Search results for: Converges
45 A New Iterative Method for Solving Nonlinear Equations
Authors: Ibrahim Abu-Alshaikh
Abstract:
In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually converges to two distinct roots when the given function has more than one root, that is, the odd iterations of this new technique converge to a root and the even iterations converge to another root. Some numerical examples, including a sine-polynomial equation, are solved by using the proposed method and compared with results obtained by the secant method; perfect agreements are found.
Keywords: Iterative method, root-finding method, sine-polynomial equations, nonlinear equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169444 A Descent-projection Method for Solving Monotone Structured Variational Inequalities
Authors: Min Sun, Zhenyu Liu
Abstract:
In this paper, a new descent-projection method with a new search direction for monotone structured variational inequalities is proposed. The method is simple, which needs only projections and some function evaluations, so its computational load is very tiny. Under mild conditions on the problem-s data, the method is proved to converges globally. Some preliminary computational results are also reported to illustrate the efficiency of the method.Keywords: variational inequalities, monotone function, global convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129343 A Self-stabilizing Algorithm for Maximum Popular Matching of Strictly Ordered Preference Lists
Authors: Zhengnan Shi
Abstract:
In this paper, we consider the problem of Popular Matching of strictly ordered preference lists. A Popular Matching is not guaranteed to exist in any network. We propose an IDbased, constant space, self-stabilizing algorithm that converges to a Maximum Popular Matching an optimum solution, if one exist. We show that the algorithm stabilizes in O(n5) moves under any scheduler (daemon).
Keywords: self-stabilization, popular matching, algorithm, distributed computing, fault tolerance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118742 Some Results on Preconditioned Modified Accelerated Overrelaxation Method
Authors: Guangbin Wang, Deyu Sun, Fuping Tan
Abstract:
In this paper, we present new preconditioned modified accelerated overrelaxation (MAOR) method for solving linear systems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned MAOR method converges faster than the MAOR method whenever the MAOR method is convergent. Finally, we give one numerical example to confirm our theoretical results.
Keywords: preconditioned, MAOR method, linear system, convergence, comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164741 Convergence Analysis of a Prediction based Adaptive Equalizer for IIR Channels
Authors: Miloje S. Radenkovic, Tamal Bose
Abstract:
This paper presents the convergence analysis of a prediction based blind equalizer for IIR channels. Predictor parameters are estimated by using the recursive least squares algorithm. It is shown that the prediction error converges almost surely (a.s.) toward a scalar multiple of the unknown input symbol sequence. It is also proved that the convergence rate of the parameter estimation error is of the same order as that in the iterated logarithm law.Keywords: Adaptive blind equalizer, Recursive leastsquares, Adaptive Filtering, Convergence analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145440 Weighted Harmonic Arnoldi Method for Large Interior Eigenproblems
Authors: Zhengsheng Wang, Jing Qi, Chuntao Liu, Yuanjun Li
Abstract:
The harmonic Arnoldi method can be used to find interior eigenpairs of large matrices. However, it has been shown that this method may converge erratically and even may fail to do so. In this paper, we present a new method for computing interior eigenpairs of large nonsymmetric matrices, which is called weighted harmonic Arnoldi method. The implementation of the method has been tested by numerical examples, the results show that the method converges fast and works with high accuracy.
Keywords: Harmonic Arnoldi method, weighted harmonic Arnoldi method, eigenpair, interior eigenproblem, non symmetric matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154939 Efficient Solution for a Class of Markov Chain Models of Tandem Queueing Networks
Authors: Chun Wen, Tingzhu Huang
Abstract:
We present a new numerical method for the computation of the steady-state solution of Markov chains. Theoretical analyses show that the proposed method, with a contraction factor α, converges to the one-dimensional null space of singular linear systems of the form Ax = 0. Numerical experiments are used to illustrate the effectiveness of the proposed method, with applications to a class of interesting models in the domain of tandem queueing networks.
Keywords: Markov chains, tandem queueing networks, convergence, effectiveness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132938 Initializing K-Means using Genetic Algorithms
Authors: Bashar Al-Shboul, Sung-Hyon Myaeng
Abstract:
K-Means (KM) is considered one of the major algorithms widely used in clustering. However, it still has some problems, and one of them is in its initialization step where it is normally done randomly. Another problem for KM is that it converges to local minima. Genetic algorithms are one of the evolutionary algorithms inspired from nature and utilized in the field of clustering. In this paper, we propose two algorithms to solve the initialization problem, Genetic Algorithm Initializes KM (GAIK) and KM Initializes Genetic Algorithm (KIGA). To show the effectiveness and efficiency of our algorithms, a comparative study was done among GAIK, KIGA, Genetic-based Clustering Algorithm (GCA), and FCM [19].Keywords: Clustering, Genetic Algorithms, K-means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210237 Solution of Nonlinear Second-Order Pantograph Equations via Differential Transformation Method
Authors: Nemat Abazari, Reza Abazari
Abstract:
In this work, we successfully extended one-dimensional differential transform method (DTM), by presenting and proving some theorems, to solving nonlinear high-order multi-pantograph equations. This technique provides a sequence of functions which converges to the exact solution of the problem. Some examples are given to demonstrate the validity and applicability of the present method and a comparison is made with existing results.
Keywords: Nonlinear multi-pantograph equation, delay differential equation, differential transformation method, proportional delay conditions, closed form solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 256036 A New Self-stabilizing Algorithm for Maximal 2-packing
Authors: Zhengnan Shi
Abstract:
In the self-stabilizing algorithmic paradigm, each node has a local view of the system, in a finite amount of time the system converges to a global state with desired property. In a graph G = (V, E), a subset S C V is a 2-packing if Vi c V: IN[i] n SI <1. In this paper, an ID-based, constant space, self-stabilizing algorithm that stabilizes to a maximal 2-packing in an arbitrary graph is proposed. It is shown that the algorithm stabilizes in 0(n3) moves under any scheduler (daemon). Specifically, it is shown that the algorithm stabilizes in linear time-steps under a synchronous daemon where every privileged node moves at each time-step.Keywords: self-stabilization, 2-packing, distributed computing, fault tolerance, graph algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166835 A New Evolutionary Algorithm for Cluster Analysis
Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour
Abstract:
Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.
Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 227834 A Cognitive Model for Frequency Signal Classification
Authors: Rui Antunes, Fernando V. Coito
Abstract:
This article presents the development of a neural network cognitive model for the classification and detection of different frequency signals. The basic structure of the implemented neural network was inspired on the perception process that humans generally make in order to visually distinguish between high and low frequency signals. It is based on the dynamic neural network concept, with delays. A special two-layer feedforward neural net structure was successfully implemented, trained and validated, to achieve minimum target error. Training confirmed that this neural net structure descents and converges to a human perception classification solution, even when far away from the target.Keywords: Neural Networks, Signal Classification, Adaptative Filters, Cognitive Neuroscience
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166633 Acquiring Contour Following Behaviour in Robotics through Q-Learning and Image-based States
Authors: Carlos V. Regueiro, Jose E. Domenech, Roberto Iglesias, Jose L. Correa
Abstract:
In this work a visual and reactive contour following behaviour is learned by reinforcement. With artificial vision the environment is perceived in 3D, and it is possible to avoid obstacles that are invisible to other sensors that are more common in mobile robotics. Reinforcement learning reduces the need for intervention in behaviour design, and simplifies its adjustment to the environment, the robot and the task. In order to facilitate its generalisation to other behaviours and to reduce the role of the designer, we propose a regular image-based codification of states. Even though this is much more difficult, our implementation converges and is robust. Results are presented with a Pioneer 2 AT on a Gazebo 3D simulator.Keywords: Image-based State Codification, Mobile Robotics, ReinforcementLearning, Visual Behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160732 A Hybrid Approach Using Particle Swarm Optimization and Simulated Annealing for N-queen Problem
Authors: Vahid Mohammadi Saffarzadeh, Pourya Jafarzadeh, Masoud Mazloom
Abstract:
This paper presents a hybrid approach for solving nqueen problem by combination of PSO and SA. PSO is a population based heuristic method that sometimes traps in local maximum. To solve this problem we can use SA. Although SA suffer from many iterations and long time convergence for solving some problems, By good adjusting initial parameters such as temperature and the length of temperature stages SA guarantees convergence. In this article we use discrete PSO (due to nature of n-queen problem) to achieve a good local maximum. Then we use SA to escape from local maximum. The experimental results show that our hybrid method in comparison of SA method converges to result faster, especially for high dimensions n-queen problems.
Keywords: PSO, SA, N-queen, CSP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168431 Application of Hybrid Genetic Algorithm Based on Simulated Annealing in Function Optimization
Authors: Panpan Xu, Shulin Sui, Zongjie Du
Abstract:
Genetic algorithm is widely used in optimization problems for its excellent global search capabilities and highly parallel processing capabilities; but, it converges prematurely and has a poor local optimization capability in actual operation. Simulated annealing algorithm can avoid the search process falling into local optimum. A hybrid genetic algorithm based on simulated annealing is designed by combining the advantages of genetic algorithm and simulated annealing algorithm. The numerical experiment represents the hybrid genetic algorithm can be applied to solve the function optimization problems efficiently.Keywords: Genetic algorithm, Simulated annealing, Hybrid genetic algorithm, Function optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 255230 Effect of Different BER Performance Comparison of MAP and ML Detection
Authors: Naveed Ur Rehman, Rehan Jamil, Irfan Jamil
Abstract:
In this paper, we regard as a coded transmission over a frequency-selective channel. We plan to study analytically the convergence of the turbo-detector using a maximum a posteriori (MAP) equalizer and a MAP decoder. We demonstrate that the densities of the maximum likelihood (ML) exchanged during the iterations are e-symmetric and output-symmetric. Under the Gaussian approximation, this property allows to execute a one-dimensional scrutiny of the turbo-detector. By deriving the analytical terminology of the ML distributions under the Gaussian approximation, we confirm that the bit error rate (BER) performance of the turbo-detector converges to the BER performance of the coded additive white Gaussian noise (AWGN) channel at high signal to noise ratio (SNR), for any frequency selective channel.
Keywords: MAP, ML, SNR, Decoder, BER, Coded transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225729 Navigation Patterns Mining Approach based on Expectation Maximization Algorithm
Authors: Norwati Mustapha, Manijeh Jalali, Abolghasem Bozorgniya, Mehrdad Jalali
Abstract:
Web usage mining algorithms have been widely utilized for modeling user web navigation behavior. In this study we advance a model for mining of user-s navigation pattern. The model makes user model based on expectation-maximization (EM) algorithm.An EM algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The experimental results represent that by decreasing the number of clusters, the log likelihood converges toward lower values and probability of the largest cluster will be decreased while the number of the clusters increases in each treatment.Keywords: Web Usage Mining, Expectation maximization, navigation pattern mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157928 Improving Survivability in Wireless Ad Hoc Network
Authors: Seyed Ali Sadat Noori, Elham Sahebi Bazaz
Abstract:
Topological changes in mobile ad hoc networks frequently render routing paths unusable. Such recurrent path failures have detrimental effects on quality of service. A suitable technique for eliminating this problem is to use multiple backup paths between the source and the destination in the network. This paper proposes an effective and efficient protocol for backup and disjoint path set in ad hoc wireless network. This protocol converges to a highly reliable path set very fast with no message exchange overhead. The paths selection according to this algorithm is beneficial for mobile ad hoc networks, since it produce a set of backup paths with more high reliability. Simulation experiments are conducted to evaluate the performance of our algorithm in terms of route numbers in the path set and its reliability. In order to acquire link reliability estimates, we use link expiration time (LET) between two nodes.Keywords: Wireless Ad Hoc Networks, Reliability, Routing, Disjoint Path
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168227 Solution of Two-Point Nonlinear Boundary Problems Using Taylor Series Approximation and the Ying Buzu Shu Algorithm
Authors: U. C. Amadi, N. A. Udoh
Abstract:
One of the major challenges faced in solving initial and boundary problems is how to find approximate solutions with minimal deviation from the exact solution without so much rigor and complications. The Taylor series method provides a simple way of obtaining an infinite series which converges to the exact solution for initial value problems and this method of solution is somewhat limited for a two point boundary problem since the infinite series has to be truncated to include the boundary conditions. In this paper, the Ying Buzu Shu algorithm is used to solve a two point boundary nonlinear diffusion problem for the fourth and sixth order solution and compare their relative error and rate of convergence to the exact solution.
Keywords: Ying Buzu Shu, nonlinear boundary problem, Taylor series algorithm, infinite series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45826 Playing Games with Genetic Algorithms: Application on Price-QoS Competition in Telecommunications Market
Authors: M’hamed Outanoute, Mohamed Baslam, Belaid Bouikhalene
Abstract:
The customers use the best compromise criterion between price and quality of service (QoS) to select or change their Service Provider (SP). The SPs share the same market and are competing to attract more customers to gain more profit. Due to the divergence of SPs interests, we believe that this situation is a non-cooperative game of price and QoS. The game converges to an equilibrium position known Nash Equilibrium (NE). In this work, we formulate a game theoretic framework for the dynamical behaviors of SPs. We use Genetic Algorithms (GAs) to find the price and QoS strategies that maximize the profit for each SP and illustrate the corresponding strategy in NE. In order to quantify how this NE point is performant, we perform a detailed analysis of the price of anarchy induced by the NE solution. Finally, we provide an extensive numerical study to point out the importance of considering price and QoS as a joint decision parameter.
Keywords: Pricing, QoS, Market share game, Genetic algorithms, Nash equilibrium, Learning, Price of anarchy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180625 Determination of Sequential Best Replies in N-player Games by Genetic Algorithms
Authors: Mattheos K. Protopapas, Elias B. Kosmatopoulos
Abstract:
An iterative algorithm is proposed and tested in Cournot Game models, which is based on the convergence of sequential best responses and the utilization of a genetic algorithm for determining each player-s best response to a given strategy profile of its opponents. An extra outer loop is used, to address the problem of finite accuracy, which is inherent in genetic algorithms, since the set of feasible values in such an algorithm is finite. The algorithm is tested in five Cournot models, three of which have convergent best replies sequence, one with divergent sequential best replies and one with “local NE traps"[14], where classical local search algorithms fail to identify the Nash Equilibrium. After a series of simulations, we conclude that the algorithm proposed converges to the Nash Equilibrium, with any level of accuracy needed, in all but the case where the sequential best replies process diverges.
Keywords: Best response, Cournot oligopoly, genetic algorithms, Nash equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144424 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs
Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu
Abstract:
This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.
Keywords: Interpolation, Approximate Solution, Collocation, Differential system, Half step, Converges, Block method, Efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233623 A Contractor Iteration Method Using Eigenpairs for Positive Solutions of Nonlinear Elliptic Equation
Authors: Hailong Zhu, Zhaoxiang Li, Kejun Zhuang
Abstract:
By means of Contractor Iteration Method, we solve and visualize the Lane-Emden(-Fowler) equation Δu + up = 0, in Ω, u = 0, on ∂Ω. It is shown that the present method converges quadratically as Newton’s method and the computation of Contractor Iteration Method is cheaper than the Newton’s method.
Keywords: Positive solutions, newton's method, contractor iteration method, Eigenpairs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137822 Heuristic Continuous-time Associative Memories
Authors: Truong Quang Dang Khoa, Masahiro Nakagawa
Abstract:
In this paper, a novel associative memory model will be proposed and applied to memory retrievals based on the conventional continuous time model. The conventional model presents memory capacity is very low and retrieval process easily converges to an equilibrium state which is very different from the stored patterns. Genetic Algorithms is well-known with the capability of global optimal search escaping local optimum on progress to reach a global optimum. Based on the well-known idea of Genetic Algorithms, this work proposes a heuristic rule to make a mutation when the state of the network is trapped in a spurious memory. The proposal heuristic associative memory show the stored capacity does not depend on the number of stored patterns and the retrieval ability is up to ~ 1.Keywords: Artificial Intelligent, Soft Computing, NeuralNetworks, Genetic Algorithms, Hopfield Neural Networks, andAssociative Memories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140321 A Novel Convergence Accelerator for the LMS Adaptive Algorithm
Authors: Jeng-Shin Sheu, Jenn-Kaie Lain, Tai-Kuo Woo, Jyh-Horng Wen
Abstract:
The least mean square (LMS) algorithmis one of the most well-known algorithms for mobile communication systems due to its implementation simplicity. However, the main limitation is its relatively slow convergence rate. In this paper, a booster using the concept of Markov chains is proposed to speed up the convergence rate of LMS algorithms. The nature of Markov chains makes it possible to exploit the past information in the updating process. Moreover, since the transition matrix has a smaller variance than that of the weight itself by the central limit theorem, the weight transition matrix converges faster than the weight itself. Accordingly, the proposed Markov-chain based booster thus has the ability to track variations in signal characteristics, and meanwhile, it can accelerate the rate of convergence for LMS algorithms. Simulation results show that the LMS algorithm can effectively increase the convergence rate and meantime further approach the Wiener solution, if the Markov-chain based booster is applied. The mean square error is also remarkably reduced, while the convergence rate is improved.Keywords: LMS, Markov chain, convergence rate, accelerator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176420 Performance Analysis of a Series of Adaptive Filters in Non-Stationary Environment for Noise Cancelling Setup
Authors: Anam Rafique, Syed Sohail Ahmed
Abstract:
One of the essential components of much of DSP application is noise cancellation. Changes in real time signals are quite rapid and swift. In noise cancellation, a reference signal which is an approximation of noise signal (that corrupts the original information signal) is obtained and then subtracted from the noise bearing signal to obtain a noise free signal. This approximation of noise signal is obtained through adaptive filters which are self adjusting. As the changes in real time signals are abrupt, this needs adaptive algorithm that converges fast and is stable. Least mean square (LMS) and normalized LMS (NLMS) are two widely used algorithms because of their plainness in calculations and implementation. But their convergence rates are small. Adaptive averaging filters (AFA) are also used because they have high convergence, but they are less stable. This paper provides the comparative study of LMS and Normalized NLMS, AFA and new enhanced average adaptive (Average NLMS-ANLMS) filters for noise cancelling application using speech signals.Keywords: AFA, ANLMS, LMS, NLMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193419 Decision Maturity Framework: Introducing Maturity In Heuristic Search
Authors: Ayed Salman, Fawaz Al-Anzi, Aseel Al-Minayes
Abstract:
Heuristics-based search methodologies normally work on searching a problem space of possible solutions toward finding a “satisfactory" solution based on “hints" estimated from the problem-specific knowledge. Research communities use different types of methodologies. Unfortunately, most of the times, these hints are immature and can lead toward hindering these methodologies by a premature convergence. This is due to a decrease of diversity in search space that leads to a total implosion and ultimately fitness stagnation of the population. In this paper, a novel Decision Maturity framework (DMF) is introduced as a solution to this problem. The framework simply improves the decision on the direction of the search by materializing hints enough before using them. Ideas from this framework are injected into the particle swarm optimization methodology. Results were obtained under both static and dynamic environment. The results show that decision maturity prevents premature converges to a high degree.Keywords: Heuristic Search, hints, Particle Swarm Optimization, Decision Maturity Framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135618 Operational Guidelines for Six-Sigma Implementation: Survey of Indian Medium Scale Automotive Industries
Authors: Rajeshkumar U. Sambhe
Abstract:
Large scale Indian manufacturers started implementing Six Sigma to their supply core to fulfill the endless need of high quality products. As well, they initiated encouraging their suppliers to apply the well-ascertain SS management practice and kept no resource for supplier enterprises, generally small midsized enterprises to think for the admittance of Six Sigma as a quality promotion drive. There are many issues to study for requisite changes before the introduction of Six Sigma in auto SMEs. This paper converges on impeding factors while implementing SS drive and also pinpoints the gains achieved through successful implementation. The result of this study suggest some operational guidelines for effective implementation of Six Sigma from evidences acquired through research questionnaire and interviews with industrial professionals, apportioned to assort auto sector mid-sized enterprises (MSEs) in India.Keywords: Indian automotive SMEs, quality management practices, six sigma imperatives, problems faced in six sigma implementation, benefits, some guidelines for implementation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247017 A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm
Authors: J. Yang, Y. Ma, X. Zhang, S. Li, Y. Zhang
Abstract:
The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods.
Keywords: Degree, initial cluster center, k-means, minimum spanning tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155316 Image Mapping with Cumulative Distribution Function for Quick Convergence of Counter Propagation Neural Networks in Image Compression
Authors: S. Anna Durai, E. Anna Saro
Abstract:
In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Counter Propagation Neural Network, it takes longer time to converge. The reason for this is that the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbor with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative Distribution Function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used the Counter Propagation Neural Network yield high compression ratio as well as it converges quickly.Keywords: Correlation, Counter Propagation Neural Networks, Cummulative Distribution Function, Image compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671