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Abstract—Random Forests are a powerful classification technique,
consisting of a collection of decision trees. One useful feature of
Random Forests is the ability to determine the importance of each
variable in predicting the outcome. This is done by permuting each
variable and computing the change in prediction accuracy before and
after the permutation. This variable importance calculation is similar
to a one-factor-at a time experiment and therefore is inefficient. In
this paper, we use a regular fractional factorial design to determine
which variables to permute. Based on the results of the trials in the
experiment, we calculate the individual importance of the variables,
with improved precision over the standard method. The method is
illustrated with a study of student attrition at Monash University.

Keywords—Random Forests, Variable Importance, Fractional Fac-
torial Designs, Student Attrition.

I. INTRODUCTION: ATTRITION AT MONASH UNIVERSITY

Student attrition is a major problem at most universities.
It has a major economic effect on the university, as well as
having a social and economic effect on the students. Monash
University, the largest university in Australia, has over the
last few years began to address this problem. As part of this,
an attempt to build a predictive model for student attrition at
Monash was undertaken, summarized in this paper.

II. DATA AND ANALYSIS

A. Data

Student Attrition is only determined on an annual basis. A
student is said to have discontinued if they were enrolled on the
census date in one year, but were not enrolled on the census
date in the following year, and had not graduated. Detailed
enrolment records were available for the past 5 years. The
major emphasis is on first year students, as this is the most
common time when students drop out.

B. Analysis

Since the factors involved in attrition seemed to vary from
faculty to faculty, and from stage to stage, separate models
were built for each stage and faculty. The majority of students,
coming from secondary schools, have an ATAR (Australian
Tertiary Admission Rank) score, while students who come
from non-traditional routes may not have an ATAR score.
Separate models were built for students with and without
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ATAR scores. The models were based on Random Forests
with three response categories: continued, graduated, and
discontinued.

III. DECISION TREES AND RANDOM FORESTS

A. Decision Trees

Random Forests are a variation on decision trees. In a tree
(see, for example, [3, pages 305–313]) the data is divided
into homogeneous segments by sequentially choosing the best
binary splits of the variables. The process is continued until
no further splits are possible due to lack of data. The resultant
tree is pruned using cross-validation.

An example of a decision tree for Stage 1 students with
an ATAR score at one of the faculties at Monash is given in
Figure 1. Trees are easy to understand and explain. However,
a disadvantage of trees is that they are quite variable: a small
change in the data leads to a quite different tree. One solution
is Random Forests.

B. Random Forests

Random Forests ([2]), available from Salford Systems, are
a powerful classification technique, consisting of a collec-
tion of decision trees. There is also an R ([7]) package
randomForest ([4],[5]), which implements Breiman’s ran-
dom forest algorithm (based on Breiman and Cutler’s original
Fortran code), which has been used in this paper.

By default, Random Forests are constructed as follows: 500
bootstrap samples are taken from the original sample, and for
each bootstrap sample a tree is constructed, but with only
a sample of three variables used as candidate variables at
each split. No pruning of the trees is done. To classify a new
observation, the observation is classified by each of the 500
trees, and then a majority vote is used. The accuracy of each
of the trees is assessed on the “out-of-bag” data, that is the
data not used to build the tree.

TABLE I
CONFUSION MATRIX FOR DEFAULT RANDOM FOREST MODEL FOR STAGE

1 STUDENTS WITH AN ATAR SCORE AT ONE OF THE FACULTIES AT
MONASH UNIVERSITY.

Continue Attrite Grad class.error
Continue 1044 15 5 0.02

Attrite 182 39 2 0.83
Grad 93 2 5 0.95

Table I gives the confusion matrix for the default Random
Forest model applied to the Stage 1 students with an ATAR
score from one of the faculties at Monash University. Without
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|
nhe=New to Higher Ed,Completed a Degree,Partially Completed

CAMPUS=Caulfield,Gippsland

ATT_TYPE=Full−time

AGE>=18.5

Continue
808/119/4

Continue
22/10/1

Attrite 
6/17/0

Attrite 
7/25/0

Continue
221/52/95

Fig. 1. A Decision Tree for Stage 1 students with an ATAR score at one of the faculties at Monash University. At branches, true statements go to the left
and false statements go to the right. At terminal nodes, the count of continuing, attriting, and graduating students are given, as well as the predicted outcome.
The tree shows that Stage 1 full-time students with an ATAR score attending Caulfield or Gippsland campuses for whom there is some information on their
new to higher education status are more likely to continue, but that younger part-time students are more likely to attrite.

optimization, the Random Forest does not work well at all: al-
though only 2% of continuing students are miss-classified, the
miss-classification rate for attriting and graduating students are
83% and 95% respectively. The maximum miss-classification
rate is 95% and this is used as a performance measure for
the Random Forest. The problem, in this example, is that the
three classes are represented unequally in the data. There are
almost 10 times as many “continuing” students as there are
“graduating” students.

IV. TUNING THE RANDOM FOREST

There are a number of parameters in the randomForest
package that can be varied to improve the performance of the
Random Forest. These are listed below with some details on
how we have changed them from the default values:

strata The samples were stratified by the response variable
attrition.

sampsize In a bootstrap sample about 63.2% of cases
are represented at least once. Since there are 100
graduating cases, the strata sample sizes were chosen
to be 63 continuing students, 63 attriting students,
and 63 graduating students.

replace Rather than sampling with replacement, sampling
without replacement was done.

cutoff The cutoff is a vector of length equal to the num-
ber of classes. From the help menu it is explained
that

The ‘winning’ class for an observation is the
one with the maximum ratio of proportion of
votes to cutoff. Default is 1/k where k is
the number of classes (i.e., majority vote wins).

Examining the code, the sum of the cutoff values
equals 1 i.e c = (c1, c2, c3) where 0 < ci < 1
and

∑
ci = 1. Since the Random Forest is not a

deterministic function, usual methods of optimization
cannot be used. To find the best values of ci, the
following parameterization was used:

c1 = γ1

c2 = (1− γ1)γ2

c3 = 1− γ1 − (1− γ1)γ2

where
0 < γ1, γ2 < 1.

To optimize the random forest, a grid of values
of γ1 and γ2 between 0.05 and 0.95 in steps of
0.05 was used and for each value of the grid, the
Random Forest was applied and the maximum miss-
classification rate was determined. A local weighted
quadratic surface was fitted to this data, using the R
function loess, and the convex hull of the points
with fitted miss-classification rates less than the 5th
percentile was determined. In the interior of the
convex hull on a grid of steps of 0.01 the random
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Forest was again applied and the maximum miss-
classification was again determined. The two sets of
results were combined and the loess surface was
refitted and the values of γ1 and γ2 leading to the
minimum fitted miss-classification rate was found.

ntree The number of trees to grow was set at the default
value of 500 although this could be increased if
desired.

mtry This parameter is the number of variables randomly
sampled as candidates at each split. The default
value is the square root of the number of variables.
We optimized the random forest for each value of
mtry from 3 to 8, and then applied the optimum
cutoffs twenty times. The boxplots of the calcu-
lated miss-classification rates are given in Figure 2.
For this example, the best value of mtry was 6,
with best values of γ1 and γ2 equal to 0.22 and
0.23, respectively, corresponding to a cutoff of c =
(0.22, 0.1794, 0.6006). The corresponding confusion
matrix is given in Table II, with a maximum miss-
classification rate of 47.1%, much improved over the
maximum miss-classification rate shown in Table I.
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Fig. 2. Box-plots of maximum missclassification proportions for various
values of mtry

TABLE II
CONFUSION MATRIX FOR OPTIMIZED RANDOM FOREST MODEL FOR

STAGE 1 STUDENTS WITH AN ATAR SCORE AT ONE OF THE FACULTIES AT
MONASH UNIVERSITY.

Continue Attrite Grad class.error
Continue 583 368 113 0.452

Attrite 84 118 21 0.471
Grad 6 26 68 0.320

V. VARIABLE IMPORTANCE

One useful feature of Random Forests is the ability to
determine the importance of each variable in predicting the
outcome. This is done by permuting each variable and com-
puting the prediction accuracy of the out-of-bag portion of
the data before and after the permutation. An example of the
variable importance calculation, together with the variables
considered, is given in Table III.

In the table, there are five different importance measures.
The first three are class-specific measures; for example, the
miss-classification rates for attriting students when the campus
variable is permuted is increased by 5%. Similar calculations
are done for the other explanatory variables and for the other
classes. The fourth measure is the average of the first three
measures, while the fifth measure is the total decrease in node
impurities, measured by the Gini index (see, for example, [3,
page309]), from splitting on the variable, averaged over all
trees.

Since our major interest here is attrition, we have focused
on the second measure. It is possible to scale this measure
by dividing by the standard error of the miss-classification
increases over all the trees, but we prefer to focus on the
unscaled measure. From the plot in Figure 3, it appears that
there are two important explanatory variables, Campus and
Attendance Type.

It is instructive to examine how this variable importance
measure is done. The actual design, given in Table IV, is
identical to a one-factor at a time design (see, for example,
[6]), where a − sign corresponds to not permuting the variable,
and a + sign corresponds to permuting the variable. The
average miss-classification rate for attriting students is given
in the column labeled m2, while the calculated importance is
given in the column labeled i2. Note that the results in Tables
3 and 4 do not correspond exactly because the importance
calculation is based on a random permutation. Similarly, note
that the average miss-classification rate for the trees is higher
than for the random forest itself.

The one-factor at a time design is known to be a very
inefficient way of conducting experiments. It is much better to
use fractional factorial designs (see, for example, [1, Chapter
6]) for this purpose. The key idea is to vary more than one
factor at a time. The same idea was applied here: more than
one variable at a time was permuted.

Table V shows a regular fractional factorial design involving
the 13 factors in 16 runs. The first run corresponds to not
permuting any of the variables, while the second run, for
example, corresponds to permuting variables A, E, F, G, L,
M, and N.

The design is easy to construct. Since there are 16 runs,
columns A to D are every combination of − and + signs. The
other columns are generated by multiplying columns A to D
as follows:

E = −AB F = −AC
G = −AD H = −BC
J = −BD K = −CD
L = ABC M = ABD
N = ACD
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TABLE III
VARIABLE IMPORTANCE MEASURES

Continue Attrite Grad

Mean
Decrease
Accuracy

Mean
Decrease

Gini
i1 i2 i3 i4 i5

ATT MODC -0.000 0.000 0.000 -0.000 0.27
ATT TYPE 0.014 0.018 -0.009 0.014 4.72

nhe -0.009 -0.003 0.441 0.005 26.72
ABOR -0.000 0.000 -0.000 -0.000 0.09

AGE -0.013 -0.011 0.285 -0.003 21.80
OS 0.001 -0.000 0.002 0.001 0.54

DISAB 0.000 0.002 0.000 0.001 1.94
GENDER -0.001 0.005 0.010 0.000 5.04

sch type -0.004 0.005 0.003 -0.003 8.33
REGION -0.001 -0.000 -0.002 -0.001 2.45

SES2 -0.003 0.003 -0.000 -0.002 7.31
ATAR 0.000 -0.006 0.001 -0.000 31.73

CAMPUS 0.008 0.050 0.002 0.013 6.29

A Attendance Mode
B Attendance Type
C New to Higher Education
D Aboriginal and

Torres Strait Islander Status
E Age
F Overseas Status
G Disability Status
H Gender
J School Type
K Region
L Socio-economic status
M ATAR score
N Campus

AGE

ATAR

nhe

REGION

OS

ABOR

ATT_MODC

DISAB

SES2

GENDER

sch_type

ATT_TYPE

CAMPUS

−0.01 0.00 0.01 0.02 0.03 0.04 0.05

Attrite

Fig. 3. Variable Importance diagram for Stage 1 students in the Art and Design faculty at Monash University.

TABLE IV
ONE-FACTOR AT A TIME DESIGN FOR 13 FACTORS. VARIABLES WHICH ARE NOT TO BE PERMUTED ARE DENOTED BY −, WHILE VARIABLES TO BE

PERMUTED ARE DENOTED BY +. THE MEAN MISS-CLASSIFICATION RATE FOR ATTRITING STUDENTS IS GIVEN IN THE COLUMN LABELED m2 , WHILE
THE CALCULATED IMPORTANCE IS GIVEN IN THE COLUMN LABELED i2 .

A B C D E F G H J K L M N m2 i2
− − − − − − − − − − − − − 0.548
+ − − − − − − − − − − − − 0.548 0.000
− + − − − − − − − − − − − 0.565 0.017
− − + − − − − − − − − − − 0.545 −0.003
− − − + − − − − − − − − − 0.548 0.000
− − − − + − − − − − − − − 0.534 −0.014
− − − − − + − − − − − − − 0.548 0.000
− − − − − − + − − − − − − 0.550 0.002
− − − − − − − + − − − − − 0.553 0.005
− − − − − − − − + − − − − 0.551 0.003
− − − − − − − − − + − − − 0.547 −0.001
− − − − − − − − − − + − − 0.549 0.001
− − − − − − − − − − − + − 0.542 −0.006
− − − − − − − − − − − − + 0.598 0.050

The negative signs for E to K ensure that the first row of the
design has all − signs, corresponding to not permuting any
variable.

The average miss-classification rate for the trees is given in

the column labeled m2. The importance of each variable is
calculated by obtaining the difference between the means for
the runs where the variable is permuted and for the runs where
the variable is not permuted. For N , (Campus), the calculated
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TABLE V
FRACTIONAL FACTORIAL DESIGN FOR 13 FACTORS. VARIABLES WHICH ARE NOT TO BE PERMUTED ARE DENOTED BY −, WHILE VARIABLES TO BE

PERMUTED ARE DENOTED BY +. THE MEAN MISS-CLASSIFICATION RATE FOR ATTRITING STUDENTS IS GIVEN IN THE COLUMN LABELED m2 .

A B C D E F G H J K L M N m2

− − − − − − − − − − − − − 0.548
+ − − − + + + − − − + + + 0.592
− + − − + − − + + − + + − 0.566
+ + − − − + + + + − − − + 0.633
− − + − − + − + − + + − + 0.586
+ − + − + − + + − + − + − 0.549
− + + − + + − − + + − + + 0.630
+ + + − − − + − + + + − − 0.574
− − − + − − + − + + − + + 0.596
+ − − + + + − − + + + − − 0.542
− + − + + − + + − + + − + 0.625
+ + − + − + − + − + − + − 0.564
− − + + − + + + + − + + − 0.541
+ − + + + − − + + − − − + 0.598
− + + + + + + − − − − − − 0.590
+ + + + − − − − − − + + + 0.626

variable importance is 0.0515.
To determine the “real” effects, the calculated importances

can be plotted on a Daniel plot ([1, page 203]). The Daniel plot
in Figure 4 shows that B (Attendance Mode) and N (Campus)
certainly seem to be important variables. In this case, the
same conclusions have been reached using either Figure 3 or
Figure 4. However, Figure 4 is much more conclusive because
the variability of the variable importance effects is much less
using a fractional factorial design than using a one-factor at
a time design. Assuming a variance of σ2, the one-factor at
a time importance measure has a variance of 2σ2, while the
fractional factorial design measure has a variance of σ2/4 at
a cost, in this case, of two extra permutations.
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Fig. 4. Daniel Plot based on regular fractional factorial design. The plot
shows that B (Attendance Mode) and N (Campus) certainly seem to be
important variables.

VI. CONCLUDING REMARKS

Random Forests are powerful methods but require some
form of optimization for them to work well. We have used

used stratified sampling as well as optimizing the cutoff values
in order to improve the performance of the Random Forest.

The variable importance calculation used in random forests
is based on a one-factor at a time experiment. The ideas
of fractional factorial designs can be used to improve this
calculation with very little additional effort.
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