Search results for: delay differential equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2195

Search results for: delay differential equations

2135 2 – Block 3 - Point Modified Numerov Block Methods for Solving Ordinary Differential Equations

Authors: Abdu Masanawa Sagir

Abstract:

In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations of the form y′′ = f(x,y), a < = x < = b with associated initial or boundary conditions. The continuaous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different three discrete schemes, each of order (4,4,4)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on linear and non-linear ordinary differential equations whose solutions are oscillatory or nearly periodic in nature, and the results obtained compared favourably with the exact solution.

Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
2134 Positive Periodic Solutions in a Discrete Competitive System with the Effect of Toxic Substances

Authors: Changjin Xu, Qianhong Zhang

Abstract:

In this paper, a delayed competitive system with the effect of toxic substances is investigated. With the aid of differential equations with piecewise constant arguments, a discrete analogue of continuous non-autonomous delayed competitive system with the effect of toxic substances is proposed. By using Gaines and Mawhin,s continuation theorem of coincidence degree theory, a easily verifiable sufficient condition for the existence of positive solutions of difference equations is obtained.

Keywords: Competitive system, periodic solution, discrete time delay, topological degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
2133 Application of the Central-Difference with Half- Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-Differential Equations

Authors: E. Aruchunan, J. Sulaiman

Abstract:

The objective of this paper is to analyse the application of the Half-Sweep Gauss-Seidel (HSGS) method by using the Half-sweep approximation equation based on central difference (CD) and repeated trapezoidal (RT) formulas to solve linear fredholm integro-differential equations of first order. The formulation and implementation of the Full-Sweep Gauss-Seidel (FSGS) and Half- Sweep Gauss-Seidel (HSGS) methods are also presented. The HSGS method has been shown to rapid compared to the FSGS methods. Some numerical tests were illustrated to show that the HSGS method is superior to the FSGS method.

Keywords: Integro-differential equations, Linear fredholm equations, Finite difference, Quadrature formulas, Half-Sweep iteration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
2132 Numerical Algorithms for Solving a Type of Nonlinear Integro-Differential Equations

Authors: Shishen Xie

Abstract:

In this article two algorithms, one based on variation iteration method and the other on Adomian's decomposition method, are developed to find the numerical solution of an initial value problem involving the non linear integro differantial equation where R is a nonlinear operator that contains partial derivatives with respect to x. Special cases of the integro-differential equation are solved using the algorithms. The numerical solutions are compared with analytical solutions. The results show that these two methods are efficient and accurate with only two or three iterations

Keywords: variation iteration method, decomposition method, nonlinear integro-differential equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
2131 A First Course in Numerical Methods with “Mathematica“

Authors: Andrei A. Kolyshkin

Abstract:

In the present paper some recommendations for the use of software package “Mathematica" in a basic numerical analysis course are presented. The methods which are covered in the course include solution of systems of linear equations, nonlinear equations and systems of nonlinear equations, numerical integration, interpolation and solution of ordinary differential equations. A set of individual assignments developed for the course covering all the topics is discussed in detail.

Keywords: Numerical methods, "Mathematica", e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3671
2130 Numerical Analysis of the SIR-SI Differential Equations with Application to Dengue Disease Mapping in Kuala Lumpur, Malaysia

Authors: N. A. Samat, D. F. Percy

Abstract:

The main aim of this study is to describe and introduce a method of numerical analysis in obtaining approximate solutions for the SIR-SI differential equations (susceptible-infectiverecovered for human populations; susceptible-infective for vector populations) that represent a model for dengue disease transmission. Firstly, we describe the ordinary differential equations for the SIR-SI disease transmission models. Then, we introduce the numerical analysis of solutions of this continuous time, discrete space SIR-SI model by simplifying the continuous time scale to a densely populated, discrete time scale. This is followed by the application of this numerical analysis of solutions of the SIR-SI differential equations to the estimation of relative risk using continuous time, discrete space dengue data of Kuala Lumpur, Malaysia. Finally, we present the results of the analysis, comparing and displaying the results in graphs, table and maps. Results of the numerical analysis of solutions that we implemented offers a useful and potentially superior model for estimating relative risks based on continuous time, discrete space data for vector borne infectious diseases specifically for dengue disease. 

Keywords: Dengue disease, disease mapping, numerical analysis, SIR-SI differential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
2129 A Study of Hamilton-Jacobi-Bellman Equation Systems Arising in Differential Game Models of Changing Society

Authors: Weihua Ruan, Kuan-Chou Chen

Abstract:

This paper is concerned with a system of Hamilton-Jacobi-Bellman equations coupled with an autonomous dynamical system. The mathematical system arises in the differential game formulation of political economy models as an infinite-horizon continuous-time differential game with discounted instantaneous payoff rates and continuously and discretely varying state variables. The existence of a weak solution of the PDE system is proven and a computational scheme of approximate solution is developed for a class of such systems. A model of democratization is mathematically analyzed as an illustration of application.

Keywords: Differential games, Hamilton-Jacobi-Bellman equations, infinite horizon, political-economy models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
2128 Perturbation Based Modelling of Differential Amplifier Circuit

Authors: Rahul Bansal, Sudipta Majumdar

Abstract:

This paper presents the closed form nonlinear expressions of bipolar junction transistor (BJT) differential amplifier (DA) using perturbation method. Circuit equations have been derived using Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law (KCL). The perturbation method has been applied to state variables for obtaining the linear and nonlinear terms. The implementation of the proposed method is simple. The closed form nonlinear expressions provide better insights of physical systems. The derived equations can be used for signal processing applications.

Keywords: Differential amplifier, perturbation method, Taylor series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019
2127 Adomian Decomposition Method Associated with Boole-s Integration Rule for Goursat Problem

Authors: Mohd Agos Salim Nasir, Ros Fadilah Deraman, Siti Salmah Yasiran

Abstract:

The Goursat partial differential equation arises in linear and non linear partial differential equations with mixed derivatives. This equation is a second order hyperbolic partial differential equation which occurs in various fields of study such as in engineering, physics, and applied mathematics. There are many approaches that have been suggested to approximate the solution of the Goursat partial differential equation. However, all of the suggested methods traditionally focused on numerical differentiation approaches including forward and central differences in deriving the scheme. An innovation has been done in deriving the Goursat partial differential equation scheme which involves numerical integration techniques. In this paper we have developed a new scheme to solve the Goursat partial differential equation based on the Adomian decomposition (ADM) and associated with Boole-s integration rule to approximate the integration terms. The new scheme can easily be applied to many linear and non linear Goursat partial differential equations and is capable to reduce the size of computational work. The accuracy of the results reveals the advantage of this new scheme over existing numerical method.

Keywords: Goursat problem, partial differential equation, Adomian decomposition method, Boole's integration rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
2126 Ψ-Eventual Stability of Differential System with Impulses

Authors: Bhanu Gupta

Abstract:

In this paper, the criteria of Ψ-eventual stability have been established for generalized impulsive differential systems of multiple dependent variables. The sufficient conditions have been obtained using piecewise continuous Lyapunov function. An example is given to support our theoretical result.

Keywords: impulsive differential equations, Lyapunov function, eventual stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4052
2125 Positive Solutions of Second-order Singular Differential Equations in Banach Space

Authors: Li Xiguang

Abstract:

In this paper, by constructing a special set and utilizing fixed point index theory, we study the existence of solution for the boundary value problem of second-order singular differential equations in Banach space, which improved and generalize the result of related paper.

Keywords: Banach space, cone, fixed point index, singular equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
2124 Parallel Block Backward Differentiation Formulas for Solving Ordinary Differential Equations

Authors: Khairil Iskandar Othman, Zarina Bibi Ibrahim, Mohamed Suleiman

Abstract:

A parallel block method based on Backward Differentiation Formulas (BDF) is developed for the parallel solution of stiff Ordinary Differential Equations (ODEs). Most common methods for solving stiff systems of ODEs are based on implicit formulae and solved using Newton iteration which requires repeated solution of systems of linear equations with coefficient matrix, I - hβJ . Here, J is the Jacobian matrix of the problem. In this paper, the matrix operations is paralleled in order to reduce the cost of the iterations. Numerical results are given to compare the speedup and efficiency of parallel algorithm and that of sequential algorithm.

Keywords: Backward Differentiation Formula, block, ordinarydifferential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
2123 Numerical Study of a Class of Nonlinear Partial Differential Equations

Authors: Kholod M. Abu-Alnaja

Abstract:

In this work, we derive two numerical schemes for solving a class of nonlinear partial differential equations. The first method is of second order accuracy in space and time directions, the scheme is unconditionally stable using Von Neumann stability analysis, the scheme produced a nonlinear block system where Newton-s method is used to solve it. The second method is of fourth order accuracy in space and second order in time. The method is unconditionally stable and Newton's method is used to solve the nonlinear block system obtained. The exact single soliton solution and the conserved quantities are used to assess the accuracy and to show the robustness of the schemes. The interaction of two solitary waves for different parameters are also discussed.

Keywords: Crank-Nicolson Scheme, Douglas Scheme, Partial Differential Equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
2122 Numerical Solution of Second-Order Ordinary Differential Equations by Improved Runge-Kutta Nystrom Method

Authors: Faranak Rabiei, Fudziah Ismail, S. Norazak, Saeid Emadi

Abstract:

In this paper we developed the Improved Runge-Kutta Nystrom (IRKN) method for solving second order ordinary differential equations. The methods are two step in nature and require lower number of function evaluations per step compared with the existing Runge-Kutta Nystrom (RKN) methods. Therefore, the methods are computationally more efficient at achieving the higher order of local accuracy. Algebraic order conditions of the method are obtained and the third and fourth order method are derived with two and three stages respectively. The numerical results are given to illustrate the efficiency of the proposed method compared to the existing RKN methods.

Keywords: Improved Runge-Kutta Nystrom method, Two step method, Second-order ordinary differential equations, Order conditions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6850
2121 Positive Solutions for Systems of Nonlinear Third-Order Differential Equations with p-Laplacian

Authors: Li Xiguang

Abstract:

In this paper, by constructing a special set and utilizing fixed point theory, we study the existence and multiplicity of the positive solutions for systems of nonlinear third-order differential equations with p-laplacian, which improve and generalize the result of related paper.

Keywords: p-Laplacian, cone, fixed point theorem, positive solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
2120 Numerical Solution of Linear Ordinary Differential Equations in Quantum Chemistry by Clenshaw Method

Authors: M. Saravi, F. Ashrafi, S.R. Mirrajei

Abstract:

As we know, most differential equations concerning physical phenomenon could not be solved by analytical method. Even if we use Series Method, some times we need an appropriate change of variable, and even when we can, their closed form solution may be so complicated that using it to obtain an image or to examine the structure of the system is impossible. For example, if we consider Schrodinger equation, i.e., We come to a three-term recursion relations, which work with it takes, at least, a little bit time to get a series solution[6]. For this reason we use a change of variable such as or when we consider the orbital angular momentum[1], it will be necessary to solve. As we can observe, working with this equation is tedious. In this paper, after introducing Clenshaw method, which is a kind of Spectral method, we try to solve some of such equations.

Keywords: Chebyshev polynomials, Clenshaw method, ODEs, Spectral methods

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
2119 Effect of Delay on Supply Side on Market Behavior: A System Dynamic Approach

Authors: M. Khoshab, M. J. Sedigh

Abstract:

Dynamic systems, which in mathematical point of view are those governed by differential equations, are much more difficult to study and to predict their behavior in comparison with static systems which are governed by algebraic equations. Economical systems such as market are among complicated dynamic systems. This paper tries to adopt a very simple mathematical model for market and to study effect of supply and demand function on behavior of the market while the supply side experiences a lag due to production restrictions.

Keywords: Dynamic System, Lag on Supply Demand, Market Stability, Supply Demand Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
2118 Periodic Solutions in a Delayed Competitive System with the Effect of Toxic Substances on Time Scales

Authors: Changjin Xu, Qianhong Zhang

Abstract:

In this paper, the existence of periodic solutions of a delayed competitive system with the effect of toxic substances is investigated by using the Gaines and Mawhin,s continuation theorem of coincidence degree theory on time scales. New sufficient conditions are obtained for the existence of periodic solutions. The approach is unified to provide the existence of the desired solutions for the continuous differential equations and discrete difference equations. Moreover, The approach has been widely applied to study existence of periodic solutions in differential equations and difference equations.

Keywords: Time scales, competitive system, periodic solution, coincidence degree, topological degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
2117 An Efficient Computational Algorithm for Solving the Nonlinear Lane-Emden Type Equations

Authors: Gholamreza Hojjati, Kourosh Parand

Abstract:

In this paper we propose a class of second derivative multistep methods for solving some well-known classes of Lane- Emden type equations which are nonlinear ordinary differential equations on the semi-infinite domain. These methods, which have good stability and accuracy properties, are useful in deal with stiff ODEs. We show superiority of these methods by applying them on the some famous Lane-Emden type equations.

Keywords: Lane-Emden type equations, nonlinear ODE, stiff problems, multistep methods, astrophysics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3183
2116 Solving SPDEs by a Least Squares Method

Authors: Hassan Manouzi

Abstract:

We present in this paper a useful strategy to solve stochastic partial differential equations (SPDEs) involving stochastic coefficients. Using the Wick-product of higher order and the Wiener-Itˆo chaos expansion, the SPDEs is reformulated as a large system of deterministic partial differential equations. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. To obtain the chaos coefficients in the corresponding deterministic equations, we use a least square formulation. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.

Keywords: Least squares, Wick product, SPDEs, finite element, Wiener chaos expansion, gradient method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
2115 Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides

Authors: Leila Motamed-Jahromi, Mohsen Hatami, Alireza Keshavarz

Abstract:

This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.

Keywords: Nonlinear optics, propagation equation, plasmonic waveguide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
2114 Numerical Solution of Riccati Differential Equations by Using Hybrid Functions and Tau Method

Authors: Changqing Yang, Jianhua Hou, Beibo Qin

Abstract:

A numerical method for Riccati equation is presented in this work. The method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The operational matrices of derivative and product of hybrid functions are presented. These matrices together with the tau method are then utilized to transform the differential equation into a system of algebraic equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.

Keywords: Hybrid functions, Riccati differential equation, Blockpulse, Chebyshev polynomials, Tau method, operational matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2590
2113 Heat and Mass Transfer over an Unsteady Stretching Surface Embedded in a Porous Medium in the Presence of Variable Chemical Reaction

Authors: T. G. Emam

Abstract:

The effect of variable chemical reaction on heat and mass transfer characteristics over unsteady stretching surface embedded in a porus medium is studied. The governing time dependent boundary layer equations are transformed into ordinary differential equations containing chemical reaction parameter, unsteadiness parameter, Prandtl number and Schmidt number. These equations have been transformed into a system of first order differential equations. MATHEMATICA has been used to solve this system after obtaining the missed initial conditions. The velocity gradient, temperature, and concentration profiles are computed and discussed in details for various values of the different parameters.

Keywords: Heat and mass transfer, stretching surface, chemical reaction, porus medium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
2112 Permanence and Almost Periodic Solutions to an Epidemic Model with Delay and Feedback Control

Authors: Chenxi Yang, Zhouhong Li

Abstract:

This paper is concerned with an epidemic model with delay. By using the comparison theorem of the differential equation and constructing a suitable Lyapunov functional, Some sufficient conditions which guarantee the permeance and existence of a unique globally attractive positive almost periodic solution of the model are obtain. Finally, an example is employed to illustrate our result.

Keywords: Permanence, Almost periodic solution, Epidemic model, Delay, Feedback control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
2111 On Problem of Parameters Identification of Dynamic Object

Authors: Kamil Aida-zade, C. Ardil

Abstract:

In this paper, some problem formulations of dynamic object parameters recovery described by non-autonomous system of ordinary differential equations with multipoint unshared edge conditions are investigated. Depending on the number of additional conditions the problem is reduced to an algebraic equations system or to a problem of quadratic programming. With this purpose the paper offers a new scheme of the edge conditions transfer method called by conditions shift. The method permits to get rid from differential links and multipoint unshared initially-edge conditions. The advantage of the proposed approach is concluded by capabilities of reduction of a parametric identification problem to essential simple problems of the solution of an algebraic system or quadratic programming.

Keywords: dynamic objects, ordinary differential equations, multipoint unshared edge conditions, quadratic programming, conditions shift

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
2110 A Nonconforming Mixed Finite Element Method for Semilinear Pseudo-Hyperbolic Partial Integro-Differential Equations

Authors: Jingbo Yang, Hong Li, Yang Liu, Siriguleng He

Abstract:

In this paper, a nonconforming mixed finite element method is studied for semilinear pseudo-hyperbolic partial integrodifferential equations. By use of the interpolation technique instead of the generalized elliptic projection, the optimal error estimates of the corresponding unknown function are given.

Keywords: Pseudo-hyperbolic partial integro-differential equations, Nonconforming mixed element method, Semilinear, Error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
2109 Ordinary Differential Equations with Inverted Functions

Authors: Thomas Kampke

Abstract:

Equations with differentials relating to the inverse of an unknown function rather than to the unknown function itself are solved exactly for some special cases and numerically for the general case. Invertibility combined with differentiability over connected domains forces solutions always to be monotone. Numerical function inversion is key to all solution algorithms which either are of a forward type or a fixed point type considering whole approximate solution functions in each iteration. The given considerations are restricted to ordinary differential equations with inverted functions (ODEIs) of first order. Forward type computations, if applicable, admit consistency of order one and, under an additional accuracy condition, convergence of order one.

Keywords: Euler method, fixed points, golden section, multi-step procedures, Runge Kutta methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
2108 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries

Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco

Abstract:

SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.

Keywords: Forecasting, ordinary differential equations, SARS-CoV-2 epidemic, SIR model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 558
2107 On Deterministic Chaos: Disclosing the Missing Mathematics from the Lorenz-Haken Equations

Authors: Belkacem Meziane

Abstract:

The original 3D Lorenz-Haken equations -which describe laser dynamics- are converted into 2-second-order differential equations out of which the so far missing mathematics is extracted. Leaning on high-order trigonometry, important outcomes are pulled out: A fundamental result attributes chaos to forbidden periodic solutions, inside some precisely delimited region of the control parameter space that governs self-pulsing.

Keywords: chaos, Lorenz-Haken equations, laser dynamics, nonlinearities

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
2106 Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux

Authors: Phool Singh, Ashok Jangid, N.S. Tomer, Deepa Sinha

Abstract:

The aim of this paper is to study the oblique stagnation point flow on vertical plate with uniform surface heat flux in presence of magnetic field. Using Stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained using Runge-Kutta Fehlberg method with the help of shooting technique. In the present work the effects of striking angle, magnetic field parameter, Grashoff number, the Prandtl number on velocity and heat transfer characteristics have been discussed. Effect of above mentioned parameter on the position of stagnation point are also studied.

Keywords: Heat flux, Oblique stagnation point, Mixedconvection, Magneto hydrodynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918