Search results for: approximate solutions.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1676

Search results for: approximate solutions.

1616 Laplace Decomposition Approximation Solution for a System of Multi-Pantograph Equations

Authors: M. A. Koroma, C. Zhan, A. F. Kamara, A. B. Sesay

Abstract:

In this work we adopt a combination of Laplace transform and the decomposition method to find numerical solutions of a system of multi-pantograph equations. The procedure leads to a rapid convergence of the series to the exact solution after computing a few terms. The effectiveness of the method is demonstrated in some examples by obtaining the exact solution and in others by computing the absolute error which decreases as the number of terms of the series increases.

Keywords: Laplace decomposition, pantograph equations, exact solution, numerical solution, approximate solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
1615 Analytical Solution for the Zakharov-Kuznetsov Equations by Differential Transform Method

Authors: Saeideh Hesam, Alireza Nazemi, Ahmad Haghbin

Abstract:

This paper presents the approximate analytical solution of a Zakharov-Kuznetsov ZK(m, n, k) equation with the help of the differential transform method (DTM). The DTM method is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. In this approach the solution is found in the form of a rapidly convergent series with easily computed components. The two special cases, ZK(2,2,2) and ZK(3,3,3), are chosen to illustrate the concrete scheme of the DTM method in ZK(m, n, k) equations. The results demonstrate reliability and efficiency of the proposed method.

Keywords: Zakharov-Kuznetsov equation, differential transform method, closed form solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
1614 On the Integer Solutions of the Pell Equation x2 - dy2 = 2t

Authors: Ahmet Tekcan, Betül Gezer, Osman Bizim

Abstract:

Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.

Keywords: Pell equation, Diophantine equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
1613 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method

Authors: Emad K. Jaradat, Ala’a Al-Faqih

Abstract:

Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.

Keywords: Non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two- dimensional Schrodinger equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 904
1612 The Pell Equation x2 − Py2 = Q

Authors: Ahmet Tekcan, Arzu Özkoç, Canan Kocapınar, Hatice Alkan

Abstract:

Let p be a prime number such that p ≡ 1(mod 4), say p = 1+4k for a positive integer k. Let P = 2k + 1 and Q = k2. In this paper, we consider the integer solutions of the Pell equation x2-Py2 = Q over Z and also over finite fields Fp. Also we deduce some relations on the integer solutions (xn, yn) of it.

Keywords: Pell equation, solutions of Pell equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
1611 Variational Iteration Method for Solving Systems of Linear Delay Differential Equations

Authors: Sara Barati, Karim Ivaz

Abstract:

In this paper, using a model transformation approach a system of linear delay differential equations (DDEs) with multiple delays is converted to a non-delayed initial value problem. The variational iteration method (VIM) is then applied to obtain the approximate analytical solutions. Numerical results are given for several examples involving scalar and second order systems. Comparisons with the classical fourth-order Runge-Kutta method (RK4) verify that this method is very effective and convenient.

Keywords: Variational iteration method, delay differential equations, multiple delays, Runge-Kutta method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
1610 Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction

Authors: Po-Jen Su, Huann-Ming Chou

Abstract:

In this article, we used the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time.

Keywords: Maximum principle, non-Fourier heat conduction, residual correction method, thermo-elastic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
1609 Behavior of Solutions of the System of Recurrence Equations Based on the Verhulst-Pearl Model

Authors: Vladislav N. Dumachev, Vladimir A. Rodin

Abstract:

By utilizing the system of the recurrence equations, containing two parameters, the dynamics of two antagonistically interconnected populations is studied. The following areas of the system behavior are detected: the area of the stable solutions, the area of cyclic solutions occurrence, the area of the accidental change of trajectories of solutions, and the area of chaos and fractal phenomena. The new two-dimensional diagram of the dynamics of the solutions change (the fractal cabbage) has been obtained. In the cross-section of this diagram for one of the equations the well-known Feigenbaum tree of doubling has been noted.Keywordsbifurcation, chaos, dynamics of populations, fractals

Keywords: bifurcation, chaos, dynamics of populations, fractals

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
1608 New Graph Similarity Measurements based on Isomorphic and Nonisomorphic Data Fusion and their Use in the Prediction of the Pharmacological Behavior of Drugs

Authors: Irene Luque Ruiz, Manuel Urbano Cuadrado, Miguel Ángel Gómez-Nieto

Abstract:

New graph similarity methods have been proposed in this work with the aim to refining the chemical information extracted from molecules matching. For this purpose, data fusion of the isomorphic and nonisomorphic subgraphs into a new similarity measure, the Approximate Similarity, was carried out by several approaches. The application of the proposed method to the development of quantitative structure-activity relationships (QSAR) has provided reliable tools for predicting several pharmacological parameters: binding of steroids to the globulin-corticosteroid receptor, the activity of benzodiazepine receptor compounds, and the blood brain barrier permeability. Acceptable results were obtained for the models presented here.

Keywords: Graph similarity, Nonisomorphic dissimilarity, Approximate similarity, Drug activity prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
1607 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides

Authors: R. B. Ogunrinde, C. C. Jibunoh

Abstract:

In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.

Keywords: Spectral decomposition, eigenvalues of the Jacobian, linear RHS, homogeneous linear systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1150
1606 Ordinary Differential Equations with Inverted Functions

Authors: Thomas Kampke

Abstract:

Equations with differentials relating to the inverse of an unknown function rather than to the unknown function itself are solved exactly for some special cases and numerically for the general case. Invertibility combined with differentiability over connected domains forces solutions always to be monotone. Numerical function inversion is key to all solution algorithms which either are of a forward type or a fixed point type considering whole approximate solution functions in each iteration. The given considerations are restricted to ordinary differential equations with inverted functions (ODEIs) of first order. Forward type computations, if applicable, admit consistency of order one and, under an additional accuracy condition, convergence of order one.

Keywords: Euler method, fixed points, golden section, multi-step procedures, Runge Kutta methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
1605 Free Vibration Analysis of Non-Uniform Euler Beams on Elastic Foundation via Homotopy Perturbation Method

Authors: U. Mutman, S. B. Coskun

Abstract:

In this study Homotopy Perturbation Method (HPM) is employed to investigate free vibration of an Euler beam with variable stiffness resting on an elastic foundation. HPM is an easy-to-use and very efficient technique for the solution of linear or nonlinear problems. HPM produces analytical approximate expression which is continuous in the solution domain. This work shows that HPM is a promising method for free vibration analysis of nonuniform Euler beams on elastic foundation. Several case problems have been solved by using the technique and solutions have been compared with those available in the literature.

Keywords: Homotopy Perturbation Method, Elastic Foundation, Vibration, Beam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
1604 Approximating Maximum Weighted Independent Set Using Vertex Support

Authors: S. Balaji, V. Swaminathan, K. Kannan

Abstract:

The Maximum Weighted Independent Set (MWIS) problem is a classic graph optimization NP-hard problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the MWIS problem is to find a vertex set S V whose total weight is maximum subject to no two vertices in S are adjacent. This paper presents a novel approach to approximate the MWIS of a graph using minimum weighted vertex cover of the graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the proposed algorithm can yield better solutions than other existing algorithms found in the literature for solving the MWIS.

Keywords: weighted independent set, vertex cover, vertex support, heuristic, NP - hard problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
1603 On Symmetry Analysis and Exact Wave Solutions of New Modified Novikov Equation

Authors: Anupma Bansal, R. K. Gupta

Abstract:

In this paper, we study a new modified Novikov equation for its classical and nonclassical symmetries and use the symmetries to reduce it to a nonlinear ordinary differential equation (ODE). With the aid of solutions of the nonlinear ODE by using the modified (G/G)-expansion method proposed recently, multiple exact traveling wave solutions are obtained and the traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.

Keywords: New Modified Novikov Equation, Lie Classical Method, Nonclassical Method, Modified (G'/G)-Expansion Method, Traveling Wave Solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
1602 Simulation of Dam Break using Finite Volume Method

Authors: A.Roshandel, N.Hedayat, H.kiamanesh

Abstract:

Today, numerical simulation is a powerful tool to solve various hydraulic engineering problems. The aim of this research is numerical solutions of shallow water equations using finite volume method for Simulations of dam break over wet and dry bed. In order to solve Riemann problem, Roe-s approximate solver is used. To evaluate numerical model, simulation was done in 1D and 2D states. In 1D state, two dam break test over dry bed (with and without friction) were studied. The results showed that Structural failure around the dam and damage to the downstream constructions in bed without friction is more than friction bed. In 2D state, two tests for wet and dry beds were done. Generally in wet bed case, waves are propagated to canal sides but in dry bed it is not significant. Therefore, damage to the storage facilities and agricultural lands in wet bed case is more than in dry bed.

Keywords: dam break, dry bed, finite volume method, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503
1601 Exact Solutions of Steady Plane Flows of an Incompressible Fluid of Variable Viscosity Using (ξ, ψ)- Or (η, ψ)- Coordinates

Authors: Rana Khalid Naeem, Asif Mansoor, Waseem Ahmed Khan, Aurangzaib

Abstract:

The exact solutions of the equations describing the steady plane motion of an incompressible fluid of variable viscosity for an arbitrary state equation are determined in the (ξ,ψ) − or (η,ψ )- coordinates where ψ(x,y) is the stream function, ξ and η are the parts of the analytic function, ϖ =ξ( x,y )+iη( x,y ). Most of the solutions involve arbitrary function/ functions indicating  that the flow equations possess an infinite set of solutions. 

Keywords: Exact solutions, Fluid of variable viscosity, Navier-Stokes equations, Steady plane flows

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3448
1600 A New Approach to Solve Blasius Equation using Parameter Identification of Nonlinear Functions based on the Bees Algorithm (BA)

Authors: E. Assareh, M.A. Behrang, M. Ghalambaz, A.R. Noghrehabadi, A. Ghanbarzadeh

Abstract:

In this paper, a new approach is introduced to solve Blasius equation using parameter identification of a nonlinear function which is used as approximation function. Bees Algorithm (BA) is applied in order to find the adjustable parameters of approximation function regarding minimizing a fitness function including these parameters (i.e. adjustable parameters). These parameters are determined how the approximation function has to satisfy the boundary conditions. In order to demonstrate the presented method, the obtained results are compared with another numerical method. Present method can be easily extended to solve a wide range of problems.

Keywords: Bees Algorithm (BA); Approximate Solutions; Blasius Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
1599 Optimization Using Simulation of the Vehicle Routing Problem

Authors: Nayera E. El-Gharably, Khaled S. El-Kilany, Aziz E. El-Sayed

Abstract:

A key element of many distribution systems is the routing and scheduling of vehicles servicing a set of customers. A wide variety of exact and approximate algorithms have been proposed for solving the vehicle routing problems (VRP). Exact algorithms can only solve relatively small problems of VRP, which is classified as NP-Hard. Several approximate algorithms have proven successful in finding a feasible solution not necessarily optimum. Although different parts of the problem are stochastic in nature; yet, limited work relevant to the application of discrete event system simulation has addressed the problem. Presented here is optimization using simulation of VRP; where, a simplified problem has been developed in the ExtendSimTM simulation environment; where, ExtendSimTM evolutionary optimizer is used to minimize the total transportation cost of the problem. Results obtained from the model are very satisfactory. Further complexities of the problem are proposed for consideration in the future.

Keywords: Discrete event system simulation, optimization using simulation, vehicle routing problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5847
1598 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs

Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu

Abstract:

This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.

Keywords: Interpolation, Approximate Solution, Collocation, Differential system, Half step, Converges, Block method, Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
1597 Bifurcations and Chaotic Solutions of Two-dimensional Zonal Jet Flow on a Rotating Sphere

Authors: Eiichi Sasaki, Shin-ichi Takehiro, Michio Yamada

Abstract:

We study bifurcation structure of the zonal jet flow the streamfunction of which is expressed by a single spherical harmonics on a rotating sphere. In the non-rotating case, we find that a steady traveling wave solution arises from the zonal jet flow through Hopf bifurcation. As the Reynolds number increases, several traveling solutions arise only through the pitchfork bifurcations and at high Reynolds number the bifurcating solutions become Hopf unstable. In the rotating case, on the other hand, under the stabilizing effect of rotation, as the absolute value of rotation rate increases, the number of the bifurcating solutions arising from the zonal jet flow decreases monotonically. We also carry out time integration to study unsteady solutions at high Reynolds number and find that in the non-rotating case the unsteady solutions are chaotic, while not in the rotating cases calculated. This result reflects the general tendency that the rotation stabilizes nonlinear solutions of Navier-Stokes equations.

Keywords: rotating sphere, two-dimensional flow, bifurcationstructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
1596 Effects of Introducing Similarity Measures into Artificial Bee Colony Approach for Optimization of Vehicle Routing Problem

Authors: P. Shunmugapriya, S. Kanmani, P. Jude Fredieric, U. Vignesh, J. Reman Justin, K. Vivek

Abstract:

Vehicle Routing Problem (VRP) is a complex combinatorial optimization problem and it is quite difficult to find an optimal solution consisting of a set of routes for vehicles whose total cost is minimum. Evolutionary and swarm intelligent (SI) algorithms play a vital role in solving optimization problems. While the SI algorithms perform search, the diversity between the solutions they exploit is very important. This is because of the need to avoid early convergence and to get an appropriate balance between the exploration and exploitation. Therefore, it is important to check how far the solutions are diverse. In this paper, we measure the similarity between solutions, which ABC exploits while optimizing VRP. The similar solutions found are discarded at the end of the iteration and only unique solutions are passed on to the next iteration. The bees of discarded solutions become scouts and they start searching for new solutions. This process is continued and results show that the solution is optimized at lesser number of iterations but with the overhead of computing similarity in all the iterations. The problem instance from Solomon benchmarked dataset has been used for evaluating the presented methodology.

Keywords: ABC algorithm, vehicle routing problem, optimization, Jaccard’s similarity measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845
1595 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices

Authors: Khosrow Maleknejad, Yaser Rostami

Abstract:

In this paper, Semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions

Keywords: Integro-differential equations, Quartic B-spline wavelet, Operational matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3151
1594 Combining Similarity and Dissimilarity Measurements for the Development of QSAR Models Applied to the Prediction of Antiobesity Activity of Drugs

Authors: Irene Luque Ruiz, Manuel Urbano Cuadrado, Miguel Ángel Gómez-Nieto

Abstract:

In this paper we study different similarity based approaches for the development of QSAR model devoted to the prediction of activity of antiobesity drugs. Classical similarity approaches are compared regarding to dissimilarity models based on the consideration of the calculation of Euclidean distances between the nonisomorphic fragments extracted in the matching process. Combining the classical similarity and dissimilarity approaches into a new similarity measure, the Approximate Similarity was also studied, and better results were obtained. The application of the proposed method to the development of quantitative structure-activity relationships (QSAR) has provided reliable tools for predicting of inhibitory activity of drugs. Acceptable results were obtained for the models presented here.

Keywords: Graph similarity, Nonisomorphic dissimilarity, Approximate similarity, Drugs activity prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
1593 Mechanical Quadrature Methods and Their Extrapolations for Solving First Kind Boundary Integral Equations of Anisotropic Darcy-s Equation

Authors: Xin Luo, Jin Huang, Chuan-Long Wang

Abstract:

The mechanical quadrature methods for solving the boundary integral equations of the anisotropic Darcy-s equations with Dirichlet conditions in smooth domains are presented. By applying the collectively compact theory, we prove the convergence and stability of approximate solutions. The asymptotic expansions for the error show that the methods converge with the order O (h3), where h is the mesh size. Based on these analysis, extrapolation methods can be introduced to achieve a higher convergence rate O (h5). An a posterior asymptotic error representation is derived in order to construct self-adaptive algorithms. Finally, the numerical experiments show the efficiency of our methods.

Keywords: Darcy's equation, anisotropic, mechanical quadrature methods, extrapolation methods, a posteriori error estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
1592 Periodic Solutions in a Delayed Competitive System with the Effect of Toxic Substances on Time Scales

Authors: Changjin Xu, Qianhong Zhang

Abstract:

In this paper, the existence of periodic solutions of a delayed competitive system with the effect of toxic substances is investigated by using the Gaines and Mawhin,s continuation theorem of coincidence degree theory on time scales. New sufficient conditions are obtained for the existence of periodic solutions. The approach is unified to provide the existence of the desired solutions for the continuous differential equations and discrete difference equations. Moreover, The approach has been widely applied to study existence of periodic solutions in differential equations and difference equations.

Keywords: Time scales, competitive system, periodic solution, coincidence degree, topological degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
1591 Analytic and Finite Element Solutions for Temperature Profiles in Welding using Varied Heat Source Models

Authors: Djarot B. Darmadi, John Norrish, Anh Kiet Tieu

Abstract:

Solutions for the temperature profile around a moving heat source are obtained using both analytic and finite element (FEM) methods. Analytic and FEM solutions are applied to study the temperature profile in welding. A moving heat source is represented using both point heat source and uniform distributed disc heat source models. Analytic solutions are obtained by solving the partial differential equation for energy conservation in a solid, and FEM results are provided by simulating welding using the ANSYS software. Comparison is made for quasi steady state conditions. The results provided by the analytic solutions are in good agreement with results obtained by FEM.

Keywords: Analytic solution, FEM, Temperature profile, HeatSource Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
1590 Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable

Authors: T. Boonraksa, B. Marungsri

Abstract:

This paper presents the experimental results on role of ionic solutions affect water treeing propagation in cross-linked polyethylene insulation for high voltage cable. To study the water treeing expansion due to the ionic solutions, discs of 4mm thickness and 4cm diameter were taken from 115 kV XLPE insulation cable and were used as test specimen in this study. Ionic solutions composed of CuSO4, FeSO4, Na2SO4 and K2SO4 were used. Each specimen was immersed in 0.1 mole ionic solutions and was tested for 120 hrs. under a voltage stress at 7 kV AC rms, 1000 Hz. The results show that Na2SO4 and CuSO4solutions play an important role in the expansion of water treeing and cause degradation of the crosslinked polyethylene (XLPE) in the presence of the applied electric field.

Keywords: Ionic Solutions, Water Treeing, Water treeing Expansion, Cross-linked Polyethylene (XLPE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2880
1589 Cubic Trigonometric B-spline Approach to Numerical Solution of Wave Equation

Authors: Shazalina Mat Zin, Ahmad Abd. Majid, Ahmad Izani Md. Ismail, Muhammad Abbas

Abstract:

The generalized wave equation models various problems in sciences and engineering. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline for the approximate solution of wave equation is developed. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Von Neumann stability analysis is used to analyze the proposed method. Two problems are discussed to exhibit the feasibility and capability of the method. The absolute errors and maximum error are computed to assess the performance of the proposed method. The results were found to be in good agreement with known solutions and with existing schemes in literature.

Keywords: Collocation method, Cubic trigonometric B-spline, Finite difference, Wave equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603
1588 Solution of Two-Point Nonlinear Boundary Problems Using Taylor Series Approximation and the Ying Buzu Shu Algorithm

Authors: U. C. Amadi, N. A. Udoh

Abstract:

One of the major challenges faced in solving initial and boundary problems is how to find approximate solutions with minimal deviation from the exact solution without so much rigor and complications. The Taylor series method provides a simple way of obtaining an infinite series which converges to the exact solution for initial value problems and this method of solution is somewhat limited for a two point boundary problem since the infinite series has to be truncated to include the boundary conditions. In this paper, the Ying Buzu Shu algorithm is used to solve a two point boundary nonlinear diffusion problem for the fourth and sixth order solution and compare their relative error and rate of convergence to the exact solution.

Keywords: Ying Buzu Shu, nonlinear boundary problem, Taylor series algorithm, infinite series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 455
1587 Validity Domains of Beams Behavioural Models: Efficiency and Reduction with Artificial Neural Networks

Authors: Keny Ordaz-Hernandez, Xavier Fischer, Fouad Bennis

Abstract:

In a particular case of behavioural model reduction by ANNs, a validity domain shortening has been found. In mechanics, as in other domains, the notion of validity domain allows the engineer to choose a valid model for a particular analysis or simulation. In the study of mechanical behaviour for a cantilever beam (using linear and non-linear models), Multi-Layer Perceptron (MLP) Backpropagation (BP) networks have been applied as model reduction technique. This reduced model is constructed to be more efficient than the non-reduced model. Within a less extended domain, the ANN reduced model estimates correctly the non-linear response, with a lower computational cost. It has been found that the neural network model is not able to approximate the linear behaviour while it does approximate the non-linear behaviour very well. The details of the case are provided with an example of the cantilever beam behaviour modelling.

Keywords: artificial neural network, validity domain, cantileverbeam, non-linear behaviour, model reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428