Search results for: Ultrasonic
79 Ultrasonic Investigation of Molecular Interaction in Binary Liquid Mixture of Polyethylene Glycol with Ethanol
Authors: S. Grace Sahaya Sheba, R. Omegala Priakumari
Abstract:
Polyethylene glycol (PEG) is a condensation polymer of ethylene oxide and water. It is soluble in water and in many organic solvents. PEG is used to make emulsifying agents, detergents, soaps, plasticizers, ointments etc. Ethanol (C2H5OH) also known as ethyl alcohol is a well-known organic compound and has wide applications in chemical industry as it is used as a solvent for paint, varnish, in preserving biological specimens, used as a fuel mixed with petrol etc. Though their chemical and physical properties are already studied, still because of their uses in day to day life the authors thought it is better to study some more of their physical properties like ultrasonic velocity and hence adiabatic compressibility, free length, etc. A detailed study of such properties and some excess parameters like excess adiabatic compressibility, excess free volume and few more in the liquid mixtures of these two compounds with PEG as a solute and Ethanol as a solvent at various mole fractions may throw some light on deeper understanding of molecular interaction between the solute and the solvent supported by NMR, IR etc. Hence the present research work is on ultrasonics/allied studies on these two liquid mixtures. Ultrasonic velocity (U), density (ρ) and viscosity (η) at room temperature and at different mole fraction from 0 to 0.055 of ethanol in PEG have been experimentally carried out by the authors. Acoustical parameters such as adiabatic compressibility (β), free volume (Vf), acoustic impedance (Z), internal pressure (πi), intermolecular free length (Lf) and relaxation time (τ) were calculated from the experimental data. We have calculated excess parameters like excess adiabatic compressibility (βE), excess internal pressure (πiE) free length (LfE) and excess acoustic impedance (ZE) etc for these two chosen liquid mixtures. The excess compressibility is positive and maximum around a mole fraction 0.007 and excess internal pressure is negative and maximum at the same mole fraction and longer free length. The results are analyzed and it may be concluded that the molecular interactions between the solute and the solvent is not strong and it may be weak. Appropriate graphs are drawn.
Keywords: Adiabatic Compressibility, Binary mixture, Induce dipole, Polarizability, Ultrasonic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 278478 Suggestion of Ultrasonic System for Diagnosis of Functional Gastrointestinal Disorders: Finite Difference Analysis, Development and Clinical Trials
Authors: Won-Pil Park, Qyoun-Jung Lee, Dae-Gon Woo, Chang-Yong Ko, Eun-Geun Kim, Dohyung Lim, Yong-Heum Lee, Tae-Min Shin, Han-Sung Kim
Abstract:
The disaster from functional gastrointestinal disorders has detrimental impact on the quality of life of the effected population and imposes a tremendous social and economic burden. There are, however, rare diagnostic methods for the functional gastrointestinal disorders. Our research group identified recently that the gastrointestinal tract well in the patients with the functional gastrointestinal disorders becomes more rigid than healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. Objective of current study is, therefore, identify feasibility of a diagnostic system for the functional gastrointestinal disorders based on ultrasound technique, which can quantify the characteristics above. Two-dimensional finite difference (FD) models (one normal and two rigid model) were developed to analyze the reflective characteristic (displacement) on each soft-tissue layer responded after application of ultrasound signals. The FD analysis was then based on elastic ultrasound theory. Validation of the model was performed via comparison of the characteristic of the ultrasonic responses predicted by FD analysis with that determined from the actual specimens for the normal and rigid conditions. Based on the results from FD analysis, ultrasound system for diagnosis of the functional gastrointestinal disorders was developed and clinically tested via application of it to 40 human subjects with/without functional gastrointestinal disorders who were assigned to Normal and Patient Groups. The FD models were favorably validated. The results from FD analysis showed that the maximum displacement amplitude in the rigid models (0.12 and 0.16) at the interface between the fat and muscle layers was explicitly less than that in the normal model (0.29). The results from actual specimens showed that the maximum amplitude of the ultrasonic reflective signal in the rigid models (0.2±0.1Vp-p) at the interface between the fat and muscle layers was explicitly higher than that in the normal model (0.1±0.2 Vp-p). Clinical tests using our customized ultrasound system showed that the maximum amplitudes of the ultrasonic reflective signals near to the gastrointestinal tract well for the patient group (2.6±0.3 Vp-p) were generally higher than those in normal group (0.1±0.2 Vp-p). Here, maximum reflective signals was appeared at 20mm depth approximately from abdominal skin for all human subjects, corresponding to the location of the boundary layer close to gastrointestinal tract well. These findings suggest that our customized ultrasound system using the ultrasonic reflective signal may be helpful to the diagnosis of the functional gastrointestinal disorders.Keywords: Finite Difference (FD) Analysis, FunctionalGastrointestinal Disorders, Gastrointestinal Tract, UltrasonicResponses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161577 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking
Authors: Shiuh-Jer Huang, Yu-Sheng Hsu
Abstract:
On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.Keywords: Vehicle auto-parking, parking space detection, parking path tracking, intelligent fuzzy controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146476 2D Gabor Functions and FCMI Algorithm for Flaws Detection in Ultrasonic Images
Authors: Kechida Ahmed, Drai Redouane, Khelil Mohamed
Abstract:
In this paper we present a new approach to detecting a flaw in T.O.F.D (Time Of Flight Diffraction) type ultrasonic image based on texture features. Texture is one of the most important features used in recognizing patterns in an image. The paper describes texture features based on 2D Gabor functions, i.e., Gaussian shaped band-pass filters, with dyadic treatment of the radial spatial frequency range and multiple orientations, which represent an appropriate choice for tasks requiring simultaneous measurement in both space and frequency domains. The most relevant features are used as input data on a Fuzzy c-mean clustering classifier. The classes that exist are only two: 'defects' or 'no defects'. The proposed approach is tested on the T.O.F.D image achieved at the laboratory and on the industrial field.Keywords: 2D Gabor Functions, flaw detection, fuzzy c-mean clustering, non destructive testing, texture analysis, T.O.F.D Image (Time of Flight Diffraction).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175175 Improvement in Properties of Ni-Cr-Mo-V Steel through Process Control
Authors: Arnab Majumdar, Sanjoy Sadhukhan
Abstract:
Although gun barrel steels are an important variety from defense view point, available literatures are very limited. In the present work, an IF grade Ni-Cr-Mo-V high strength low alloy steel is produced in Electric Earth Furnace-ESR Route. Ingot was hot forged to desired dimension with a reduction ratio of 70-75% followed by homogenization, hardening and tempering treatment. Sample chemistry, NMIR, macro and micro structural analyses were done. Mechanical properties which include tensile, impact, and fracture toughness were studied. Ultrasonic testing was done to identify internal flaws. The existing high strength low alloy Ni-Cr-Mo-V steel shows improved properties in modified processing route and heat treatment schedule in comparison to properties noted earlier for manufacturing of gun barrels. The improvement in properties seems to withstand higher explosive loads with the same amount of steel in gun barrel application.Keywords: Gun barrel steels, IF grade, physical properties, thermal and mechanical processing, mechanical properties, ultrasonic testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243374 Studying the Effect of Hydrocarbon Solutions on the Properties of Epoxy Polymer Concrete
Authors: Mustafa Hasan Omar
Abstract:
The destruction effect of hydrocarbon solutions on concrete besides its high permeability have led researchers to try to improve the performance of concrete exposed to these solutions, hence improving the durability and usability of oil concrete structures. Recently, polymer concrete is considered one of the most important types of concrete, and its behavior after exposure to oil products is still unknown. In the present work, an experimental study has been carried out, in which the prepared epoxy polymer concrete immersed in different types of hydrocarbon exposure solutions (gasoline, kerosene, and gas oil) for 120 days and compared with the reference concrete left in the air. The results for outdoor specimens indicate that the mechanical properties are increased after 120 days, but the specimens that were immersed in gasoline, kerosene, and gas oil for the same period show a reduction in compressive strength by -21%, -27% and -23%, whereas in splitting tensile strength by -19%, -24% and -20%, respectively. The reductions in ultrasonic pulse velocity for cubic specimens are -17%, -22% and -19% and in cylindrical specimens are -20%, -25% and -22%, respectively.Keywords: Epoxy resin, hydrocarbon solutions, mechanical properties, polymer concrete, ultrasonic pulse velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66173 Lamb Wave Wireless Communication in Healthy Plates Using Coherent Demodulation
Authors: Rudy Bahouth, Farouk Benmeddour, Emmanuel Moulin, Jamal Assaad
Abstract:
Guided ultrasonic waves are used in Non-Destructive Testing and Structural Health Monitoring for inspection and damage detection. Recently, wireless data transmission using ultrasonic waves in solid metallic channels has gained popularity in some industrial applications such as nuclear, aerospace and smart vehicles. The idea is to find a good substitute for electromagnetic waves since they are highly attenuated near metallic components due to Faraday shielding. The proposed solution is to use ultrasonic guided waves such as Lamb waves as an information carrier due to their capability of propagation for long distances. In addition to this, valuable information about the health of the structure could be extracted simultaneously. In this work, the reliable frequency bandwidth for communication is extracted experimentally from dispersion curves at first. Then, an experimental platform for wireless communication using Lamb waves is described and built. After this, coherent demodulation algorithm used in telecommunications is tested for Amplitude Shift Keying, On-Off Keying and Binary Phase Shift Keying modulation techniques. Signal processing parameters such as threshold choice, number of cycles per bit and Bit Rate are optimized. Experimental results are compared based on the average bit error percentage. Results has shown high sensitivity to threshold selection for Amplitude Shift Keying and On-Off Keying techniques resulting a Bit Rate decrease. Binary Phase Shift Keying technique shows the highest stability and data rate between all tested modulation techniques.
Keywords: Lamb Wave Communication, wireless communication, coherent demodulation, bit error percentage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56172 H-Infinity and RST Position Controllers of Rotary Traveling Wave Ultrasonic Motor
Authors: M. Brahim, I. Bahri, Y. Bernard
Abstract:
Traveling Wave Ultrasonic Motor (TWUM) is a compact, precise, and silent actuator generating high torque at low speed without gears. Moreover, the TWUM has a high holding torque without supply, which makes this motor as an attractive solution for holding position of robotic arms. However, their nonlinear dynamics, and the presence of load-dependent dead zones often limit their use. Those issues can be overcome in closed loop with effective and precise controllers. In this paper, robust H-infinity (H∞) and discrete time RST position controllers are presented. The H∞ controller is designed in continuous time with additional weighting filters to ensure the robustness in the case of uncertain motor model and external disturbances. Robust RST controller based on the pole placement method is also designed and compared to the H∞. Simulink model of TWUM is used to validate the stability and the robustness of the two proposed controllers.
Keywords: Piezoelectric motors, position control, H∞, RST, stability criteria, robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96471 Properties of Composite Nanofiber Produced by Single and Coaxial Nozzle Method used for Electrospinning Technique
Authors: Onur Ayaz, Nuray Ucar, Elif Bahar, Oguzhan Ucar, Mustafa Oksuz, Aysen Onen, Mehmet Ucar, Ezgi İşmar, Ali Demir
Abstract:
In this study, single nozzle method used for electrospinning technique which composite polymer solution with cellulose nanowiskers (CNW) was treated by ultrasonic sonificator have been compared with coaxial (double) nozzle method, in terms of mechanical, thermal and morphological properties of composite nanofiber. The effect of water content in composite polymer solution on properties of nanofiber has also been examined. It has been seen that single nozzle method which polymer solution does not contain water has better results than that of coaxial method, in terms of mechanical, thermal and morphological properties of nanofiber. However, it is necessary to make an optimization study on setting condition of ultrasonic treatment to get better dispersion of CNW in composite nanofiber and to get better mechanical and thermal propertiesKeywords: cellulose nanowhiskers, coaxial nozzle, composite nanofiber, electrospinning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208870 Evaluating Residual Mechanical and Physical Properties of Concrete at Elevated Temperatures
Authors: S. Hachemi, A. Ounis, S. Chabi
Abstract:
This paper presents the results of an experimental study on the effects of elevated temperature on compressive and flexural strength of Normal Strength Concrete (NSC), High Strength Concrete (HSC) and High Performance Concrete (HPC). In addition, the specimen mass and volume were measured before and after heating in order to determine the loss of mass and volume during the test. In terms of non-destructive measurement, ultrasonic pulse velocity test was proposed as a promising initial inspection method for fire damaged concrete structure. 100 Cube specimens for three grades of concrete were prepared and heated at a rate of 3°C/min up to different temperatures (150, 250, 400, 600, and 900°C). The results show a loss of compressive and flexural strength for all the concretes heated to temperature exceeding 400°C. The results also revealed that mass and density of the specimen significantly reduced with an increase in temperature.
Keywords: High temperature, Compressive strength, Mass loss, Ultrasonic pulse velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222369 Correlation between Heat Treatment, Microstructure and Properties of Trip-Assisted Steels
Authors: A. Talapatra, N. R. Bandhyopadhyay, J. Datta
Abstract:
In the present study, two TRIP-assisted steels were designated as A (having no Cr and Cu content) and B (having higher Ni, Cr and Cu content) heat treated under different conditions, and the correlation between its heat treatment, microstructure and properties were investigated. Micro structural examination was carried out by optical microscope and scanning electron microscope after electrolytic etching. Non-destructive electrochemical and ultrasonic testing on two TRIP-assisted steels was used to find out corrosion and mechanical properties of different alter microstructure phase’s steels. Furthermore, micro structural studies accompanied by the evaluation of mechanical properties revealed that steels having martensite phases with higher corrosive and hardness value were less sound velocity and also steel’s microstructure having finer grains that was more grain boundary was less corrosion resistance. Steel containing more Cu, Ni and Cr was less corrosive compared to other steels having same processing or microstructure.
Keywords: TRIP-assisted steels, heat treatment, corrosion, electrochemical techniques, micro-structural characterization, non-destructive (ultrasonic) technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 301668 Development of a Smart Liquid Level Controller
Authors: Adamu Mudi, Fawole Wahab Ibrahim, Abubakar Abba Kolo
Abstract:
In this paper, we present a microcontroller-based liquid level controller which identifies the various levels of a liquid, carries out certain actions and is capable of communicating with the human being and other devices through the GSM network. This project is useful in ensuring that a liquid is not wasted. It also contributes to the internet of things paradigm, which is the future of the internet. The method used in this work includes designing the circuit and simulating it. The circuit is then implemented on a solderless breadboard after which it is implemented on a strip board. A C++ computer program is developed and uploaded into the microcontroller. This program instructs the microcontroller on how to carry out its actions. In other to determine levels of the liquid, an ultrasonic wave is sent to the surface of the liquid similar to radar or the method for detecting the level of sea bed. Message is sent to the phone of the user similar to the way computers send messages to phones of GSM users. It is concluded that the routine of observing the levels of a liquid in a tank, refilling the tank when the liquid level is too low can be entirely handled by a programmable device without wastage of the liquid or bothering a human being with such tasks.
Keywords: Arduino Uno, HC-SR04 ultrasonic sensor, Internet of Things, IoT, SIM900 GSM Module.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51467 Ultrasonic System for Diagnosis of Functional Gastrointestinal Disorders: Development, Verification and Clinical Trials
Authors: Eun-Geun Kim, Won-Pil Park, Dae-Gon Woo, Chang-Yong Ko, Yong-Heum Lee, Dohyung Lim, Tae-Min Shin, Han-Sung Kim, Gyoun-Jung Lee
Abstract:
Functional gastrointestinal disorders affect millions of people spread all age regardless of race and sex. There are, however, rare diagnostic methods for the functional gastrointestinal disorders because functional disorders show no evidence of organic and physical causes. Our research group identified recently that the gastrointestinal tract well in the patients with the functional gastrointestinal disorders becomes more rigid than healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. Aim of this study is, therefore, to develop a diagnostic system for the functional gastrointestinal disorders based on ultrasound technique, which can quantify the characteristic above related to the rigidity of the gastrointestinal tract well. Ultrasound system was designed. The system consisted of transmitter, ultrasonic transducer, receiver, TGC, and CPLD, and verified via a phantom test. For the phantom test, ten soft-tissue specimens were harvested from porcine. Five of them were then treated chemically to mimic a rigid condition of gastrointestinal tract well, which was induced by functional gastrointestinal disorders. Additionally, the specimens were tested mechanically to identify if the mimic was reasonable. The customized ultrasound system was finally verified through application to human subjects with/without functional gastrointestinal disorders (Normal and Patient Groups). It was identified from the mechanical test that the chemically treated specimens were more rigid than normal specimen. This finding was favorably compared with the result obtained from the phantom test. The phantom test also showed that ultrasound system well described the specimen geometric characteristics and detected an alteration in the specimens. The maximum amplitude of the ultrasonic reflective signal in the rigid specimens (0.2±0.1Vp-p) at the interface between the fat and muscle layers was explicitly higher than that in the normal specimens (0.1±0.0Vp-p). Clinical tests using our customized ultrasound system for human subject showed that the maximum amplitudes of the ultrasonic reflective signals near to the gastrointestinal tract well for the patient group (2.6±0.3Vp-p) were generally higher than those in normal group (0.1±0.2Vp-p). Here, maximum reflective signals was appeared at 20mm depth approximately from abdominal skin for all human subjects, corresponding to the location of the boundary layer close to gastrointestinal tract well. These results suggest that newly designed diagnostic system based on ultrasound technique may diagnose enough the functional gastrointestinal disorders.Keywords: Functional Gastrointestinal Disorders, DiagnosticSystem, Phantom Test, Ultrasound System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179066 Ultrasonic Assessment of Corpora Lutea and Plasma Progesterone Levels in Early Pregnant and Non Pregnant Cows
Authors: Abdurraouf Gaja, Salah Al-Dahash, Guru Solmon Raju, Chikara Kubota
Abstract:
Corpus luteum cross sectional (by ultrasonography) and plasma progesterone (by DELFIA) were estimated in early pregnant and non pregnant cows on days 14th and 20th to 23rd post insemination. On day 14th, corpus luteum sectional area was 348.43 mm2 in pregnant and 387.84mm2 in non pregnant cows. Within days 20th to 23rd, corpus luteum sectional area ranged between 342.06 and 367.90 mm2 in pregnant and between 193.85 and 270.69 mm2 in non pregnant cows. Plasma progesterone level was 2.43 ng/ml in pregnant and 2.46 ng/ml in non pregnant cows on day 14th, while during days 20th to 23rd the level ranged between 2.47 and 2.84 ng/ml in pregnant and between 0.53 and 1.17 ng/ml in non pregnant cows. Results of both luteal tissue areas as well as plasma progesterone levels were highly significantly deferent (P<0.01) between pregnant and non pregnant cows during days 20th to 23rd, but there were no significant differences on day 14th. The correlation between CL cross sectional area and plasma progesterone level was 0.4 in pregnant cows and 0.99 in non pregnant cow. It is clear, from this study, that ultrasonic assessment of corpora lutea is a viable alternative to determine plasma progesterone levels for early pregnancy diagnosis in cows.
Keywords: Progesterone, ultrasonography, corpus luteum, pregnancy diagnosis, cow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183565 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: Remote monitoring, non-destructive testing, embedded linux system, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96664 Mechanical Contribution of Silica Fume and Hydrated Lime Addition in Mortars Assessed by Ultrasonic Pulse Velocity Tests
Authors: Nacim Khelil, Amar Kahil, Said Boukais
Abstract:
The aim of the present study is to investigate the changes in the mechanical properties of mortars including additions of Condensed Silica Fume (CSF), Hydrated Lime (CH) or both at various amounts (5% to 15% of cement replacement) and high water ratios (w/b) (0.4 to 0.7). The physical and mechanical changes in the mixes were evaluated using non-destructive tests (Ultrasonic Pulse Velocity (UPV)) and destructive tests (crushing tests) on 28 day-long specimens consecutively, in order to assess CSF and CH replacement rate influence on the mechanical and physical properties of the mortars, as well as CSF-CH pre-mixing on the improvement of these properties. A significant improvement of the mechanical properties of the CSF, CSF-CH mortars, has been noted. CSF-CH mixes showed the best improvements exceeding 50% improvement, showing the sizable pozzolanic reaction contribution to the specimen strength development. UPV tests have shown increased velocities for CSF and CSH mixes, however no proportional evolution with compressive strengths could be noted. The results of the study show that CSF-CH addition could represent a suitable solution to significantly increase the mechanical properties of mortars.
Keywords: Compressive strength, condensed silica fume, hydrated lime, pozzolanic reaction, UPV testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57363 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique
Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram
Abstract:
Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 100462 Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design
Authors: Fariba Tadayon, Elmira Hassanlou, Hasan Bagheri, Mostafa Jafarian
Abstract:
Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS.Keywords: Dispersive liquid-liquid microextraction, Central composite design, Food samples, Flame atomic absorption spectrometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129061 Data Compression in Ultrasonic Network Communication via Sparse Signal Processing
Authors: Beata Zima, Octavio A. Márquez Reyes, Masoud Mohammadgholiha, Jochen Moll, Luca De Marchi
Abstract:
This document presents the approach of using compressed sensing in signal encoding and information transferring within a guided wave sensor network, comprised of specially designed frequency steerable acoustic transducers (FSATs). Wave propagation in a damaged plate was simulated using commercial FEM-based software COMSOL. Guided waves were excited by means of FSATs, characterized by the special shape of its electrodes, and modeled using PIC255 piezoelectric material. The special shape of the FSAT, allows for focusing wave energy in a certain direction, accordingly to the frequency components of its actuation signal, which makes a larger monitored area available. The process begins when a FSAT detects and records reflection from damage in the structure, this signal is then encoded and prepared for transmission, using a combined approach, based on Compressed Sensing Matching Pursuit and Quadrature Amplitude Modulation (QAM). After codification of the signal is in binary, the information is transmitted between the nodes in the network. The message reaches the last node, where it is finally decoded and processed, to be used for damage detection and localization purposes. The main aim of the investigation is to determine the location of detected damage using reconstructed signals. The study demonstrates that the special steerable capabilities of FSATs, not only facilitate the detection of damage but also permit transmitting the damage information to a chosen area in a specific direction of the investigated structure.
Keywords: Data compression, ultrasonic communication, guided waves, FEM analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37860 The Study of the Desulfurization Process of Oil and Oil Products of “Zhanazhol” Oil Field Using the Approaches of Green Chemistry
Authors: Zhaksyntay K. Kairbekov, Zhannur K. Myltykbaeva, Nazym T. Smagulova, Dariya K. Kanseitova
Abstract:
In this paper we studied sono catalytic oxidative desulfurization of oil and diesel fraction from “Zhanazhol” oil deposits. We have established that the combined effect of the ultrasonic field and oxidant (ozone-air mixture) in the presence of the catalyst on the oil is potentially very effective method of desulfurization of oil and oil products. This method allows increasing the degree of desulfurization of oil by 62%.
Keywords: Desulfurization, diesel, oil, oil products, sonication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195159 Analysis of Sonographic Images of Breast
Authors: M. Bastanfard, S. Jafari, B.Jalaeian
Abstract:
Ultrasound images are very useful diagnostic tool to distinguish benignant from malignant masses of the breast. However, there is a considerable overlap between benignancy and malignancy in ultrasonic images which makes it difficult to interpret. In this paper, a new noise removal algorithm was used to improve the images and classification process. The masses are classified by wavelet transform's coefficients, morphological and textural features as a novel feature set for this goal. The Bayesian estimation theory is used to classify the tissues in three classes according to their features.Keywords: Bayesian estimation theory, breast, ultrasound, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144658 An Experimental Multi-Agent Robot System for Operating in Hazardous Environments
Authors: Y. J. Huang, J. D. Yu, B. W. Hong, C. H. Tai, T. C. Kuo
Abstract:
In this paper, a multi-agent robot system is presented. The system consists of four robots. The developed robots are able to automatically enter and patrol a harmful environment, such as the building infected with virus or the factory with leaking hazardous gas. Further, every robot is able to perform obstacle avoidance and search for the victims. Several operation modes are designed: remote control, obstacle avoidance, automatic searching, and so on.
Keywords: autonomous robot, field programmable gate array, obstacle avoidance, ultrasonic sensor, wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177857 Ultrasound-Assisted Pd Activation Process for Electroless Silver Plating
Authors: Chang-Myeon Lee, Min-Hyung Lee, Jin-Young Hur, Ho-Nyun Lee, Hong-Kee Lee
Abstract:
An ultrasound-assisted activation method for electroless silver plating is presented in this study. When the ultrasound was applied during the activation step, the amount of the Pd species adsorbed on substrate surfaces was higher than that of sample pretreated with a conventional activation process without ultrasound irradiation. With this activation method, it was also shown that the adsorbed Pd species with a size of about 5 nm were uniformly distributed on the surfaces, thus a smooth and uniform coating on the surfaces was obtained by subsequent electroless silver plating. The samples after each step were characterized by AFM, XPS, FIB, and SEM.Keywords: Cavitation, Electroless silver, Pd activation, Ultrasonic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 238556 Predictive Model of Sensor Readings for a Mobile Robot
Authors: Krzysztof Fujarewicz
Abstract:
This paper presents a predictive model of sensor readings for mobile robot. The model predicts sensor readings for given time horizon based on current sensor readings and velocities of wheels assumed for this horizon. Similar models for such anticipation have been proposed in the literature. The novelty of the model presented in the paper comes from the fact that its structure takes into account physical phenomena and is not just a black box, for example a neural network. From this point of view it may be regarded as a semi-phenomenological model. The model is developed for the Khepera robot, but after certain modifications, it may be applied for any robot with distance sensors such as infrared or ultrasonic sensors.
Keywords: Mobile robot, sensors, prediction, anticipation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144855 Frequency Modulation in Vibro-Acoustic Modulation Method
Authors: D. Liu, D. M. Donskoy
Abstract:
The vibroacoustic modulation method is based on the modulation effect of high-frequency ultrasonic wave (carrier) by low-frequency vibration in the presence of various defects, primarily contact-type such as cracks, delamination, etc. The presence and severity of the defect are measured by the ratio of the spectral sidebands and the carrier in the spectrum of the modulated signal. This approach, however, does not differentiate between amplitude and frequency modulations, AM and FM, respectfully. This paper is an attempt to explain the generation mechanisms of FM and its correlation with the flaw properties. Here we proposed two possible mechanisms leading to FM modulation based on nonlinear local defect resonance and dynamic acoustoelastic models.
Keywords: Non-destructive testing, nonlinear acoustics, structural health monitoring, acoustoelasticity, local defect resonance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50054 Effective Sonar Target Classification via Parallel Structure of Minimal Resource Allocation Network
Authors: W.S. Lim, M.V.C. Rao
Abstract:
In this paper, the processing of sonar signals has been carried out using Minimal Resource Allocation Network (MRAN) and a Probabilistic Neural Network (PNN) in differentiation of commonly encountered features in indoor environments. The stability-plasticity behaviors of both networks have been investigated. The experimental result shows that MRAN possesses lower network complexity but experiences higher plasticity than PNN. An enhanced version called parallel MRAN (pMRAN) is proposed to solve this problem and is proven to be stable in prediction and also outperformed the original MRAN.Keywords: Ultrasonic sensing, target classification, minimalresource allocation network (MRAN), probabilistic neural network(PNN), stability-plasticity dilemma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159653 Production of Spherical Ag/ZnO Nanocomposite Particles for Photocatalytic Applications
Authors: K. B. Dermenci, B. Ebin, S.Gürmen
Abstract:
Noble metal participation in nanostructured semiconductor catalysts has drawn much interest because of their improved properties. Recently, it has been discussed by many researchers that Ag participation in TiO2, CuO, ZnO semiconductors showed improved photocatalytic and optical properties. In this research, Ag/ZnO nanocomposite particles were prepared by Ultrasonic Spray Pyrolysis(USP) Method. 0.1M silver and zinc nitrate aqueous solutions were used as precursor solutions. The Ag:Zn atomic ratio of the solution was selected 1:1. Experiments were taken place under constant air flow of 400 mL/min at 800°C furnace temperature. Particles were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS). The crystallite sizes of Ag and ZnO in composite particles are 24.6 nm, 19.7 nm respectively. Although, spherical nanocomposite particles are in a range of 300- 800 nm, these particles are formed by the aggregation of primary particles which are in a range of 20-60 nm.Keywords: Ag/ZnO nanocatalysts, Nanotechnology, USP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 288152 Sensor Fusion Based Discrete Kalman Filter for Outdoor Robot Navigation
Authors: Mbaitiga Zacharie
Abstract:
The objective of the presented work is to implement the Kalman Filter into an application that reduces the influence of the environmental changes over the robot expected to navigate over a terrain of varying friction properties. The Discrete Kalman Filter is used to estimate the robot position, project the estimated current state ahead at time through time update and adjust the projected estimated state by an actual measurement at that time via the measurement update using the data coming from the infrared sensors, ultrasonic sensors and the visual sensor respectively. The navigation test has been performed in a real world environment and has been found to be robust.
Keywords: Kalman filter, sensors fusion, robot navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211551 Classification of Defects by the SVM Method and the Principal Component Analysis (PCA)
Authors: M. Khelil, M. Boudraa, A. Kechida, R. Drai
Abstract:
Analyses carried out on examples of detected defects echoes showed clearly that one can describe these detected forms according to a whole of characteristic parameters in order to be able to make discrimination between a planar defect and a volumic defect. This work answers to a problem of ultrasonics NDT like Identification of the defects. The problems as well as the objective of this realized work, are divided in three parts: Extractions of the parameters of wavelets from the ultrasonic echo of the detected defect - the second part is devoted to principal components analysis (PCA) for optimization of the attributes vector. And finally to establish the algorithm of classification (SVM, Support Vector Machine) which allows discrimination between a plane defect and a volumic defect. We have completed this work by a conclusion where we draw up a summary of the completed works, as well as the robustness of the various algorithms proposed in this study.Keywords: NDT, PCA, SVM, ultrasonics, wavelet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200250 CuO Thin Films Deposition by Spray Pyrolysis: Influence of Precursor Solution Properties
Authors: M. Lamri Zeggar, F. Bourfaa, A. Adjimi, F. Boutbakh, M. S. Aida, N. Attaf
Abstract:
CuO thin films were deposited by spray ultrasonic pyrolysis with different precursor solution. Two staring solution slats were used namely: copper acetate and copper chloride. The influence of these solutions on CuO thin films proprieties of is instigated. The X rays diffraction (XDR) analysis indicated that the films deposed with copper acetate are amorphous however the films elaborated with copper chloride have monoclinic structure. UV- Visible transmission spectra showed a strong absorbance of the deposited CuO thin films in the visible region. Electrical characterization has shown that CuO thin films prepared with copper acetate have a higher electrical conductivity.Keywords: Thin films, cuprous oxide, spray pyrolysis, precursor solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3304