amitriptyline by Bromamine-T in Acidic Buffer Medium: A Kinetic and Mechanistic Approach
Authors: Chandrashekar, R. T. Radhika, B. M. Venkatesha, S. Ananda, Shivalingegowda, T. S. Shashikumar, H. Ramachandra
Abstract:
The kinetics of the oxidation of amitriptyline (AT) by sodium N-bromotoluene sulphonamide (C6H5SO2NBrNa) has been studied in an acidic buffer medium of pH 1.2 at 303 K. The oxidation reaction of AT was followed spectrophotometrically at maximum wavelength, 410 nm. The reaction rate shows a first order dependence each on concentration of AT and concentration of sodium N-bromotoluene sulphonamide. The reaction also shows an inverse fractional order dependence at low or high concentration of HCl. The dielectric constant of the solvent shows negative effect on the rate of reaction. The addition of halide ions and the reduction product of BAT have no significant effect on the rate. The rate is unchanged with the variation in the ionic strength (NaClO4) of the medium. Addition of reaction mixtures to be aqueous acrylamide solution did not initiate polymerization, indicating the absence of free radical species. The stoichiometry of the reaction was found to be 1:1 and oxidation product of AT is identified. The Michaelis-Menton type of kinetics has been proposed. The CH3C6H5SO2NHBr has been assumed to be the reactive oxidizing species. Thermodynamical parameters were computed by studying the reactions at different temperatures. A mechanism consistent with observed kinetics is presented.
Keywords: Amitriptyline, bromamine-T, kinetics, oxidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14555941 Broadcasting Stabilization for Dynamical Multi-Agent Systems
Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha
Abstract:
This paper deals with a stabilization problem for multi-agent systems, when all agents in a multi-agent system receive the same broadcasting control signal and the controller can measure not each agent output but the sum of all agent outputs. It is analytically shown that when the sum of all agent outputs is bounded with a certain broadcasting controller for a given reference, each agent output is separately bounded: stabilization of the sum of agent outputs always results in the stability of every agent output. A numerical example is presented to illustrate our theoretic findings in this paper.
Keywords: Broadcasting Control, Multi-agent System, Transfer Function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18415940 Robust Control for Discrete-Time Sector Bounded Systems with Time-Varying Delay
Authors: Ju H. Park, S.M. Lee
Abstract:
In this paper, we propose a robust controller design method for discrete-time systems with sector-bounded nonlinearities and time-varying delay. Based on the Lyapunov theory, delaydependent stabilization criteria are obtained in terms of linear matrix inequalities (LMIs) by constructing the new Lyapunov-Krasovskii functional and using some inequalities. A robust state feedback controller is designed by LMI framework and a reciprocally convex combination technique. The effectiveness of the proposed method is verified throughout a numerical example.
Keywords: Lur'e systems, Time-delay, Stabilization, LMIs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16885939 Morphological Analysis of English L1-Persian L2 Adult Learners’ Interlanguage: From the Perspective of SLA Variation
Authors: Maassoumeh Bemani Naeini
Abstract:
Studies on interlanguage have long been engaged in describing the phenomenon of variation in SLA. Pursuing the same goal and particularly addressing the role of linguistic features, this study describes the use of Persian morphology in the interlanguage of two adult English-speaking learners of Persian L2. Taking the general approach of a combination of contrastive analysis, error analysis and interlanguage analysis, this study focuses on the identification and prediction of some possible instances of transfer from English L1 to Persian L2 across six elicitation tasks aiming to investigate whether any of contextual features may variably influence the learners’ order of morpheme accuracy in the areas of copula, possessives, articles, demonstratives, plural form, personal pronouns, and genitive cases. Results describe the existence of task variation in the interlanguage system of Persian L2 learners.Keywords: English L1, Interlanguage Analysis, Persian L2, SLA variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13175938 Discovering Liouville-Type Problems for p-Energy Minimizing Maps in Closed Half-Ellipsoids by Calculus Variation Method
Authors: Lina Wu, Jia Liu, Ye Li
Abstract:
The goal of this project is to investigate constant properties (called the Liouville-type Problem) for a p-stable map as a local or global minimum of a p-energy functional where the domain is a Euclidean space and the target space is a closed half-ellipsoid. The First and Second Variation Formulas for a p-energy functional has been applied in the Calculus Variation Method as computation techniques. Stokes’ Theorem, Cauchy-Schwarz Inequality, Hardy-Sobolev type Inequalities, and the Bochner Formula as estimation techniques have been used to estimate the lower bound and the upper bound of the derived p-Harmonic Stability Inequality. One challenging point in this project is to construct a family of variation maps such that the images of variation maps must be guaranteed in a closed half-ellipsoid. The other challenging point is to find a contradiction between the lower bound and the upper bound in an analysis of p-Harmonic Stability Inequality when a p-energy minimizing map is not constant. Therefore, the possibility of a non-constant p-energy minimizing map has been ruled out and the constant property for a p-energy minimizing map has been obtained. Our research finding is to explore the constant property for a p-stable map from a Euclidean space into a closed half-ellipsoid in a certain range of p. The certain range of p is determined by the dimension values of a Euclidean space (the domain) and an ellipsoid (the target space). The certain range of p is also bounded by the curvature values on an ellipsoid (that is, the ratio of the longest axis to the shortest axis). Regarding Liouville-type results for a p-stable map, our research finding on an ellipsoid is a generalization of mathematicians’ results on a sphere. Our result is also an extension of mathematicians’ Liouville-type results from a special ellipsoid with only one parameter to any ellipsoid with (n+1) parameters in the general setting.Keywords: Bochner Formula, Stokes’ Theorem, Cauchy-Schwarz Inequality, first and second variation formulas, Hardy-Sobolev type inequalities, Liouville-type problem, p-harmonic map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9155937 Adaptive Sliding Mode Observer for a Class of Systems
Abstract:
In this paper, the performance of two adaptive observers applied to interconnected systems is studied. The nonlinearity of systems can be written in a fractional form. The first adaptive observer is an adaptive sliding mode observer for a Lipchitz nonlinear system and the second one is an adaptive sliding mode observer having a filtered error as a sliding surface. After comparing their performances throughout the inverted pendulum mounted on a car system, it was shown that the second one is more robust to estimate the state.Keywords: Adaptive observer, Lipchitz system, Interconnected fractional nonlinear system, sliding mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16675936 Properties of a Stochastic Predator-Prey System with Holling II Functional Response
Authors: Xianqing Liu, Shouming Zhong, Fuli Zhong, Zijian Liu
Abstract:
In this paper, a stochastic predator-prey system with Holling II functional response is studied. First, we show that there is a unique positive solution to the system for any given positive initial value. Then, stochastically bounded of the positive solution to the stochastic system is derived. Moreover, sufficient conditions for global asymptotic stability are also established. In the end, some simulation figures are carried out to support the analytical findings.
Keywords: stochastically bounded, global stability, Holling II functional response, white noise, Markovian switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15865935 Fast Codevector Search Algorithm for 3-D Vector Quantized Codebook
Authors: H. B. Kekre, Tanuja K. Sarode
Abstract:
This paper presents a very simple and efficient algorithm for codebook search, which reduces a great deal of computation as compared to the full codebook search. The algorithm is based on sorting and centroid technique for search. The results table shows the effectiveness of the proposed algorithm in terms of computational complexity. In this paper we also introduce a new performance parameter named as Average fractional change in pixel value as we feel that it gives better understanding of the closeness of the image since it is related to the perception. This new performance parameter takes into consideration the average fractional change in each pixel value.Keywords: Vector Quantization, Data Compression, Encoding, Searching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615